

From Advances in computers Vol 45, 1997 pp.53-103.

Parallelization

of

DOALL and DOACROSS Loops — A Survey

A. R. Hurson*, J. T. Lim*, K. K. Kavi** and B. Lee+
*The Pennsylvania State University

Department of Computer Science and Engineering

University Park, PA 16802

E-mail: Hurson@cse.psu.edu

Phone: (814) 863-1167

**The University of Texas at Arlington

Department of Computer Science and Engineering

Arlington, TX 76019

+Oregon State University

Department of Electrical and Computer Engineering

Corvallis, Oregon 97331

Parallelization of

DOALL and DOACROSS Loops — A Survey

Abstact

Since loops in programs are the major source of parallelism, considerable research has been focussed on strategies for parallelizing loops. For DOALL loops, loops can be allocated to processors either statically or dynamically. When the execution times of individual iterations vary, dynamic schemes can achieve better load balance, albeit at a higher run-time scheduling cost. The inter-iteration dependencies of DOACROSS loops can be constant (regular DOARCOSS loops) or variable (irregular DOACROSS loops). In our research, we have proposed and tested two loop allocatation techniques for regular DOACROSS loops, known as Staggered distribution (SD) and Cyclic Staggered (CSD) distribution. This article analyses several classes of loop allocation algorithms for parallelizing DOALL, regular, and irregular DOACROSS loops.

Key words:
Loop Scheduling, Doall Loops, regular Doacross Loops, irregular Doacross Loops, Staggered Distribution Scheme, Cyclic Staggered Distribution Scheme
Table of Contents
1.
Introduction
1

2.
Loop Scheduling Algorithms for DOALL Loops
2

2.1
Self-scheduling
3

2.2
Fixed-size chunking
4

2.3
Guided Self-scheduling
4

2.4
Factoring
5

2.5
Trapezoid Self-scheduling
6

3.
Comparative Analysis of DOALL Loop Scheduling Schemes
6

4.
DOALL Loop Scheduling on NUMA Multiprocessor
8

4.1
Affinity Scheduling
10

4.2
Partitioned Affinity Scheduling
11

4.2.1
Dynamic Partitioning Affinity Scheduling
11

4.2.2
Wrapped Partitioning Affinity Scheduling
12

4.3
Locality-Based Dynamic Scheduling
12

5.
Comparison of Affinity Scheduling Schemes
13

6.
DOACROSS Loop Scheduling
16

6.1
The Regular DOACROSS Model
17

6.1.1
Pre-synchronized Scheduling
20

6.1.2
Staggered Distribution Scheme
21

6.1.3
Cyclic Staggered Distribution
22

6.2
Comparison of DOACROSS Scheduling Schemes
23

6.3
Irregular DOACROSS Loop Scheduling
26

6.3.1
Pre-synchronized Scheduling
26

6.3.2
Runtime Parrallelization Schemes
28

6.4
Comparison of Irregular DOACROSS Scheduling Schemes
34

6.5
Other Research
37

7.
Summary and Conclusions
38

8.
References
56

1.
INTRODUCTION

Since loops are the largest source of parallelism (Polychronopoulos et al. 1986) considerable attention has been paid to the partitioning and allocation of loop iterations among processors in a multiprocessor environment. The key goal is to maximize parallelism while minimizing the processor load imbalances and network communication.

The literature abounds with scheduling algorithms for loops. These algorithms can be categorized as static and dynamic (Krothapalli and Sadayappan 1990). In static scheduling, the division of iterations among the processors is determined prior to the execution time. This results in a low runtime scheduling overhead. On the other hand, static scheduling can cause unbalanced distribution of load among the processors if the execution times of individual iterations vary. The variance in execution can result from conditional statements (Hummel et al. 1992), or because of interference from the environment (the operating system, switching between iterations or time-sharing with other programs). Dynamic scheduling determines the division of iterations among processors at runtime. Some algorithms may dynamically reassign iterations to different processors based on the progress made by processors on previously assigned iterations. Thus, dynamic schemes can achieve better load balance, but this comes at the expense of runtime scheduling overhead.

Loops can be categorized as sequential loops, vector loops (DOALL), and loops of intermediate parallelism (DOACROSS) (Cytron 1986). For a DOALL loop, all N iterations of the loop can be executed simultaneously. When there are sufficient number of processors, all iterations can be executed in parallel. But with finite number of processors, iterations are divided among the processors. When iterations of a loop must be executed completely sequentially (Sequential loops), no improvement can be gained by using multiple processors. However, some loops may exhibit intermediate levels of parallelism permitting some overlapped execution among iterations.

The DOACROSS loops model proposed by Cytron (1986) can mimic sequential loops, vector loops or loops with intermediate levels of parallelism. Iterations may be either data or control dependent on other iterations. Control dependencies are caused by conditional statements. Data dependence appears in the form of sharing results computed by other iterations. Data dependence can be either lexically-forward (data from higher indices used by iterations with lower indices) or lexically-backward (data from lower indices used by iteration with higher indices). Normally, lexically forward dependencies (LFD) do not contribute to delays in executing loop iterations. Sometimes a lexically-backward dependence (LBD) can be transformed into a lexically-forward dependence by reordering the statements of the loop, provided the statements do not form a dependence cycle (Cytron 1986). DOACROSS loops where the LBD cannot be transformed into LFD lead to delays in executing successive iterations. Such loops are the subject of most research.

This paper presents an introduction to several loop allocation techniques and analyzes these techniques for their complexity, scheduling overhead, communication cost, processor utilization and expected speedup. Section 2 surveys DOALL loop scheduling algorithms and Section 3 compares these algorithms. Section 4 presents affinity scheduling schemes for DOALL loops, while Section 5 compares these techniques. Regular and irregular DOACROSS loop scheduling algorithms are presented and analyzed in Section 6.

2.
LOOP SCHEDULING ALGORITHMS FOR DOALL LOOPS

Static scheduling schemes assign a fixed number of loop iterations to each processor. For a loop with N iterations executed on P processors, each processor will receive a total of N/Piterations. Variations on how these iterations are distributed among the available processors lead to different algorithms. Block scheduling or static chunking (SC) assigns iterations 1 through N/Pto the first processor, iteration N/P + 1 through 2 * N/P to the second processor, and so on. Cyclic scheduling allocates iterations i, i + P, i + 2P, ..., to processor i (1 i P).

When the execution times of individual iterations vary, static chunking leads to different processors performing different amounts of work, and finishing their computations at different times. For example, when the execution times of iterations monotonically decrease (i.e., triangular iteration space), the chunks containing smaller iteration indices consume more time than chunks containing iterations of higher indices. In such a case, the execution time of the DOALL loop is bounded by the completion times of the earlier chunks. Thus static chunking could perform suboptimally, and cause under-utilization of processor resources (Hummel et al. 1992). Since cyclic scheduling assigns consecutive iterations to different processors, a better load balance across processors is achieved.

The main advantage of static scheduling methods is their simplicity (hence small scheduling overhead). No runtime overhead is incurred by such methods since all scheduling decisions are made at compile time. This implies the availability of information on loop bounds and number of processors. When such information is not known statically (or changes dynamically), static scheduling methods lead to unbalanced workload among processors.

Dynamic scheduling schemes are proposed to address the limitations of static methods. Typically, shared variables and critical sections are used to control the distribution of iterations to idle processors. Thus, an idle processor locks the shared variable and obtains an iteration (or a set of iterations). This leads to runtime overhead, both in terms of the time required to access the shared variable (including communication cost and synchronization cost), and the time needed to compute the next schedule. Complex dynamic schemes with high scheduling costs and large communications costs may negate any performance gained. In order to simplify the analysis, we will assume that the scheduling cost per scheduling step, for all dynamic schemes will be the same, and is given by Tsched = 2C + tsched, where C is the communication cost for accessing a shared variable as well as the communication cost for returning an updated value to the shared variable, and tsched is the time required to calculate the chunk size. Some of the dynamic scheduling algorithms are discussed below.

2.1
Self-scheduling

Self-scheduling (SS) (Tang and Yew 1986) is a dynamic scheme that schedules iterations of a loop, one at a time. An idle processor obtains a new iteration and executes it. Hence, processors finish at nearly the same time and the workload is balanced. However, since this method requires N scheduling steps (one for each iteration), the overall scheduling cost may be unacceptable. In addition, processors may have to contend with synchronization delays in accessing shared variables. For example, with P processors attempting to obtain a loop iteration, one processor must wait (P - 1)Tsched, waiting for all the other processors to access and update the shared variable. The average wait time for P processors is given by P(P - 1)Tsched/2. With N iterations, the average wait-time per processor is given by N(P - 1)Tsched/2.

2.2
Fixed-size chunking

In an attempt to reduce the number of scheduling steps needed, Fixed-size chunking (FS) schedules a fixed number of iterations to each idle processor (as opposed to one iteration in SS) (Kruskal and Weiss 1985). This reduces scheduling overhead, but the trade-off is increased load imbalance due to coarser task granularity. It is often difficult to determine the optimal number of iterations to schedule at each step. Small chunks increases the number of scheduling steps (hence scheduling overhead), while large chunks may cause unbalanced load across processors. Kruskal and Weiss (1985) have proposed a scheme to calculate an optimal chunk size based on the number of iterations, the number of processors, the standard deviation of the execution times of individual iterations, and the scheduling overhead. Since it is often difficult to determine the variance among the iteration execution times before executing them and because the variance may depend on the environment of the processor to which they are assigned, this method is not practical for real applications.

Several schemes have been proposed to minimize the limitations suffered by both self-scheduling and fixed-size chunking (Hummel et al 1992; Polychronopoulos and Kuck 1987; Tzen and Ni 1991). These schemes are based on scheduling chunks with decreasing number of iterations. Typically, larger chunks are initially scheduled, reducing the scheduling overhead, while smaller chunks are subsequently scheduled to smooth any load imbalances resulting from previous assignments.

2.3
Guided Self-scheduling

In Guided self-scheduling (GSS), the size of the chunk scheduled on the next idle processor is R/P, where R is the number of remaining iterations (Polychronopoulos and Kuck 1987). Thus, the chunk size varies from N/P iterations down to one iteration. This algorithm allocates large chunks at the beginning of a loop's execution to reduce the scheduling overhead. Smaller chunks are then allocated as the number of remaining iterations to be executed decreases. The last P - 1 chunks consist of one iteration that can be used to balance the load, thus increasing the likelihood that all processors finish at the same time. A feature of GSS is that approximately two-thirds of the remaining iterations are allocated over every P chunks (Hummel et al. 1992). For example, if there are N = 100 iterations to be executed on a four-processor system, the size of the chunks are: 25, 19, 14, 11, 8, 6, 5, 3, 3, 2, 1, 1, 1, 1. It should be noted that GSS addresses the problem of uneven starting times of processors resulting from the delays in acquiring the chunks. Simulations involving constant-length iterations and uneven processor starting times, as well as iterations with variable-length running times were conducted and found that GSS performs better than SS method (Polychronopoulos and Kuck 1987).

The number of scheduling steps required for GSS, in the best case, is P, when the number of iterations N is approximately equal to the number of processors P. Otherwise, the maximum number of scheduling steps is PHN/P, where Hn  ln(n) +  1/(2n) is the nth harmonic number and the   0.5772157 is the Euler's constant (Polychronopoulos and Kuck 1987). For large N this approximates to P lnN/P (Yue and Lilja 1994a). The number of scheduling steps required for GSS is more than that for SS, but less than that for FS. Although GSS often achieves a balanced load when iteration execution times vary widely, it is still possible that some initial chunks (due to their large sizes) do not complete by the time all other chunks have completed.

2.4
Factoring

Factoring was specifically designed to handle iterations with widely varying execution times (Hummel et al. 1992). Similar to GSS, this scheduling strategy uses variable and decreasing chunk sizes. At each round, factoring schedules half of the remaining iterations into P equal sized chunks. In other words, each chunk contains R/(2P) iterations, where R is the number of unscheduled iterations. Factoring allocates smaller initial chunks than GSS. Hence, alleviating one of the main problems of GSS. The chunk sizes for N = 100 iterations to be executed on a four-processor system are: 4 chunks with 13 iterations each, 4 chunks with 6 iterations each, 4 chunks with 3 iterations each, 4 chunks with 2 iterations each, and finally 4 single-iteration chunks. The chunk size for factoring is determined by:

Kj = (EQ \F(1,2))j+1 EQ \F(N,P) 

j ≤ 0

(1)
where Kj is the chunk size for factoring step j, N is the total number of iterations, and P is the number of processors. The number of scheduling steps can be determined by setting Kj to one and solving equation (1) for j — the number of factoring steps. However, since factoring schedules P equal size chunks per batch (factoring step), the total number of scheduling steps is approximately equal to P1.44 ln(N/P) (Yue and Lilja 1994a). As can be seen, the number of scheduling steps for factoring is 1.44 times that for GSS. However, it has been shown that factoring performs better than GSS when the iteration execution times vary significantly (Hummel et al. 1992).

2.5
Trapezoid Self-scheduling

Trapezoid Self-Scheduling (TSS) is another scheme that is developed for loops with varying iteration execution times (Tzen and Ni 1991), by using variable and decreasing chunk sizes. TSS attempts to reduce the synchronization cost of obtaining work by individual processors by simplifying the scheduling computations in the critical section. TSS uses a simple linear function to determine the size of the chunk allocated at each step. This method will rely on a programmable number for the size of the first and final chunks, f and l. The sizes of the chunks between successive scheduling steps are decreased by s = (f - l)/(C - 1), where C = 2N/(f + l) is the number of chunks to be scheduled. Thus, the first chunk size is c1 = f, and the second is c2 = c1 - s. In general, ci+1 = ci - s.

The typical values for the first and last chunks are f = (N/2P) and l = 1 (Tzen and Ni 1991). The number of scheduling steps for trapezoid self-scheduling is equal to the total number of chunks C, which ranges from 2P to 4P. For large N, the total number of scheduling steps is approximately equal to 4P (Yue and Lilja 1994a). TSS allocates smaller initial chunks than GSS, and requires fewer scheduling steps than factoring.

3.
COMPARATIVE ANALYSIS of DOALL Loop Scheduling Schemes

The advantages and disadvantages of the various scheduling algorithms are summarized in Table 1.

As can be seen, fixed-size chunking requires the smallest number of scheduling steps while self-scheduling requires the most. Fixed-chunking is more efficient since the chunk sizes can be determined at compile time. Unlike fixed-chunking, self-scheduling balances the load on processors more evenly, however, the N scheduling steps needed may offset any performance gains. Since processor must access a shared variable to obtain work, SS also adds delays due to network and memory contention.

Factoring requires more scheduling steps than GSS, but the chunk size is computed less frequently (every P steps instead of every steps in GSS). Factoring allocates more smaller chunks than GSS in order to balance the load, accounting for the increased number of scheduling steps. The earlier chunks in GSS

TABLE 1.
Comparative Analysis of DOALL scheduling algorithms.
	Algorithm
	Scheduling steps
	Chunk size
	Advantages
	Disadvantages

	Self-scheduling

(SS)
	N(1)
	1
	Can balance the workload well.
	Requires N scheduling steps.

Should only be used in systems in which the overhead for accessing shared variables is small.

Chances of network and memory contention are very high.

Contention for network and memory becomes a major problem.

	Fixed-size

chunking

(FS)
	P(2)
	 EQ \F(N,P) 
	Requires the minimum number of scheduling steps.

Chunk size can be determined at compile-time or during runtime before the loop is executed.
	May not balance the workload very well, especially if the variance in iteration execution times is large.

	Guided

Self-scheduling

(GSS)
	P ln  EQ \F(N,P) 
	 EQ \F(R(3),P) 
	Tradeoff between load balancing and scheduling overhead.

Number of scheduling steps between SS and FS, and tries to handle variations in iteration times by balancing the workload.
	Early chunk could be so large, it does not complete by the time all other chunks have completed.

The current chunk size must be calculated at every step.

	Factoring
	P .44 ln EQ \F(N,P) 
	 EQ \F(R,2P) 
	Allocates more smaller chunks than GSS in order to balance the workload.

Chunk size only needs to be calculated every P steps.
	Requires more scheduling steps than GSS.

	Trapezoid

Self-scheduling

(TSS)
	4P
	ci+1 = ci - s(4)
	The chunk size decreases linearly, hence the difference between the current chunk and the next chunk is constant.

The calculation of the current chunk size can be performed in parallel eliminating the need for a critical section.

Fewer scheduling steps than GSS and factoring when the iteration-to-processor ratio is larger than 55 and 16 respectively (Yue and Lilja 1994a).
	The algorithm for computing the chunk size is fairly complex.

Allocates larger portions of remaining work to later chunks, which may generate large load imbalances for the last few scheduling steps.

(1)
Number of iterations

(2)
Number of processors

(3)
Number of remaining iterations

(4)
s = (f - l)/(C - 1), where C = 2N/(f + l) , and c1 = f.

The typical values for the first and last chunks are f = N/2P and l = 1 (Yue and Lilja 1994a).

may take longer to execute than all other chunks, leading to unbalanced load, particularly when the execution time of iterations decreases with increasing indices.

It has been shown that when the ratio of the number of iterations to the number of processors is larger than 55 TSS requires fewer scheduling steps (4P steps) than that required by GSS, and when the ratio is 16, TSS requires fewer scheduling steps than Factoring (Yue and Lilja 1994a). This is true, because the next chunk size differs from the current chunk size by a constant, and thus the scheduling computation is simpler. In TSS, even later chunks may remain large, potentially causing load imbalance. GSS and factoring, on the other hand, guarantees that the last P chunks contain only one iteration per chunk. These small chunks can be used to balance the finishing times of all processors.

Performance of GSS, factoring, self scheduling, and static chunking have been simulated on the RP3 multiprocessor platform for several benchmark loops (Hummel et al. 1992). This study shows that factoring is scalable, and unlike GSS, its performance is resistant to variance in iteration execution time. In another study, it was shown that GSS did not perform well when the variance in iteration execution times is large (e.g., adjoint convolution programs) (Yue and Lilja 1994a). GSS assigns too much work at the beginning of the execution and does not save enough work at the end for balancing the load. Factoring and TSS balance the workload better than the other methods. These studies also suggest that none of the algorithms perform well when N is small since there is insufficient work to offset the overhead of scheduling. Since the scheduling overhead is minimal for static-chunking and fixed-size chunking, they perform better when the variance among iteration execution times is small. Table 2 shows the number of iterations assigned to a processor at each scheduling step for GSS, fixed-size chunking (FS), factoring, and TSS.

4.
doall Loop Scheduling on NUMA Multiprocessors

The loop scheduling algorithms discussed in the previous sections assumed a shared memory with uniform memory access costs, and hence our discussion did not take data locality into consideration. In this section we will introduce scheduling schemes designed for shared memory systems with non-uniform memory access (NUMA) where the memory access cost increases with the distance between the processor and the memory. Such scheduling methods should consider the location of the data to improve the

TABLE 2.
Number of iterations assigned to a processor at each

scheduling step with n = 1000, P = 4.
	Step
	GSS
	FS
	Factoring
	TSS

f = 125,

l = 1

	1
	250
	250
	125
	125

	2
	188
	250
	125
	117

	3
	141
	250
	125
	109

	4
	106
	250
	125
	101

	5
	79
	-
	63
	93

	6
	59
	-
	63
	85

	7
	45
	-
	63
	77

	8
	33
	-
	63
	69

	9
	25
	-
	31
	61

	10
	19
	-
	31
	53

	11
	14
	-
	31
	45

	12
	11
	-
	31
	37

	13
	8
	-
	16
	28

	14
	6
	-
	16
	-

	15
	4
	-
	16
	-

	16
	3
	-
	16
	-

	17
	3
	-
	8
	-

	18
	2
	-
	8
	-

	19
	1
	-
	8
	-

	20
	1
	-
	8
	-

	21
	1
	-
	4
	-

	22
	1
	-
	4
	-

	23
	-
	-
	4
	-

	24
	-
	-
	4
	-

	25
	-
	-
	2
	-

	26
	-
	-
	2
	-

	27
	-
	-
	2
	-

	28
	-
	-
	2
	-

	29
	-
	-
	1
	-

	30
	-
	-
	1
	-

	31
	-
	-
	1
	-

	32
	-
	-
	1
	-

performance of parallel loops. Loop iterations can be viewed as having an affinity to the processor which contains the required data (Markatos and LeBlanc 1992). To exploit processor affinity, loop iterations are normally scheduled on processors that contain the required data either in their local memories or cache memories. Such an assignment can significantly reduce execution times — by as much as 30-60% (Subramaniam and Eager 1994).

4.1
Affinity Scheduling

Affinity Scheduling (AFS) is an algorithm which attempts to balance the workload, minimize the number of synchronization operations, and exploit processor affinity (Markatos and LeBlanc 1992). The affinity of a loop iteration to a particular process is due to: i) the same data is repeatedly used by successive executions of a loop iteration (e.g., a parallel inner loop within an outer sequential loop), and ii) the data is not removed from the local memory or cache before it is reused.

In AFS, the iterations of a loop are divided into chunks of size N/P iterations and each chunk is statically assigned to a different processor. When a processor becomes idle, it takes the next chunk of 1/Piterations from its local work queue and executes them. When a processor completes its assigned iterations, it finds a heavily loaded processor, and takes a 1/P fraction of that processor's unexecuted iterations and executes them. The initial assignment of chunks to processors in AFS is deterministic. That is, the ith chunk of iterations is always assigned to the ith processor. Normally, this ensures that repeated executions of the loop will access data that is local to the processor. The AFS assumes a balanced load at initial assignment and assigns an equal number of iterations to all processors. Each processor can access its local work queue independent of other processors. As load imbalances occur due to variances in iteration execution times, iterations are migrated from heavily loaded processor to lightly loaded processors. Such migrations can cause the data to be migrated twice; from the heavily loaded processor to the lightly loaded processor to balance the work load, and back to the heavily loaded processor for the purpose of maintaining the original affinities. This in turn could lead to penalties due to cache reload and negate any performance gained from processor affinities. It should be remembered that the overhead is incurred only when load imbalances occur.

The synchronization costs associated with accesses to the local and remote work queues are the same and equal to O(P log(N/P2)). Hence, AFS incurs at most a cost of O(P log(N/P2) + P log(N/P2)) in synchronization operations or scheduling steps on each work queue (Markatos and LeBlanc 1992). AFS offers higher performance than the dynamic scheduling schemes previously discussed, since synchronization operations on local work queues are usually less expensive than global synchronization operations. Moreover, network traffic is reduced since processors independently schedule iterations from their local work queues.

4.2
Partitioned Affinity Scheduling

For loops with widely varying execution times, two affinity scheduling algorithms have been proposed (Subramaniam and Eager 1994). These algorithms are based on the assumption that iteration times vary in a correlated fashion, i.e., the execution time for ith iteration is a function of i (for example, a linear function gives a "triangular" iteration space). In this case, a uniform initial allocation of iterations to all processors may result in an unbalanced load. These algorithms are discussed below.

4.2.1
Dynamic Partitioned Affinity Scheduling

The Dynamic Partitioned Affinity Scheduling (DPAS) algorithm is very similar to AFS, except that it balances the load by readjusting the sizes of the allocated partitions on subsequent executions of a loop. This in turn, reduces the cache-reload due to migration of work that occurs in AFS. The algorithm keeps track of the number of iterations that were actually executed by each processor and computes the distribution of iterations for subsequent scheduling steps. The algorithm consists of three phases.

(1)
Loop initialization phase: As in AFS, this phase partitions the loop iterations into chunks of N/P iterations. This chunk size is not used for further execution steps.

(2)
Loop execution phase: A processor removes 1/P of the iterations from it's local work queue and executes them. If a processor's work queue is empty, it finds a heavily loaded processor, removes 1/P of the iterations from this processor and executes them. An array called executed is used for keeping track of the actual number of iterations executed by each processor.

(3)
Re-initialization phase: This phase performs the adjustment to the size of the initial chunks by calculating a new chunk size to be assigned to each processor. Assuming that processor are numbered from 0 to P - 1, the new chunk size is computed as:

when i = 0
partition_start[i] = 0;

partition_end[i] = executed[i] - 1;

when i > 0
partition_start[i] = partition_end[i-1] + 1;

partition_end[i] = partition_start[i] + executed[i] - 1;

By dynamically changing chunk sizes, the DPAS is capable of handling imbalances in workloads resulting from varying iteration execution times. The scheduling overhead for DPAS is less than that for AFS, since the synchronization costs associated with remote work queues will decrease on each subsequent execution of the loop. Eventually, the only synchronization operations needed are those associated with local work queues.

4.2.2
Wrapped Partitioned Affinity Scheduling

The Wrapped Partitioned Affinity Scheduling (WPAS) aims to rectify the load imbalances of GSS. Iterations are allocated in a wrapped-around fashion whereby a processor is assigned iterations that are at a distance P (the number of processors in the system) from each other. The implementation of WPAS is very similar to that of AFS, except for the wrapped allocation of iterations to a processor. An example of a wrapped allocation of a loop with 18 iterations indexed from 0 to 17, and for 4 processors is shown below (Subramaniam and Eager 1994).

processor 1:
2
6
10
14
3

processor 2:
7
11
15
0

processor 3:
4
8
12
16
1

processor 4:
5
9
13
17

The wrapped assignment of iterations results in assigning consecutive iterations to distinct processors, thus violating spatial locality. Since cache misses often load blocks of data that may belong to multiple iterations, processor may not be able to take advantage of the data localities resulting from large cache blocks. It is difficult to partition the data to fit the wrapped allocation and yet take advantage of large cache blocks. When the number of processors is small, it is possible that a large block will cache data belonging to successive iterations assigned to the same processor, thus exploiting cache localities.

4.3
Locality-based Dynamic Scheduling

AFS and DPAS assume that the data locality can be exploited only when the data is partitioned and distributed in blocks. The Locality-based Dynamic Scheduling algorithm (LDS) (Li et al. 1993), on the other hand, takes data placement into account, by requiring processors to first execute those iterations for which data is locally available. Thus, the LDS can adapt to any data partitioning methods, including cyclic or block-cyclic.

In LDS, the data space is assumed to be partitioned to reside on P processors. When a processor is ready to execute the next chunk, it computes the chunk size as R/(2P). This creates chunks about half as large as those in GSS. The processor must then decide which iterations of the chunk to execute. Unlike other dynamic scheduling algorithms, processors in LDS do not execute iterations of a chunk in the order of the indices. For example, if the data distribution is cyclic, a processor may execute iterations in the following order: p + P, p + 2P, ..., p + S1*P., where S1 is the chunk size assigned to the processor. If data is distributed by block-cyclic, the processor will execute iteration in the following order: p * B + 1, p * B + 2, ..., p * B + S1, where B is the block size. As with other affinity scheduling methods, in LDS, an idle processor acquires work from a heavily loaded processor.

The number of synchronization operations for LDS is O(P log N). Unlike AFS, DPAS, and WPAS, in LDS each processor must access a central work queue or location to obtain the size of the next chunk. This can lead to network traffic and synchronization delays.

5.
Comparison of AFFINITY Scheduling Schemes

Table 3 summarizes the advantages and disadvantages of the various affinity scheduling schemes discussed in the previous section. In AFS, DPAS, and WPAS, each processor independently schedules iterations from its local chunk. Thus, AFS, DPAS and WPAS do not require a central queue and they reduce the overhead due to network congestion and synchronization delays. Furthermore, since the chunk size to be scheduled on each processor is fixed, there is no need for each processor to calculate a chunk size, leading to a low scheduling overhead. Each processor only needs to remember which iterations are unexecuted. However, in LDS each processor must coordinate with a central queue to schedule iterations. A processor cannot compute the size of the next chunk since chunk sizes are computed dynamically. Scheduling can thus create a potential bottleneck in terms of network congestion or access to a central queue. The synchronization delays from accessing a central queue could force processors to remain idle between scheduling steps. The performance can be somewhat improved by pre-calculating the chunk sizes for all scheduling steps. Scheduling steps of AFS can be expressed as (Markatos and LeBlanc 1992):

TABLE 3.
Comparison of affinity scheduling algorithms.

	Algorithm
	Scheduling steps
	Chunk size
	Advantages
	Disadvantages

	Affinity

Scheduling

(AFS)
	O(P log(N/P2) + P log(N/P2))
	 EQ \F(1,P) 
	(1), (2), & (3)

Cache-reload overhead incurred only when load imbalance arises.
	(4)

A cache reload may occur for each execution of the loop since different iterations may migrate on different executions of the loop.

	Dynamic

Partitioned

Affinity

Scheduling

(DPAS)
	O(P log(N/P2))
	 EQ \F(1,P) 
	(1), (2), & (3)

Incurs less scheduling overhead than AFS.

Improved initial load balance compared to AFS.

Performs well for loops with triangular workload.
	(4)

Requires several executions of the sequential outer loop in order for the partition to converge (iterations >=4).

	Wrapped

Partitioned

Affinity

Scheduling

(WPAS)
	Same as DPAS
	
	(1), (2), & (3)

Incurs the lowest scheduling overhead.

It avoids assigning all the time consuming iterations to a single processor, minimizing load imbalance

Total number of migrations is significantly less than both AFS and DPAS.

Very effective for loops with rectangular workloads, and performs well for triangular workloads (Subramaniam and Eager 1994).

	The data has to be partitioned in the same manner as the iterations in order to get the best performance.

	Locality

based

Dynamic

Scheduling

(LDS)
	O(P log N)
	 EQ \F(R,2P) 
	Chunk sizes can be determined before execution to reduce overhead.

Data placement is taken into account by always having the processor first execute those iterations for which the data is local to the processor.
	Each processor has to dynamically obtain the next chunk size from a central work queue (scheduling is serialized).

Requires more scheduling steps than the other three schemes.

Scheduling steps cost more, hence more overhead incurred compared to the other three schemes.

(1)
Each processor independently schedules iterations from its local partition (scheduling done in parallel).

(2)
Fixed chunk size, hence no calculation needed, resulting in low scheduling overhead.

(3)
Majority of the scheduling is inexpensive, since it accesses the local work queue.

(4)
Memory locality can only be exploited when data is also partitioned and distributed in blocks.

O(P log(N/P2) + P log(N/P2))

(2)

The first part of this equation is associated with accesses to the local work queue, and the second part shows the accesses to remote work queues. DPAS incurs less scheduling overhead than AFS, since the chunk sizes are dynamically adjusted after the initial allocation. This reduces the contribution of the second part of the above equation for subsequent executions of the loop. However, each processor must keep track of the actual number of iterations already executed. The dynamic computation of the chunk size may be amortized across a large number of iterations executed by each processor. The overhead due to LDS was found to be insignificant compared to AFS (Subramaniam and Eager 1994). WPAS incurs similar scheduling overhead as AFS with respect to the first part of the overhead equation shown above, since both schemes assign the same number of initial iterations to processors. The second part of the equation, which is associated with the migration of iterations from other processors, would be less for WPAS. Since WPAS assigns consecutive iterations to distinct processors, it avoids assigning all the time consuming iterations to a single processor and minimizes the chances of load imbalance. The number of iterations to be migrated due to load imbalance would be less than those for AFS. Even though consecutive iterations are not scheduled on the same processor, scheduling in WPAS is similar to scheduling a loop with a stride of P. It was shown in (Subramaniam and Eager 1994) that this additional overhead is negligible, and that the total number of migrations for WPAS is significantly less than those in either AFS or DPAS, both when the load is balanced and when the load is unbalanced. LDS incurs O(P log N) scheduling steps (Li et al. 1993). In addition to more scheduling steps, each step of LDS is more expensive since each processor must access a central work queue to obtain the size of the next chunk to be executed. The other three affinity schemes described can perform the majority of the scheduling actions in parallel since they need only to access local work queue.

AFS and DPAS assume that the data is partitioned into blocks. These schemes partition the iteration space into blocks and assigns a block of consecutive iterations to each processor. This implies that the memory locality can only be exploited when the data is also partitioned and distributed in blocks, which is normally the case. However for WPAS, it is more difficult to manage the data locality with a wrapped assignment of iterations. LDS takes data placement into account, by requiring processors to first execute those iterations for which data is locally available. The data placement must be known prior to scheduling of iterations to obtain good performance with LDS. Load balancing is inherent in all the schemes discussed since idle processors steal work from heavily loaded processors. However, such migration of iterations may defeat the data locality advantages of affinity scheduling (Lilja 1994a).

Performance results have shown that WPAS is very effective for loops with rectangular workloads (Subramaniam and Eager 1994), where the execution time of a set of iterations remains the same, while the next set of iterations have a smaller execution time. This is because WPAS avoids assigning all the time consuming iterations to a single processor. Results also show that both WPAS and DPAS performs well for loops in which execution times of iterations decrease linearly (triangular workload). This is due to the fact that these two algorithms start with a good initial load balance and minimize migration of work, leading to a reduced cache reload cost. Although DPAS appears to perform best among the four schemes, it does have some limitations. DPAS takes several executions of the outer loop before the sizes of the partitions converge for the inner DOALL loop. It was found that convergence is not possible unless the outer sequential loop is executed at least 4 times (Subramaniam and Eager 1994). When the number of inner loop iteration changes with each outer loop execution, DPAS must compute new adjustments for chunk size (since previous adjustment would be based on a different number of inner loop iterations). All four affinity scheduling schemes rely on processors snooping on other processors for finding additional work. This implies that these affinity schemes are suitable only for bus-based systems.

6.
DOACROSS LOOP SCHEDULING

Chen and Yew (1991) have used an event-driven simulator to measure the parallelism inherent in application programs. Six real application programs from the PERFECT Benchmark suite were used in their study. They observed that the loss of parallelism after serializing DOACROSS loops was very significant. This supports the need for good schemes for the parallel execution of DOACROSS loops.

DOACROSS loops can be classified as regular and irregular loops. In a regular DOACROSS loop, dependence distances are constant while the dependence distance varies from iteration to iteration in irregular DOACROSS loops. Regular DOACROSS loops are easier to parallelize than irregular loops.

6.1
THE REGULAR DOACROSS MODEL

Cytron (1986) developed a DOACROSS model for the execution of loops with some degree of parallelism among various iterations. Consider a single loop L with s statements (S1, S2, ..., Ss) and N iterations. If T(Si,Sj) is the execution time of statements Si through Sj (i ≤ j), then the DOACROSS model has d = 0 for vector loops, d = T(S1,Ss) for sequential loops, and 0 < d < T(S1,Ss) for loops with intermediate parallelism. In this model, each iteration is assigned to a virtual processor and execution of two successive virtual processors is delayed by d time units. This is similar to cyclic scheduling discussed earlier. In general, the delay d can range from zero (the vector loop case) to T (the sequential loop case), where T is the execution time of one iteration of the loop. The total execution time for a doacross loop L with N iterations for an unbounded number of processors is:

TE(L) = (N - 1) d + T

(3)

When there are only P processors, the execution time is (Polychronopoulos and Banerjee 1987):

TEP(L) = ( N /P  - 1) max {T, Pd} + ((N - 1) mod P) d + T

(4)

In section 1, it was stated that data dependence can be either lexically-forward (data from higher indices is used by iterations with lower indices) or lexically-backward (data from lower indices is used by iteration with higher indices). Normally, lexically forward dependencies (LFD) do not contribute to delays in executing loop iterations. Sometimes a lexically-backward dependence (LBD) can be transformed into a lexically-forward dependence by reordering the statements of the loop if the statements do not form a dependence cycle (Cytron 1986). DOACROSS loops where the LBD cannot be transformed into LFD lead to delays in executing successive iterations. Hence, we focus our attention on regular DOACROSS loops with LBD.

Consider two statements of a loop, S4 and S8, where S4 lexically precedes S8. Statement S8 of iteration I2 computes the data used by statement S4 of iteration I3. The semantics of sequential programs guarantee that iteration I2 is executed before iteration I3. If these two iterations were assigned to different processors, a delay must be introduced for executing iteration I3, such that statement S8 of iteration I2 executes before statement S4 of iteration I3, in order to satisfy the dependence. Hence, a delay d equal to 5 statements must be introduced to iteration I3. This loop example exhibits a lexically-backward dependence. The DOACROSS loop of the example shown in Figure 1 has N = 8 iterations, a delay d = 4, and a loop execution time T = 10. The parallel execution of the loop on 3 processors takes 38 time units, resulting in a speedup of 2.1.

Communication cost among processors is not included in this model. The overall execution time depends on the communication cost due to inter-iteration dependencies (Su and Yew 1991). For a shared memory system, the delay d should include not only the delay due to the lexically backward dependence (LBD), but also the delays in accessing shared variables. For distributed memory systems data must be shared using messages which take several orders of magnitude longer than a processor execution cycle. It has been reported that the Intel iPSC/1, iPSC/2, and iPSC/860 hypercubes have communication/execution ratios of 26, 59, and 1000 respectively, while the ratio for the nCube 3200 and 6400 hypercubes are 30 and 107, respectively (Dunigan 1991). Performance studies on CM-5 also show that some classes of problems are communication limited on that machine (Kwan et al. 1993). Using a balance factor b = tcomm/tcomp, tcomm = ttotal - tcomp, a system is communication limited if b 1, the Laplace solver on a 256 node partition has resulted in balance factors ranging from 2.11 for a 8192 x 8192 mesh size to 14.38 for a 64 x 64 mesh size. If we let d be the delay due to the LBD, and C be the total communication and synchronization cost (communication delay in the sequel) incurred, then the execution time of a DOACROSS loop with N iterations on P processors is:

TEP(L) = (N/P - 1) max {T, P(d + C)} + ((N - 1) mod P) (d + C) + T

(5)
Here for every delay d due to LBD, a communication/synchronization cost C is added, increasing the dependency delay from d to d+C. For the example of Figure 1, if we assume a communication delay C = 6, the total parallel execution time becomes 80 time units, leading to a speedup of 1. Increasing or decreasing the number of processors will not change the execution time. Larger values for C will make a parallel execution of the DOACROSS loop ineffective and lead to under-utilization of processors as they idle between the termination of an iteration and the initiation of the next assigned iteration.

Dynamic scheduling schemes such as GSS and Factoring are not effective in scheduling DOACROSS loops. When chunks (a number of consecutive iterations) are assigned to processors, iterations in successive chunks must wait for the completion of all iterations in the preceding chunks.

[image: image1.wmf] 0 •

 2 •

 4 •

 6 •

 8 •

10 •

12 •

14 •

16 •

18 •

20 •

22 •

24 •

26 •

28 •

30 •

32 •

34 •

36 •

38 •

i1

i2

i3

i4

i5

i6

i7

i8

P1

P2

P3

T

I

M

E

Figure 1.

Allocation of a DOACROSS loop.

DOACROSS

I

 = 1, 8

{

d

 = 4 }

}

10

END

•

•

•

Since chunk sizes are greater than one, the delay among processors assigned successive iterations is now equal to (n - 1)T + d + C, where n is the size of the chunk assigned to the previous processor. The total execution time of the DOACROSS loop shown in Figure 1 using either GSS or Factoring is 56 when C = 0, and 80 when C = 6. Both schemes reduce the amount of communication overhead when compared to cyclic scheduling, at the expense of reduced parallelism. They perform worse than cyclic method when the communication cost is zero; but with non-zero communication cost, they perform no worse than the cyclic scheduling. The execution time for the same example using static chunking is 68 when C = 0, and 80 when C = 6. Thus, static chunking performs better when the communication cost is significant, since it only incurs (P -1) communication delays.

6.1.1
Pre-synchronized Scheduling (PSS)

Krothapalli and Sadayappan (1990) proposed a dynamic scheduling scheme called pre-synchronized scheduling (PSS) for eliminating processor idle cycles that result from scheduling schemes such as GSS and Factoring. Here, iterations are scheduled only when their data dependencies and synchronization requirements are met. Loop iterations are uniquely identified using indices, and a ready queue of enabled iterations is maintained by a Global Control Unit (GCU). An idle processor gets an id from the ready queue and executes it. When the execution is complete, successor loop iterations that are enabled are added to the ready queue. A DOACROSS loop is divided into two separate loops and scheduled separately. The two loops correspond to a T - d portion of the loop that can be executed in parallel, and a d portion that must wait for synchronization from previous iterations. This method introduces a scheduling/synchronization overhead equal to 2N, resulting from the fact that we now have 2N loop iterations to schedule. The performance of the PSS is largely dependent on two factors: (1) how the ready queue is implemented, e.g., FIFO, priority; and (2) the scheduling cost. Even though the T - d portion is a parallel loop (akin to DOALL), it is necessary to schedule the iterations in proper to facilitate an interleaved execution of iterations from the T - d portion and the d portion of a DOACROSS loop. For the example of Figure 1, the best performance achievable with PSS is 38, when the scheduling cost is ignored. This is comparable with that achieved by the Cyclic scheduling scheme. However, the PSS scheme incurs significant scheduling costs. We need to include a communication (C) each time an idle processor obtains the id of a loop iteration from the ready queue and a communication (C) to update the ready list when a processor completes a loop iteration. Since PSS schedules 2N loop iterations, we have a 4CN communication cost. For example, with C = 6, the execution time for the loop shown in Figure 1 will become 146. The cost can be reduced by assigning several loop id’s (i.e., a chunk) each time an idle processor accesses the ready queue. However, it is difficult to arrive at an optimal chunk size.

6.1.2
Staggered Distribution Scheme

A Staggered distribution scheme (SD) was originally developed for multithreaded dataflow multiprocessors (Hurson et al. 1994a; Lim et al. 1992). Here loop iterations are unevenly distributed among processors in order to mask the delay caused by data dependencies and communication. Performance studies have indicated that this scheme is effective for loops containing large degrees of parallelism among iterations. It has been observed that near optimal speedup can be attained even in the presence of communication delays.

In order to use SD for the DOACROSS loop, the loop is separated into two loops, in a manner similar to that of the PSS method. The first loop (the T - d portion) is scheduled according to the following policy: the iterations assigned to PEi succeed the iterations assigned to PEi-1, and PEi is assigned m more iterations than PEi-1. This results in a more iterations assigned to higher numbered processors. For example, with 6 iterations and 3 processors we may assign 1, 2 and 3 iterations respectively to the 3 processors. The main objective of the SD scheme is to mask the delay due to data dependencies and communication in executing the second (d-portion) loop iterations by assigning more T - d loop iterations. The number of additional iterations assigned to PEi is given by:

(6)

where ni-1 is the number of iterations allocated to PEi-1, T is the execution time of one iteration, d is the delay and C is the inter-processor communication cost. The total number of iterations ni allocated to PEi would be:

(7)

Thus, the Staggered distribution masks delays resulting from the lexically backward dependencies among loop iterations and the communication delays involved in transmitting the dependent data among processors since later processors execute more (T - d) loop iterations. The performance of this scheme can be fine tuned (to accommodate different communication costs) by selecting an appropriate number of iterations n1 assigned to the first processor. Note that equation (7) also determines the maximum number of processors needed to execute the DOACROSS loop with N iterations. The synchronization overhead is only (P - 1) * C, which is smaller than that incurred by cyclic scheduling and PSS methods.

For the example shown in Figure 1, we use a distribution of 2-3-3 iterations when C = 0, giving 44 units of execution time and a speedup of 1.82. When C = 6 we use a distribution of 1-2-5 iterations, giving 50 units of execution and a speedup of 1.6. Staggered distribution accounts for different communication costs by selecting an appropriate n1. The Staggered scheme however, distributes an uneven load among processors; heavily loading later processors.

6.1.3
Cyclic Staggered Distribution (CSD)

A modified version of the staggered scheme called Cyclic Staggered (CSD) was proposed to address the uneven load distribution (Hurson et al. 1994b). CSD will also handle loops with varying iteration execution times. The CSD has been found to be effective when the number of processors is less than those needed by the Staggered scheme (maxpe).

Unlike using n1 iterations, CSD will start with one iteration assigned to the first processor, and ni iterations to the remaining P-1 processors based on equation (7). The remaining iterations are redistributed to all P processors based on the staggered allocation. Note that the delay that must be masked by higher numbered processors now is smaller than that in the original SD approach, since some loop iterations would already have completed due to prior staggered allocation. Thus a smaller number of additional iterations are assigned to PEi as compared to equation (7). The number of iterations ni for this new scheme will be:

[image: image2.wmf]n T + C - n T

i-1

 T - d

n =

i

(n - n)T + C

i-1

 T - d

p

p

=

(8)

where np is the number of iterations previously allocated to processor PEi. This approach results in a more balanced load and improved speedup than the original staggered scheme on P processors. When the execution times of loop iterations vary, CSD can use estimated worst case iteration execution time (possibly augmented by runtime support to adjust these estimates with actual execution times) in determining the distribution for the second and subsequent passes.

6.2
Comparison of DOACROSS Scheduling Schemes

Table 4 compares the characteristics of the four DOACROSS loop allocation schemes discussed. Cytron's cyclic scheduling scheme for DOACROSS loops does not take into consideration the effect of inter-processor communication cost. When the communication delays are significant, the overhead of this scheme increases as a function of (n-1)*(C+d), and is independent of the number of PEs. This scheme offers low hardware utilization as a result of the processor idle cycles between the termination and initiation of successive iterations assigned to the same PE.

Pre-synchronized scheduling (PSS) while attempting to balance the load and eliminate idle cycles, introduced scheduling overhead proportional to 2N and a communication cost of 2C per iteration. The Staggered distribution scheme (SD) accounts both for the processor delays due to LBD and communication. This is achieved by assigning a varying number of loop iterations to processors. This scheme achieves better results than the previous algorithms, and utilizes an optimal number of processors. The major weakness of the staggered scheme is the uneven load assignment to processors.

The Cyclic Staggered (CSD) answers this load imbalance of SD. It should be noted that the CSD results in larger communication delays for a loop than that with staggered scheme, however, the more balanced load of CSD leads to a better performance particularly when the number of processors is less than the optimal number required for SD (Hurson et al. 1994b).

We have conducted simulation studies for determining the number of iterations assigned to processors at each scheduling step using the various schemes described. The results are shown in Table 5. Static chunking was included for the sake of completeness and because it performed better than the cyclic scheme when the communication cost is significant. The total execution time for SC shown in Table 5 was obtained by separating the loop into two separate loops as done in SD and CSD. Pre-synchronized

TABLE 4.
Comparison of DOACROSS scheduling algorithms.

	Algorithm
	Advantages
	Disadvantages

	Cyclic

Scheduling

(Cyclic)
	Exploits the parallelism present in a DOACROSS loop.
	Does not take into consideration the effect of inter-processor communication cost.

Overhead increases linearly as a function of (n-1)*(C+d).

Offers low hardware utilization.

	Pre-synchronized

Scheduling

(PSS)
	Balances the load and eliminate busy waiting period.

Iterations are scheduled when their synchronization requirements are met.

	Introduces scheduling overhead equal to 4CN.

No implementation details on the ready queue management were presented.

The performance of this scheme is unacceptable if the scheduling cost is significant.

	Staggered

Distribution

Scheme

(SD)
	Considers the effect of both delay (d) and communication cost(C).

Automatically controls and determines the maximum number of processors required for efficient execution of the loop based on the physical characteristics of the loop and the underlying machine architecture — higher resource utilization.

Lowest scheduling overhead.
	Produces an unbalanced load among processors, with the higher numbered processors receiving the larger amount of work.

	Cyclic

Staggered

Distribution

(CSD)
	Balances the load by cyclically assigning the remaining iterations to processors, and at the same time masking out the effect of both delays due to LBD and communication.

Increases the amount of communication delay, relative to the SD, but simulation results have shown that it still improves the performance and offers a higher speedup (Hurson et al. 1994b).
	Advantages are only possible if the number of PEs available is less than maxpe (Hurson et al. 1994b).

TABLE 5.
Number of iterations assigned to a processor at each

scheduling step with T = 10, d = 2, n = 500, C = 5, P = 4.

	Step
	PE
	Cyclic
	SC
	SD
	CSD

	1
	1
	1
	125
	85
	1

	2
	2
	1
	125
	108
	2

	3
	3
	1
	125
	136
	4

	4
	4
	1
	125
	171
	6

	5
	1
	1
	-
	-
	7

	6
	2
	1
	-
	-
	9

	7
	3
	1
	-
	-
	10

	8
	4
	1
	-
	-
	11

	9
	1
	1
	-
	-
	12

	10
	2
	1
	-
	-
	12

	11
	3
	1
	-
	-
	12

	12
	4
	1
	-
	-
	12

	13
	1
	1
	-
	-
	12

	14
	2
	1
	-
	-
	12

	15
	3
	1
	-
	-
	12

	16
	4
	1
	-
	-
	12

	17
	1
	1
	-
	-
	12

	18
	2
	1
	-
	-
	12

	19
	3
	1
	-
	-
	12

	20
	4
	1
	-
	-
	12

	21
	1
	1
	-
	-
	12

	22
	2
	1
	-
	-
	12

	23
	3
	1
	-
	-
	12

	24
	4
	1
	-
	-
	12

	25
	1
	1
	-
	-
	12

	26
	2
	1
	-
	-
	12

	27
	3
	1
	-
	-
	12

	28
	4
	1
	-
	-
	12

	29
	1
	1
	-
	-
	12

	30
	2
	1
	-
	-
	12

	31
	3
	1
	-
	-
	12

	32
	4
	1
	-
	-
	12

	33
	1
	1
	-
	-
	12

	34
	2
	1
	-
	-
	12

	35
	3
	1
	-
	-
	12

	36
	4
	1
	-
	-
	12

	37
	1
	1
	-
	-
	12

	38
	2
	1
	-
	-
	12

	39
	3
	1
	-
	-
	12

	40
	4
	1
	-
	-
	12

	41
	1
	1
	-
	-
	12

	42
	2
	1
	-
	-
	12

	43
	3
	1
	-
	-
	12

	44
	4
	1
	-
	-
	12

	45
	1
	1
	-
	-
	12

	46
	2
	1
	-
	-
	6

	47. . 500
	3 . .
	1
	-
	-
	-

	Total

Execution

Time
	
	3,503
	2,015
	1,710
	1,298

scheduling (PSS) was not included in Table 5, since the authors have not suggested any strategies for managing the ready list, making an accurate analysis difficult. As discussed earlier, PSS in general performs poorly when the communication costs are significant. Table 5 shows that the cyclic scheme has the worst performance, followed by static chunking. The cyclic staggered scheme (CSD) produced the best performance.

6.3
Irregular DOACROSS Loop Scheduling

Regular DOACROSS loops have constant distance dependence patterns which can be determined during compile-time. For irregular DOACROSS loops, the dependence patterns are complicated and usually are not predictable at compile-time. An example of an irregular DOACROSS loop is shown in Figure 2. Here the dependency between loop iterations is based on the content of arrays B and C. Hence, the dependence relation cannot be determined until runtime. We need to consider approaches that are different from those used for regular DOACROSS loops to achieve good performance for irregular loops.

6.3.1
Pre-synchronized Scheduling

The pre-synchronized scheduling (PSS) for scheduling presented earlier can also be used for irregular DOACROSS loops (Krothapalli and Sadayappan 1990). In PSS, iterations are scheduled only when their synchronization requirements are met. Each iteration of a loop is uniquely identified by its index value. The dependence relations among iterations of a loop are represented as a directed graph called Iteration Space Graph (ISG). The nodes in ISG represent the iterations while the edges show dependence relationships between iterations (Figure 3). Edges are not differentiated for flow-dependence, anti-dependence, and output-dependence. The number of predecessors of each iteration is computed from the ISG and stored in a trig_count array. Figure 3b shows six nodes in the ISG format, each corresponding to an iteration of the loop in Figure 3a. The edges in Figure 3b represent inter-iteration dependencies corresponding to the values of array B shown in Figure 3c. For instance, there is a flow-dependence from iteration 1 to iteration 3, because iteration 1 writes to location A(1) and iteration 3 reads from the same location. Similarly, there is an anti-dependence from iteration 2 to iteration 3 through the element A(3). Thus, the trig_count for iteration 3 is 2, and iteration 3 cannot start until both its predecessors, iterations 1 and 2 have completed.

DO
I = 1, N

Sp :
A(B(I))
:=

Sq :

:=A(C(I)) +

END

Figure 2.
Irregular DOACROSS loop.

DO
I = 1, 6

A(I)
:= .A(B(I))

END

a)
An Irregular loop

[image: image3.wmf]1

2

4

3

5

1

2

4

3

5

6

b)
Iteration Space Graph of Figure 3a.

[image: image4.wmf]B(I)

I

1

 7 3 1 5 3 4

 2 3 4 5 6

c)
Figure 3.
Illustration of irregular DOACROSS loop execution scheme.

Initially, iterations without any predecessors (i.e., trig_count = 0, iterations 1, 2 and 4 in Figure 3b) are placed on the ready queue managed by a Global Control Unit (GCU). An idle processor obtains an iteration id from the queue and executes the loop body for that index. Upon completion of the execution, the processor updates the trig_counts for all successor iterations. The GCU is informed of the updates by transmitting an instruction packet to the GCU. The GCU decrements the appropriate trig_count by one. The iterations with a zero trig_count is placed on the ready queue. The algorithm for generating the ISG can be found in (Krothapalli and Sadayappan 1990). The algorithm executes a skeleton of the loop in two passes and generates a trace of the memory references. These memory traces are used for identifying data dependencies. In the first pass, flow, and output-dependencies are identified while anti-dependencies are identified in the second pass (by executing the skeleton to generate the reverse trace of references to memory locations).

Obviously, the construction of the ISG at runtime introduces overhead. However, for irregular loops, some runtime analysis is necessary regardless of the actual scheduling strategy used for loop allocation. It is observed that in some scientific applications using iterative techniques, or applications that model the behavior of a structurally invariant physical system through time, the same dependencies among iterations exist for repeated executions. The overhead in computing the ISG for such applications can be amortized over the repeated executions of irregular loops. PSS incurs scheduling overhead proportional to N, and a communication cost of 2C for each iteration, leading to an overall cost of 2CN. An analysis of the trade-off between the overhead and the increased parallelism in executing irregular loops depends on the application itself. The PSS scheme requires a GCU to manage the ready queue and means of communicating updates of trig_count array.

6.3.2
Runtime Parallelization Schemes

Runtime parallelization schemes perform dependence analysis at runtime and depending on the dependencies, executes the loop in parallel (Chen et al. 1994). For example, consider the case where the arrays B and C in Figure 2 are not available until runtime. All three types of dependencies (flow, anti and output) between instances of statements Sp and Sq are possible. When B(1) = C(3) = B(4) = B(5) = x the following dependencies result:

Sp (1) flow Sq (3) anti Sp (4) output Sp (5)

It is normally assumed that the values of B and C do not change during the execution of the loop.

In general, runtime parallelization schemes require an inspector and an executor. The inspector determines the dependence relations among the data accesses, while the executor uses this information to execute iterations in parallel. If both the inspector and the executor are parallel algorithms, the scheme can take full advantage of parallel machines. The key to the success of these schemes is to reduce the communication overhead between the inspector and the executor.

6.3.2.1
Zhu-Yew's Runtime Parallelization Scheme (ZYRPS)

Zhu and Yew proposed a runtime parallelization scheme that is general enough to handle any dependence pattern (Zhu and Yew 1987). We will call this ZYRPS method. Using ZYRPS, the loop in Figure 2 will be transformed into the form shown in Figure 5. Figure 4 outlines the transformation. Two fields are associated with each element of array A: the data field stores the data value while the key field is used to order accesses to the array elements. Here, an iteration i is allowed to proceed only if all accesses to the array elements A(B(i)) and A(C(i)) by all iterations j < i have been completed. The inspector determines the set of iterations that can proceed, by having all unexecuted iterations visit the array elements they need to access and store their own iteration number in the key field of these elements if it is less than the value already stored. After doing so, the numbers that are now remaining in the key fields are the numbers of the iterations that can proceed. In the executor phase, iterations check to see if the key field of the elements they need to access have values that are equal to their iteration indices. If so, no unexecuted predecessor exists and the loop iteration is allowed to proceed. Once iteration i completes, Done(i) is set to TRUE and the process continues until all iterations are executed

This approach has two limitations (Chen et al. 1994). First, the inspector cannot be reused across different invocations of the same loop, even if there is no change in dependencies, since the inspector and the executor are tightly coupled. Second, the execution of iterations with dependencies cannot be overlapped. The executor checks the key fields of all the accesses needed by an iteration and executes an iteration only if all key fields contain a value that is equal to the iteration index. This limitation not only reduces the amount of parallelism present, but also causes unnecessary traffic since all key fields have to be

Repeat until all iterations have been executed

Inspector Phase

Initialize all key fields to infinity.

For all unexecuted iterations (i = iteration number)

If iteration number < key field of A(B(i)) then

Replace the key field of A(B(i)) with iteration number.

If iteration number < key field of A(C(i)) then

Replace the key field of A(C(i)) with iteration number.

"The key fields now contain the (lowest) iteration numbers that are now allowed to access these array elements. All predecessor iterations have already accessed these array elements."

Executor Phase

For all unexecuted iterations (i = iteration number)

If iteration number = key field of both A(B(i)) and A(C(i)) then

Execute loop body.

"The key fields of both arrays must match the iteration number in order for it to proceed. If they both match then all predecessor iterations that access these array elements have already been executed."
Figure 4.
Pseudo-code of transformed loop of Figure 2 using Zhu-Yew's scheme.

Done(1:N) = .FALSE.

REPEAT UNTIL ((Done(i) .EQ. .TRUE) for all i)

Inspector Phase

DOALL i = 1, N

A(B(i)).key = 

A(C(i)).key = 

END DOALL

DOALL i = 1, N

IF (Done(i) .EQ. .FALSE)

"the next two instructions are atomic"

compare&store{ if (A(B(i)).key > i)

{ A(B(i)).key  i; } }

compare&store{ if (A(C(i)).key > i)

{ A(C(i)).key  i; } }

END IF

END DOALL

Executor Phase

DOALL i = 1, N

IF (Done(i) .EQ. .FALSE)

IF ((A(B(i)).key .EQ. i) .AND. ((A(C(i)).key .EQ. i) THEN

. . .

A(B(i)).data = . . .

. . .

. . .
= A(C(i)).data + . . .

. . .

Done(i) = .TRUE.

END IF

END IF

END DOALL

END REPEAT

Figure 5.
Transformed loop of Figure 2 using Zhu-Yew's scheme.

inspected. For the example of Figure 2, 3r memory accesses are required for each iteration, where r is the number of references to array A per iteration.

6.3.2.2
Chen's Runtime Parallelization Scheme (CRPS)

In order to address the limitations of the previous scheme, Chen et al (1994) proposed a new algorithm that reuses the inspector results across loop invocations and permits the overlap of dependent iterations. This is done by separating the inspector and executor phases. All the dependence information is gathered and stored in a table called Ticket by the Inspector. This information is then used in one or more executor phases. To reduce the time in building the Ticket, each processor builds the table in parallel. This method, however, is very expensive, since it requires some inter-processor communication. The algorithm tries to minimize inter-processor communication by constructing the table first locally (local inspector phase) and then combining the local tables during a global inspector phase.

In the inspector phase, the references accessing the same location are ordered (i.e., serial execution order) while maintaining the original dependencies. Processors share the Ticket table, whose rows (i) correspond to iteration while the columns (j) correspond the order of the references to a shared location. An example is shown in Figure 6, which shows the Ticket table for the loop of Figure 2, for an array reference A(x), with the following dependence relationships:

B(1) = C(3) = C(4) = B(7) = B(9) = C(9) = C(11) = x
The first column of the Ticket table represent the accesses B(i) and the second column represent C(i). The first access to B(1) corresponds to the Ticket(1,1) and an initial value of 0 is stored there. Likewise the second access C(3) corresponds Ticket(3,2) and a value of 1 is stored there. Similarly, a value of 2 in Ticket(4,2) corresponds to the third access for C(4), and so on. The objective is to store the order of accesses involved in this chain of dependencies and this order is enforced by the executor.

In the executor phase, an extra field key is associated with each shared element to enforce the order of accesses. This field is initialized to 0 and after each access the value is updated to permit next access in the dependence chain. At any time, the key value indicates the permitted access as indicated by the Ticket table entries. When a processor is executing ith iteration of a DOACROSS loop, for each access j in the iteration, Ticket(i, j) gives the sequence number S. The processor must wait to access the shared structure

[image: image5.wmf]0

1

2

3

4

5

6

1

2

3

4

5

6

7

8

9

10

11

1

2

j

i

Figure 6.
Example Ticket table for the loop in Figure 2.

A(x) until the key for this element becomes equal to S. For the example in Figure 6, a processor executing iteration 4 will wait until the key value of A(C(4)) becomes 2 before accessing A(C(4)). The key is incremented to 3, permitting the access by the processor executing iteration 7. A pseudo algorithm and FORTRAN code for the executor algorithm are shown in Figures 7 and 8. A SPMD form of the same algorithm can be found in (Chen et al 1994). Static cyclic scheduling was chosen for scheduling iterations in the study.

6.4
Comparison of Irregular DOACROSS Scheduling Schemes

The characteristics of the three approaches for scheduling irregular DOACROSS loops are summarized in Table 6. Any approach for irregular DOACROSS loops requires some runtime analysis, which adds to the overhead of scheduling and synchronization delays. However, this overhead may be amortized over the repeated execution of the DOACROSS loop in some scientific applications that use iterative techniques and in applications that model the behavior of a structurally invariant physical system through time. In Pre-synchronized scheduling (PSS), the runtime overhead is in the construction of the ISG. For runtime parallelization schemes, an inspector phase is necessary to determine the dependencies between iterations. PSS uses generated traces of memory references for determining data dependencies. Flow and output dependencies are first resolved (phase 1) and anti dependencies are resolved in the second phase. The two phased approach for determining dependencies can lead to more complex implementation along with higher overhead. The two runtime parallelization schemes, on the other hand, use a single phase algorithm and records accesses made by all iterations to capture all types of dependencies (viz., flow, anti and output). This reduces the complexity of the algorithm and overhead. Unlike the other approaches, the runtime overhead for ZYRPS cannot be amortized across multiple executions of an inner DOACROSS loop because the inspector and executor phases of the algorithm are tightly coupled, making it impossible to reuse dependence information across multiple executions of the loop.

Chen's scheme (CRPS) permits the overlapped execution of operations in dependent iterations, since the algorithm analyzes dependencies based on accesses to shared structures. This ability to overlap dependent iterations may increase the amount of parallelism in the inspector and executor phases. In addition, it removes redundant operations in the inspector (unlike the ZYRPS). The main weakness of the

Set all key fields to 0.

For each iteration (i)

Busy-wait until first access key = Ticket table entry (Ticket(i,1)).

Access the data and execute first part of loop body .

A(B(i)).data = . . .

Increment the key by one.

Busy-wait until second access key = Ticket table entry (Ticket(i,2)).

Access the data and execute second part of loop body .

. . .
= A(C(i)).data + . . .

Increment the key by one.

Figure 7.
Pseudo-code of the executor algorithm for the loop in Figure 2.

A(:).key = 0

DO i = 1, N

busy-waiting

DO WHILE (A(B(i)).key != Ticket(i,1))

access the data

A(B(i)).data = . . .

increment the key

A(B(i)).key++

. . . .

busy-waiting

DO WHILE (A(C(i)).key != Ticket(i,2))

access the data

. . .
= A(C(i)).data + . . .

increment the key

A(C(i)).key++

. . . .

ENDDO

Figure 8.
Executor algorithm for the loop in Figure 2.

TABLE 6.
Comparison of irregular DOACROSS scheduling algorithms.
	Algorithm
	Advantages
	Disadvantages

	Pre-synchronized Scheduling

(PSS)
	Runtime analysis phase is independent from their execution phase. If computations with the same dependencies are repeatedly iterated over, the enhanced parallelism realized can offset the overhead of performing runtime analysis.

No busy-waiting is introduced as well as unnecessary memory accesses.
	The algorithm for generating the ISG introduces complexity and could increase overhead.

No overlap of dependent operations.

	Zhu-Yew's Runtime Parallelization Scheme

(ZYRPS)
	Utilizes a single algorithm that simply checks the accesses made by all the iterations in order to detect all three types of dependencies. This reduces the complexity in the algorithm.
	The inspector phase is tightly coupled to its executor phase, making independent execution of both phases impossible.

Causes redundant traffic and requires several memory accesses, since the inspector will inspect the iteration more times than is required.

No overlap of dependent operations.

	Chen's

Runtime Parallelization Scheme

(CRPS)
	Similar to PSS, the parallelism can offset the overhead of performing runtime analysis if the same computations are repeatedly iterated over, since the runtime analysis phase is independent from their execution phase.

Similar to ZYRPS, utilizes a simple algorithm that checks the accesses made by all iterations in order to detect all types of dependencies.

Only scheme that allows the overlap of dependent operations.

Removes redundant operations of ZYRPS in the inspector phase.
	Increased spin locking during execution.

Deadlock are possible

Increased accesses to memory locations.

Utilizes static cyclic scheduling, which might not be able to balance the load very well if there is a variance in iteration execution times.

CRPS algorithm is the delays that can result in waiting for the key field to match the access order. Deadlocks could occur in cases where the iterations are randomly assigned to processors, since all iterations could be waiting for their turn (possibly on different shared elements). The simplicity of PSS may outperform CRPS, even though PSS does not overlap the execution of dependent iterations. Unlike CRPS, a processor in PSS approach obtains only an iteration that is ready for execution, thus eliminating the need for further synchronization on key fields (and avoid deadlocks).

In ZYRPS, the executor checks the key fields of all the accesses needed by an iteration and only executes an iteration if all key fields are equal to the iteration number. As mentioned earlier, this limitation not only reduces the amount of parallelism but also causes repeated memory accesses than are really needed to inspect dependencies.

The studies made by Chen utilized static cyclic method for scheduling iterations, which may lead to load imbalances across processors. One could have used self-scheduling as done in PSS. The self-scheduling would have incurred a scheduling overhead proportional to 2CN (refer to section 6.1.1). It was suggested (Chen et al. 1994) that the loops can be executed in a Single-Program-Multiple-Data form by distributing the iterations equally among the processors. However, a naive distribution of iterations could lead to load imbalances across processors, since the order of accesses to shared structures affects the order of execution of iterations.

A study to compare CRPS with ZYRPS was performed using a set of parameterized loops running on a 32-processor Cedar shared-memory multiprocessor (Chen et al. 1994). Loops with varying number of iterations and references were used. The results show that CRPS yields speedups as high as 14 when the inspector is not reused and as high as 27 when the inspector is reused. CRPS consistently outperformed ZYRPS.

6.5
Other Research

Since DOALL loops are easy to parallelize, several heuristics were proposed and studied. In addition to the approaches presented in Section 2, researchers have explored other dynamic scheduling of DOALL loops. It was believed that despite the runtime overhead incurred by dynamic scheduling approaches, dynamic scheduling of DOALL loops could lead to better execution times than those using static schemes. Exploiting parallelism among DOACROSS iterations is much more difficult because of the inter-iteration dependencies. Scheduling such loops must overcome communication and synchronization costs when dependent iterations are scheduled on different processors. Developing better synchronization schemes for efficient execution of DOACROSS loops must be discovered. Su and Yew proposed a DOACROSS execution scheme which utilizes direct communication and static message passing (Su and Yew 1991). This scheme exploits the nearest shared memory feature of distributed shared memory multiprocessors. In this method, either the producer writes (or sends) the data in the nearest shared memory module or the data is bound to a buffer location at compile time. The compiler can generate the necessary instructions for utilizing these features and execute DOACROSS loops in parallel with reduced communication costs. The researchers have also investigated conditions under which the message buffer size can be greatly reduced.

Researchers are also investigating techniques for reordering statements in a DOACROSS loop to maximize the parallelism and to minimize inter-iteration dependencies. Since the optimal reordering is NP-Complete, heuristics have been proposed (Chen and Yew 1994b). Statement re-ordering may also reduce the amount of synchronization needed for accessing shared data items (Chen and Yew 1994a; Krothapalli and Sadayappan 1991).

7.
SUMMARY AND CONCLUSIONS

There has been considerable interest in parallelizing loops since they are the major source of program parallelism. In this chapter, we examined how loops with inter-iteration dependencies (DOACROSS), and without dependencies (DOALL) can be executed in parallel. Both static and dynamic scheduling approaches were studied. The various approaches presented in this article were also compared for their complexity, scheduling overhead, communication cost, processor utilization, and expected speedup.

Yue and Lilja (1994a) measured performance of the different DOALL scheduling algorithms on two different types of loops. The first loop is a matrix multiplication program which is parallelized on the outer loop. The size of the parallel tasks is large and all the iterations have the same number of operations so that the variance in iteration execution times is small. The second loop is based on the adjoint-convolution process. It is parallelized on the outer loop and, in contrast to the first loop, each parallel iteration has a different number of operations so that it has a large variance in iteration execution times. The results are shown in Figures 9 and 10. The figures do not include performance of self scheduling scheme because it performs poorly on their system. The results from the first experiment (Figure 9) show that all the algorithms performed similarly when N is large and the variance is small. Hence, the effect of load imbalance is not significant. They also found that fixed-sized chunking (FS) performed better than the others when N is small. On the other hand, the results of the second experiment (Figure 10) show that if the variance is large, fixed-size chunking (FS) attains only half of the possible speedup. Guided Self-scheduling (GSS) also does not perform well as it assigns too much work at the beginning of the execution and does not save enough work at the end for balancing the load. Factoring and Trapezoid Self-scheduling (TSS) balance the workload better than the other schemes and attains significantly better speedup. It should be noted that when the number of iterations is small, none of the scheduling approaches perform well, since there is insufficient work to offset the overhead due to scheduling and distribution of work. Based on these results, we can conclude that among the techniques investigated in the study of parallelizing iterations with varying execution times, fixed-size chunking performs well when the variations in execution times and the number of iterations are small. On the other hand, factoring and TSS perform better when the variance is large.

When loop iterations are scheduled across multiple processors, one must account for the distribution of the data needed by the iterations. Loop iterations frequently demonstrate an affinity for a particular processor containing the needed data. By exploiting processor affinity better performance can be obtained since communication overhead in accessing needed data is reduced. Affinity scheduling methods also achieve a better workload by permitting idle processors to steal work from busy processors. However, this limits the scalability since processors must snoop (on a bus) to steal work.

Performance measurements of Affinity Scheduling (AFS), Dynamic Partitioned Affinity Scheduling (DPAS), Wrapped Partitioned Affinity Scheduling (WPAS), and GSS using a synthetic application program and a real application (Jacobi iterative algorithm) were conducted by Subramaniam and Eager (1994). Three different cases were used for the synthetic application. The first case had a triangular

[image: image6.wmf].

20

15

10

5

0

0

5

10

15

20

FS

GSS

Factoring

TSS

Linear

Number of PEs

Speedup

Figure 9.
Performance of DOALL scheduling algorithms on

matrix multiplication (N = 300).

[image: image7.wmf].

20

15

10

5

0

0

5

10

15

20

FS

GSS

Factoring

TSS

Linear

Number of PEs

Speedup

Figure 10.
Performance of DOALL scheduling algorithms on

adjoint convolution (N = 100).

workload, in which the iteration size decreases linearly. The second case had a rectangular workload, in which a fraction of the iterations are of a constant large size, while the remaining fraction has a constant smaller size. The third case has constant iteration sizes. The Jacobi iterative algorithm was used since it offers a significant amount of data locality that can be exploited and at the same time it also exhibits a significant amount of load imbalance. The results for the rectangular workload and Jacobi algorithm are shown in Figures 11 and 12, respectively. From Figure 11, one can conclude that WPAS offers the best performance. This is because WPAS avoids assigning all the time consuming iterations to a single processor. The same is also true for the Jacobi algorithm (Figure 12) — Even though the performance of GSS and AFS has improved, WPAS and DPAS still performed better. Furthermore, both WPAS and DPAS perform well when execution time for iterations decreases with the increasing index (triangular workload), and the three affinity scheduling algorithms (AFS, DPAS, and WPAS) exhibited the same performance for a balanced workload. Based on these results, we can conclude that of the three affinity scheduling schemes tested, WPAS performs well for a rectangular workload, both WPAS and DPAS equally perform better than AFS for triangular workloads, and all three schemes perform equally on balanced workloads.

Unlike DOALL, iterations of DOACROSS loops must be executed in a predetermined order to maintain inter-iteration dependencies. As can be expected, the serialization of iterations leads to a significant loss of parallelism (Chen and Yew 1991). DOACROSS loops can be either regular or irregular. In a regular DOACROSS loop, inter-iteration dependence distances are constant

Staggered distribution scheme (SD) and the Cyclic Staggered (CSD) attempt to mask the communication delays resulting from inter-iteration dependencies. This is achieved by assigning, monotonically increasing number of iterations to higher numbered processors. CSD is a modified version of SD that overcomes the load imbalance caused by SD. These schemes perform better than other scheduling methods for regular DOACROSS loops. Effectiveness of the Staggered schemes has been simulated and compared against those of static chunking and cyclic scheduling (Hurson et al. 1994a, 1994b; Lim et al. 1992).

[image: image8.wmf]8

7

6

5

4

3

2

1

0

1

2

3

4

5

6

7

GSS

AFS

DPAS

WPAS

Number of PEs

Completion time (secs)

Figure 11.
Performance of affinity scheduling algorithms on

rectangular workload (N = 128).

[image: image9.wmf]8

7

6

5

4

3

2

1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

GSS

AFS

DPAS

WPAS

Number of PEs

Completion time (secs)

Figure 12.
Performance of affinity scheduling algorithms on

Jacobi algorithm (matrix size = 128 x 128).

The test-bed includes a representative loop with the execution time of T = 50 and loops 3, 5, 11, 13, and 19 of the Livermore Loops, which have cross-iteration dependencies (Feo 1988): Loop 3 is the standard Inner Product function of linear algebra, Loop 5 is taken from a Tridiagonal Elimination routine, Loop 11 is a first sum, Loop 13 is a fragment from a 2-D Particle-in-Cell code, and Loop 19 is a general Linear Recurrence Equation. In their simulation:

1.
The inter-PE communication delays are varied based on the ratio of communication time to iteration execution time (C/T).

2.
Delays due to LBD are computed for various k values, where k is the fraction of delay d to the execution time of an iteration T, k = d/T.

Pre-synchronized scheduling was not considered, since the best-case performance of this scheme would be equivalent to cyclic scheduling.

Figure 13 shows the maximum speedup attained by SD and CYC schemes for n = 2000 and C/T = 0.2. The speedup for SD is significantly better than CYC for all cases. The Average Parallelism (AP) of the loop (can also be considered the maximum speedup of a loop) when k = 0.1 is equal to 9.9, which is very close to the speedup attained by SD even with communication overhead. The speedup for CYC is less than two and about one when k = 0.7. Other results show that the maximum speedups attained by CYC for C/T = 1.0 and up are all less than one. This means that the loops can obtain better performance if they were executed serially in one PE. The number of PEs required to realize maximum speedup for CYC is shown in Figure 14. This number drops to two independent of k for C/T ≥ 0.5. This is due to the fact that for C/T=0.5, after two iterations, the communication delay would be equivalent to the execution time of one iteration T. Therefore, the third and fourth iterations can be executed in the same two processors without any additional delay. The cycle will be repeated for every pair of iterations — Using more processors does not affect the performance.

Table 7 shows the speedup of SD over SC and CYC when the Livermore Loops were simulated. Timing values and inter-processor communication used in the simulation were based upon instruction and communication times for the nCUBE 3200 (Dunigan 1991). The ratio of communication to instruction execution (C/E) for the 3200 is 30. Loop 19 consists of two loops. Hence, each loop was tested separately (19(1) and 19(2)). The number of iterations for each loop were based on the specification of each loop.

Figure 13.
Maximum speedup (MS), n = 2000, C/T = 0.2.

Figure 14.
Number of PEs to attain maximum speedup for Cyclic

scheduling.

Loops 3, 5, and 13 were simulated for n = 1000, Loop 11 with n = 500, and Loops 19(1 & 2) with n = 100. Although the number of iterations for Loops 11 can reach a maximum of 1000, they felt that 500 iterations would give a different perspective from Loop 3, since they both have the same value of k. The speedup for SD increases compared to SC and CYC as the C/T ratio increases and decreases as the value of k increases. There was not much speedup for Loop 13, since it had a negligible delay. For Loops 3, 5, 11 and 19(1 & 2) when PE = 8, the SD scheme utilized fewer PEs than the available number of PEs. These results show that SD offers better resource utilization. Furthermore, the number of PEs required also decreases as the communication cost increases.

TABLE 7.
Speedup of Staggered Distribution relative to Static Chunking Su(SC) and Cyclic Scheduling Su(CYC) for the Livermore Loops with C/E = 30. Actual number of PEs used by Staggered Distribution in parentheses.
	
	
	
	PE = 4
	PE = 8

	 LOOP #
	k
	C/T
	Su (SC)
	Su (CYC)
	Su (SC)
	Su (CYC)

	3
	0.25
	3.75
	1.20
	10.72
	1.21 (7)
	13.10 (7)

	5
	0.30
	3.00
	1.21
	8.22
	1.16 (6)
	9.35 (6)

	11
	0.25
	3.75
	1.21
	10.50
	1.21 (7)
	12.18 (7)

	13
	0.05
	0.71
	1.07
	2.82
	1.14
	5.05

	19(1)
	0.33
	3.33
	1.24
	7.53
	1.34 (4)
	7.53 (4)

	19(2)
	0.27
	2.73
	1.23
	6.86
	1.28 (5)
	6.93 (5)

Effectiveness of the Cyclic Staggered scheme (CSD) was also simulated and compared against the original Staggered scheme (SD) using the same test-bed. As can be seen in Figures 15 and 16, CSD performed better than SD regardless of the values of n, C/T, and k, especially when the number of PEs was halfway between 2 and maxpe-1. Finally, CSD attained an almost linear speedup for smaller number of PEs, even with delays due to LBD and communication cost. Since CSD outpeforms SD, we can conclude that CSD comes even closer to the maximum speedup possible for a particular loop. However, these advantages are made possible if the number of PEs available is less than maxpe.

The performance of the Staggered schemes (SD & CSD) has also been evaluated by running Loop 13 of the Livermore Loops on an nCUBE 2 multiprocessor. These schemes have been compared to Static

Figure 15.
Comparative analysis of the staggered schemes, C/T = 3.0.

Figure 16.
Comparative analysis of the staggered schemes, C/T = 5.0.

chunking (SC) and Cyclic scheduling (CYC). Loop 13 was chosen due to its size and the fact that it has a large amount of exploitable parallelism (AP = 4.29). Furthermore, it possesses a reasonable amount of delay that hinders the ability of easily executing the loop in parallel. Figure 17 shows that the SD scheme again attained better speedup. Furthermore, the SD scheme utilizes less than 8 processors, since it controls the number of processors that are used effectively. The peak speedup for SD was 2.723 utilizing 7 PEs which is a 36.5% speedup reduction from the average parallelism of 4.29, and SC had a 46.85% speedup reduction utilizing 8 PEs. Furthermore, as expected, cyclic scheduling is ineffective if the communication cost is significant.

Figure 18 shows the speedup of the two staggered schemes. In was seen in Figure 17 that the number of PEs needed by SD to achieve maximum speedup (maxpe) was seven. Hence, in Figure 18, the number of PEs utilized for CSD is maxpe - 1. Interestingly, unlike the previous results, CSD performed better than SD only when the number of processors are between 3 and 5. This was due to the additional overhead incurred to implement the cyclic staggered scheme — each PE has to continuously check for more iterations to execute after execution of each chunk. This overhead is also the reason for the small performance gain of the cyclic staggered schemes over SD compared to their previous results. With these results in mind, we can conclude that the staggered schemes are very effective in the execution of DOACROSS loops.

In irregular DOACROSS loops the inter-iteration dependencies cannot be resolved at compile time. Runtime analysis is needed to identify the dependence patterns. In some applications, the overhead due to the runtime analysis can be amortized across repeated execution of the DOACROSS loops since the dependencies computed once can be reused. Such cases are common in scientific applications and applications that model the behavior of structurally invariant physical systems. Pre-synchronized scheduling (PSS) schedules only those iterations for which all synchronization requirements are met. This eliminates processor idle cycles when processors with assigned iterations are waiting for dependent data. Chen’s runtime parallelization scheme (CRPS) requires two phases for scheduling loop iterations. The inspector phase determines the dependence relationships among data accesses, while the executor phase uses this information to execute the iterations in parallel. CRPS allows the overlapped execution of operations

Figure 17.
Speedup for loop 13.

Figure 18.
Speedup of the staggered schemes for Loop 13.

among dependent iterations, thus permitting better overall execution times. This, however, may cause more delays due to spin-locks used by iterations waiting their turn to access shared data. CRPS uses static cyclic scheduling for distributing loop iterations among processors which may lead to load imbalances when iterations take varying amounts of execution times.

A study to compare CRPS with Zhu-Yew's Runtime Parallelization Scheme (ZYRPS) was performed using a set of parameterized loops running on a 32-processor Cedar shared-memory multiprocessor (Chen et al. 1994). Loops with varying number of iterations, iteration grain size (W), and varying number of references (r) per iteration with different dependence patterns were simulated. Table 8 shows the speedup of CRPS using 32 processors when both the inspector and executor are performed (inspector is not reused) — A loop with long dependence chain and therefore low parallelism is referred to as a "mostly-serial" loop. On the other hand, a loop with short dependence chain has a large amount of parallelism and is referred to as a "mostly-parallel" loop. The results show that CRPS yields speedups as high as 14 when the inspector is not reused. The best results were attained when the size of the loop body (W) is large and the number of accesses (r) is low. Also, as expected, performance is better if the dependence chains are short (mostly-parallel). They have also shown that a speedup as high as 27 can be attained (Chen et al. 1994) if the results of the inspector analysis is reused across loop invocations. Table 9 shows the ratio between the execution time of ZYRPS and CRPS. As can be concluded, CRPS is nearly always faster than ZYRPS. Moreover, it is also relatively faster in the mostly-serial loops — This is due to its ability to overlap execution of dependent iterations.

In summary, it is clear that scheduling of DOALL loops is well understood, while efficient solutions for DOACROSS loops require further research.

Acknowledgement

This work in part has been supported by the National Science Foundation under Grants MIP-9622836 and MIP-9622593.

TABLE 8.
Speedup of CRPS using 32 processors.
	
	
	Mostly-Serial Loop
	Mostly-Parallel Loop

	 W
	r
	N = 1600
	N = 3200
	N = 1600
	N = 3200

	
	8
	1.10
	1.13
	1.36
	1.42

	160 s
	4
	1.50
	1.56
	2.26
	2.26

	(941 cycles)
	2
	2.35
	2.65
	3.49
	3.76

	
	1
	3.66
	4.76
	4.67
	6.18

	
	8
	2.41
	2.48
	2.96
	2.97

	640 s
	4
	3.93
	3.86
	5.67
	5.40

	(3765 cycles)
	2
	6.23
	6.94
	9.23
	9.57

	
	1
	9.55
	11.95
	11.65
	13.60

TABLE 9.
Ratio between the execution time of ZYRPS and CRPS using 32 processors.
	
	
	Mostly-Serial Loop
	Mostly-Parallel Loop

	 W
	r
	N = 1600
	N = 3200
	N = 1600
	N = 3200

	
	8
	31.70
	37.55
	7.22
	7.92

	160 s
	4
	12.93
	13.96
	2.77
	2.86

	(941 cycles)
	2
	4.57
	5.05
	1.04
	1.12

	
	1
	1.58
	1.66
	0.72
	0.91

	
	8
	31.69
	37.35
	7.25
	7.61

	640 s
	4
	13.04
	13.13
	2.88
	2.79

	(3765 cycles)
	2
	4.49
	4.76
	1.27
	1.27

	
	1
	1.71
	1.85
	0.95
	1.00

8.
REFERENCES

Abraham, S. G. and Hudak, D. E. (1991). Compile-Time Partitioning of Iterative Parallel Loops to Reduce Cache Coherency Traffic. IEEE Transactions on Parallel and Distributed Systems, 2 (3), 318-328.

Chen, D. K., Torrellas, J. and Yew, P. C. (1994). An Efficient Algorithm for the Runtime Parallelization of DOACROSS Loops. Proceedings Supercomputing, 518-527.

Chen, D. K. and Yew, P. C. (1991). An Empirical Study on DOACROSS Loops. Proceedings Supercomputing, 620-632.

Chen, D. K. and Yew, P. C. (1992). A Scheme for Effective Execution of Irregular DOACROSS Loops. Proceedings International Conference on Parallel Processing, II, 285-292.

Chen, D. K. and Yew, P. C. (1994a). Redundant Synchronization Elimination for DOACROSS Loops. Proceedings 8th International Parallel Processing Symposium, 477-481.

Chen, D. K. and Yew, P. C. (1994b). Statement Re-ordering for DOACROSS Loops. Proceedings International Conference on Parallel Processing.

Cytron, R. (1986). Doacross: Beyond Vectorization for Multiprocessors. Proceedings International Conference on Parallel Processing, 836-844.

Cytron, R. (1987). Limited Processor Scheduling of Doacross Loops. Proceedings International Conference on Parallel Processing, 226-234.

Dunigan, T. H. (1991). Performance of the Intel iPSC/860 and Ncube 6400 Hypercubes. Parallel Computing, 17, 1285-1302.

Feo, J. T. (1988). An Analysis of the Computational and Parallel Complexity of the Livermore Loops. Parallel Computing, 7, 163-185.

Hamidzadeh, B. and Lilja, D. J. (1994). Self-Adjusting Scheduling: An On-Line Optimization Technique for Locality Management and Load Balancing," Proceedings International Conference on Parallel Processing, II, 39-46.

Hudak, D. E. and Abraham, S. G. (1992). Compile-Time Optimization of Near-Neighbor Communication for Scalable Shared-Memory Multiprocessors," Journal of Parallel and Distributed Computing, 15, 368-381.

Hummel, S. F., Schonberg, E., and Flynn, L. E. (1992). Factoring: A Method for Scheduling Parallel Loops. Communications of the ACM, 35 (8), 90-101.

Hurson, A. R., Lim, J. T., Kavi, K., and Shirazi, B. (1994a). Loop Allocation Scheme for Multithreaded Dataflow Computers. Proceedings 8th International Parallel Processing Symposium, 316-322.

Hurson, A. R., Lim, J. T., and Lee, B. (1994b). Extended Staggered Scheme: A Loop Allocation Policy," Invited Paper, World IMACS Conference, 1321-1325.

Krothapalli, V. P. and Sadayappan, P. (1990). Dynamic Scheduling of DOACROSS loops for Multiprocessors. Proceedings Parbase-90: International Conference on Databases and Parallel Architectures, 66-75.

Krothapalli, V. P. and Sadayappan, P. (1991). Removal of Redundant Dependencies in DOACROSS loops with Constant Dependencies. IEEE Transactions on Parallel and Distributed Systems, 2 (3), 281-289.

Kruskal, C. and Weiss, A. (1985). Allocating Independent Subtasks on Parallel Processors. IEEE Transactions on Software Engineering, SE-11 (10), 1001-1016.

Kwan, T. T, Totty, B. K., and Reed, D. A. (1993). Communication and Computation Performance of the CM-5. Proceedings International Conference on Supercomputing, 192-201.

Li, H., Tandri, S., Stumm, M., and Sevcik, K. C. (1993). Locality and Loop Scheduling on NUMA Multiprocessors. Proceedings International Conference on Parallel Processing, II, 140-147.

Lilja, D. J. (1994a). Exploiting the Parallelism Available in Loops. IEEE Computer, 27 (2), 13-26.

Lilja, D. J. (1994b). The Impact of Parallel Loop Scheduling Strategies on Prefetching in a Shared-Memory Multiprocessor. IEEE Transactions on Parallel and Distributed Systems, 5 (6), 573-584.

Lim, J. T., Hurson, A. R., Lee, B., and Shirazi, B. (1992). Staggered Distribution : A Loop Allocation Scheme for Dataflow Multiprocessor Systems. The Fourth Symposium on the Frontiers of Massively Parallel Computation, 310-317.

Markatos, E. P. and LeBlanc, T. J. (1992). Using Processor Affinity in Loop Scheduling on Shared-Memory Multiprocessors. Proceedings Supercomputing, 104-113.

Polychronopoulos, C. D. (1987a). Advanced Loop Optimizations for Parallel Computers. In Lecture Notes in Computer Science No. 297: Proceedings International Conference on Supercomputing, 255-277.

Polychronopoulos, C. D. (1987b). Automatic Restructuring of Fortran Programs for Parallel Execution. Proceedings 4th International DFVLR Seminar on Parallel Computing in Science and Engineering, 107-130.

Polychronopoulos, C. D. and Banerjee, U. (1987). Processor Allocation for Horizontal and Vertical Parallelism and Related Speedup Bounds. IEEE Transactions on Computers, C-36 (4), 410-420.

Polychronopoulos, C. D. and Kuck, D. J. (1987). Guided Self-Scheduling: A Practical Scheduling Scheme for Parallel Supercomputers. IEEE Transactions on Computers, C-36 (12), 1425-1439.

Polychronopoulos, C. D., Kuck, D. J., and Padua, D. A. (1986). Execution of Parallel Loops on Parallel Processor Systems. Proceedings International Conference on Parallel Processing, 519-527.

Rudolph, D. C. and Polychronopoulos, C. D. (1989). An Efficient Message-Passing Scheduler Based on Guided Self Scheduling. Proceedings International Conference on Supercomputing, 50-61.

Saltz, J. H., Crowley, K., Mirchandaney, R., and Berryman, H. (1990). Runtime Scheduling and Execution of Loops on Message Passing Machines. Journal of Parallel and Distributed Computing, 8, 303-312.

Saltz, J. H. and Mirchandaney, R. (1991). The Preprocessed DOACROSS Loop. Proceedings International Conference on Parallel Processing, II, 174-179.

Saltz, J. H., Mirchandaney, R., and Crowley, K. (1991). Runtime Parallelization and Scheduling of Loops. IEEE Transactions on Computers, 40 (5), pp. 603-612.

Saltz, J. H., Mirchandaney, R., and Crowley, K. (1989). The DoConsider Loop. Proceedings International Conference on Supercomputing, 29-40.

Su, H. M. and Yew, P. C. (1991). Efficient Doacross Execution on Distributed Shared-Memory Multiprocessors. Proceedings Supercomputing, 842-853.

Subramaniam, S. and Eager, D. L. (1994). Affinity Scheduling of Unbalanced Workloads. Proceedings Supercomputing, 214-226.

Tang, P. and Yew, P. C. (1986). Processor Self-Scheduling for Multiple-Nested Parallel Loops. Proceedings International Conference on Parallel Processing, 528-535.

Tzen, T. H. and Ni, L. M. (1991). Dynamic Loop Scheduling for Shared-Memory Multiprocessors. Proceedings International Conference on Parallel Processing, II, 247-250.

Tzen, T. H. and Ni, L. M. (1992). Data Dependence Analysis and Uniformization for Doubly Nested Loops. Proceedings International Conference on Parallel Processing, II, 91-99.

Yue, K. K. and Lilja, D. J. (1994a). Parallel Loop Scheduling for High-Performance Computers. Technical Report No. HPPC-94-12, Department of Computer Science, University of Minnesota.

Yue, K. K. and Lilja, D. J. (1994b). Parameter Estimation for a Generalized Parallel Loop Scheduling Algorithm. Technical Report No. HPPC-94-18, Department of Computer Science, University of Minnesota.

Zhu, C. Q. and Yew, P. C. (1987). A Scheme to Enforce Data Dependence on Large Multiprocessor Systems. IEEE Transaction on Software Engineering, SE-13, 726-739.

