CpE6110
Homework # 4

1)
A systolic organization of 8 cells is assumed (Figure 1).  The text "ENTERTAINMENT" and the pattern "ENT" are marching from left-to-right and right-to-left towards each other, respectively.  

a)
Show the snapshots of the operation during each clock period (pattern is re-circulated).

b) Based on your observations from part (a), discuss the suitability of the systolic model for character matching operations.

2)
Use the basic building block of the following figure to design a special purpose systolic organization for matrix product operation (show the block diagram).


[image: image3.bmp]
3)
Given the following assembly code.  Exploit the maximum degree of parallelism among the 16 instructions, assuming no resource conflicts and availability of multiple functional units.  For simplicity, no pipelining is assumed, all instructions take one machine cycle to execute, and ignore all other overhead.

a)
Draw the program graph to show the follow relationships among the 16 instruction nodes.

b)
Assume a three-issue superscalar processor to execute this program in minimum time — the processor can issue one memory-access instruction, one add/subtract instruction, and one multiply instruction per cycle.

1)
LOAD

R1, A


9)
MUL

R8, R7, R4
2)
LOAD

R2, B


10)
LOAD

R9, E

3)
MUL

R3, R1, R2

11)
Add

R10, R8, R9
4)
LOAD

R4, D


12)
STORE
Y, R10
5)
MUL

R5, R1, R4

13)
ADD

R11, R6, R10
6)
ADD

R6, R3, R5

14)
STORE
U, R11
7)
STORE
X, R6


15)
SUB

R12, R6, R10
8)
LOAD

R7, C


16)
STORE
V, R12

4) Repeat part (b) of problem 3 on a dual processor system with shared memory.  Assume that the same superscalar processors are used and all instructions take one cycle to execute:

a) Partition the given program into two balanced halves.  Show the divided program flow graph with the final output U and V generated by the two processors separately.

b) Work out an optimal schedule for parallel execution of the above divided program by the two processors in minimum time.

5)
Consider the following four assembly code fragments each containing two instructions:


a)
DADDI
R1, R1, #4



LD

R2, 7(R1)


b)
DADD

R3, R1, R2


SD

R2, 7(R1)


c)
SD

R2, 7(R1)



SD

R2, 200(R7)


d)
BEZ

R1, place



SD

R1, 7(R1)

A) For each code segment identify type of dependence that exists or may exist.  For a dependence that may exist, describe the source of the ambiguity and identify the time at which that uncertainty is resolved.

B) For each code fragment, discuss whether dynamic scheduling is, may be, or is not sufficient to allow out-of-order execution of the fragment.

6)
Determine the total branch penalty for a branch-target buffer assuming the penalty cycles for individual miss prediction from the table below.  Make the following assumptions for the prediction accuracy and hit rate:

a) Prediction accuracy is 90% for instructions in the buffer,

b) Hit rate in the buffer is 90% for branches predicted taken.

Assume that 60% of the branches are taken.

	Instruction in buffer
	Prediction
	Actual branch
	Penalty cycles

	Yes
	Taken
	Taken
	0

	Yes
	Taken
	Not taken
	2

	No
	
	Taken
	2

	No
	
	Not taken
	0


7)
The following loop has multiple types of dependencies.  Find all the true dependencies, output dependencies, and anti-dependencies.  Eliminate the false dependencies by renaming:


For (i =1; i ( 100; i = i + 1)



y(i) = x(i) / c

S1


x(i) = x(i) + c

S2


z(i) = y(i) + c

S3


y(i) = c - y(i)

S4

Endfor
[image: image2.wmf]Text

"ENTERTAINMENT"

"ENT"

Pattern


Figure 1

Multiplier





a





i





 * 





b





i





 





Accumulator





a





i





 * 





b





i





 











... 





a





3





 





a





2





 





a





1





 





a





 data 


exit





.





.





.





b





3





b





2





b





1





b





 data 


exit





a





j





* 





b





j





  +





a





i





* 





b





i





 





∑





j=1





i-1





a





i





 





b





i





 





            A Systolic processing element which computes





a





i





b





i





∑





i=1





n








[image: image1]