1.
SYSTOLIC ORGANIZATION

When SUN Microsystems introduced their first workstation it was difficult to imagine that they knew how quickly they and other workstation manufacturers would revolutionize the computing community.  The idea of a community of engineers, scientists, or researchers time sharing on a single mainframe computer could hardly have become ancient any more quickly.  The almost instant and wide acceptance of workstations is an indication that they were quickly recognized for having the best and most flexible performance for the dollar.


There are three reasons for the mass proliferation and acceptance of desktop computers into the computing community.  First, Very Large Scale Integration (VLSI) and Wafer Scale Integration (WSI) technologies, despite their shortcomings, are maturing technologies and have increased the chip gate density while at the same time dramatically lowering the production cost.  Increased gate density also permits a more complicated processor which in turn promotes parallelism.  Second, desktop computers distribute the processing power to the user in an open architecture form which is easily customized.  Real-time applications which require intensive I/O and computations need not consume all the resources of a supercomputer.  Also, desktop computers support very high definition screens which provide color and motion that far exceed any multiple user shared resource mainframe.  Lastly, economical, high bandwidth networks allow computers to share data which results in two key features.  First, the most appealing aspect of centralized computing; i.e., resource sharing, is retained.  Second, and perhaps the most important reason for desktop computer acceptance, is that networks allow the computers to share data with dissimilar older and newer computing machines since all the performance in the world is of little good if the machine is isolated.


The workstations of today redefined the way the computing community distributes processing resources and the computing machines of tomorrow will continue this trend with higher bandwidth networks and higher computational performances.  One way to obtain higher computational performance is to use special parallel coprocessors to perform existing functions such as motion and color support of the high definition screens.  Future computationally intensive applications include real-time text, speech, and image processing since they are ideally suited for desktop computing machines and require parallelism.


It is generally accepted that many computational tasks are by their very nature sequential, and for others the degree of parallelism varies.  Therefore, to maintain sufficient application flexibility and computational efficiency, a massively parallel computational architecture must be:

•
Reconfigurable - to exploit application dependent parallelisms,

•
High level language programmable - to provide task control and flexibility,

•
Scalable - to easily extend the architecture to many applications, and

•
capable of supporting Single Instruction stream and Multiple Data stream (SIMD) organizations for vector operations and Multiple Instruction stream Multiple Data stream (MIMD) organizations to exploit non homogeneous parallelism requirements. 


Systolic arrays are ideally qualified for such tasks.  Whether being used as a dedicated fixed function graphics processor or a more complicated and flexible coprocessor which is shared across a network, systolic arrays effectively exploit massive parallelism.  They can be described as falling into the area between vector computers and massively parallel computers.  Systolic arrays are typically characterized as having intensive local communications and computations yet, with decentralized parallelism in a compact package.  They capitalize on processes which can be performed in a regular, modular, rhythmic, synchronous, and concurrent manner that require intensive repetitive computations.  While systolic arrays originally were used for fixed or special purpose instances, the systolic concept has been extended to more general purpose SIMD and MIMD architectures.

2.
Why Systolic Arrays?


Ever since the systolic model was first proposed by Kung, it has received tremendous attention for its elegant solutions to demanding applications and its potential performance.  There is no widely accepted generic definition for systolic arrays or systolic cells.  The term systolic originated in the medical community where it is used to describe the human circulatory system.  Systolic processes, like the circulatory system, perform the operations in a rhythmic, incremental, cellular and repetitive manner much like the heart circulating blood through the arteries, veins, and capillaries.  The systolic computational rate is restricted by the array's I/O operations, much the same way that the heart controls blood flow to the cells since it is the source and destination for all blood. 


The term array originates from the observation that systolic arrays have balanced uniform architectures which typically look like grids (Figure 1) where each line indicates a communication path and each intersection represents a cell or a systolic element.  However, systolic arrays are more than processor arrays which execute systolic algorithms.  Systolic arrays are composed of systolic elements which take on one of the following forms:

•
Each element is a special purpose cell with hardwired functions,

•
Each element is a vector-computer-like cell with instruction decoding and a processing element or, 

•
Each systolic element is a systolic processor complete with a control unit and a processing unit.


In all cases, the systolic elements or cells are uniquely customized for intensive local communications and decentralized parallelism.  There are few unique cells in a given array, consequently, the array has regular and simple characteristics.  The array usually is extendible with minimal difficulties.  


There are three primary reasons for the systolic array evolving into a very formidable approach for handling computationally intensive applications:  technology advances, concurrency processing, and demanding scientific applications.

2.1
Technological Advances


Advances in VLSI/WSI technology complement the systolic array's unique qualifications in every way.  This is due to the facts that:

•
Smaller and faster gates allow for a higher rate of on chip communication since the data has a shorter distance to travel.  

•
Higher gate densities permit more complicated cells with higher individual and group performances.  Granularity increases as word width increases and concurrency increases with more complicated cells.  

•
Economical design and fabrication processes produce less expensive systolic chips, even at small quantities.  Higher quality design tools allow arrays to be designed more efficiently.  Cells can be fully simulated before fabrication, therefore reducing the chances that the systolic cell will fail to work as designed.  Once simulated, fully tested unique cells can be quickly copied and arranged in regular and modular arrays.  As VLSI/WSI designs become more and more complicated, systolicizing them provides an efficient way to cope with fault tolerance since any fault tolerant precautions built into one cell are extensible to all cells.

•
Relatively new Field Programmable Gate Array technology permits a reconfigurable architecture as opposed to a reprogrammable architecture.

2.2
Concurrency Processing

Traditionally, computers have been largely von Neumann.  Past efforts to add concurrency to the conventional von Neumann architecture have yielded coprocessors, multiple processing units, data pipelining, and multiple homogeneous processors.  Systolic arrays offer a massively parallel architecture which combines features from all of these architectures and may be integrated into existing platforms without a complete redesign.  They can act as coprocessors, contain multiple processing units and/or processors, and can be thought of as an n-dimensional pipeline.  While data pipelining reduces I/O requirements by allowing adjacent cells to reuse the input data, the systolic array’s real novelty is its incremental instruction processing or computational pipelining.  Each cell computes an incremental result and the complete result is derived by interpreting the incremental results from the entire array in a pre-specified algorithmic specific format.

2.3
Demanding Scientific Applications


The technology growth of the last three decades has produced higher performance computing environments which, in turn, have made it feasible to attack a group of existing demanding scientific applications on a larger scale.  Large matrix multiplications, feature extraction, cluster analysis, and radar signal processing are only a few examples.  As seen throughout recent history, when more and more computing machines are used for wider variety of applications by many users, new ideas requiring increased computational performance are developed.  Innovative ideas have produced applications which include interactive language recognition, relational database operations, text recognition, and virtual reality.

[image: image1.wmf]Systolic

Element

Systolic

Element

Systolic

Element

Systolic

Element

Systolic

Element

Systolic

Element

Systolic

Element

Systolic

Element

Systolic

Element

Systolic

Element

Systolic

Element

Systolic

Element

Systolic

Element

Systolic

Element

Systolic

Element

Systolic

Element

Systolic

Element

Systolic

Element

Systolic

Element

Systolic

Element

Figure 1: General systolic organization.



3.
Systolic Characteristics

In 1978 the first systolic arrays were introduced by Kung and Leiserson as a feasible design for special purpose devices which meet the constraints of VLSI technology.  These special purpose devices were able to perform four types of matrix operations at high processing speeds: matrix-vector multiplication, matrix-matrix multiplication, LU-decomposition of a matrix, and the solution of triangular linear systems.  Kung and Leiserson desired to design systems which used multiprocessing (i.e. parallelism), pipelining, and regular interconnections to achieve high processing rates in VLSI.


Although the original motivation for developing systolic architectures was to design high performance special purpose computational systems which meet the constraints of VLSI, it is also possible to design systolic systems which have high throughputs and yet are not constrained to a single VLSI chip.  For this reason, a formal definition of a systolic architecture should reflect this possibility of designing non-VLSI based systolic architectures.  With this in mind, a systolic architecture can be defined as a system which has the following characteristics:


Systolic architectures are composed of a few basic building blocks.  One characteristic common to all systolic organizations is that there are few different types of processing modules.  This leads to a faster design time since only a few types of modules need to be designed.  These building blocks are not necessarily "simple", though.  For example, a systolic matrix-vector multiplier for real valued matrices requires each cell to perform a floating-point multiplication and addition.  This circuitry is not trivial to design.  Other systolic systems may pipeline each systolic cell to further increase the performance of the system.  Thus the systolic cell need not be simple in general, although simplicity is desired specially, if one wishes to fit the entire system on a single VLSI chip.


These building blocks are replicated in a one, two, or possibly higher dimensional space.  The replication of common building blocks makes the overall system design simple and less prone to errors.  Usually the blocks are logically placed in a linear or two-dimensional configuration since this makes it easier to map the cells and interconnections to a two-dimensional circuit board or VLSI chip surface.  In general, there is not strict reason why a systolic architecture should be confined to only one or two-dimensional replication.  However, higher dimensional systolic architectures may suffer from less efficient layouts and a larger number of communication paths to their more numerous nearest neighbors.


The systolic cells use simple and regular communication paths to their nearest neighbors.  This requirement eliminates broadcasting of data throughout the system.  This in turn leads to a high performance system since broadcasting is slow, regardless of the technology.  Regular interconnections also lead to greater component densities and shorter communication paths, both desirable features of a design.


The systolic cells are synchronized by a single global clock.  This provides a conceptually simple synchronization scheme for the system components, which are otherwise locally controlled.  During every clock cycle each cell accepts input data and partial results from some of its neighbors, performs a conceptually simple operation on them, and outputs the input data and the cell's partial results to other neighbors.


The input data streams are fed to the systolic array only at its boundaries.  In a similar manner, outputs are removed from the array only at its edges.  By doing this, long communication lines to the interior of the array can be avoided.  In addition, it helps to preserve the regularity of interconnections throughout the system.


Different data streams can flow in different directions at different speeds through the array.  A data stream refers to either an input data stream or a partial result data stream.  As the different data streams flow through the array, they interact where they meet.  In a systolic architecture, the elements of an input data stream are never consumed.  Instead, each element is used at a systolic cell before it is passed to another (in the direction of the input stream's data flow) at the next clock pulse.  Thus each piece of input data passes through several cells.  In contrast, the elements of a partial result data stream are consumed at each cell, but new partial results are produced and passed on to take their places.


Although systolic architectures have some characteristics similar to pipeline or array processor configurations, they are distinct from these two classes of machine organizations.  Systolic architectures differ from pipeline systems because (1) most of the stages are identical, (2) the input data is not consumed, (3) the input data streams can flow in different directions, and (4) the modules may be organized in a two-dimensional (or higher) configuration.  The major difference between array processors and systolic systems is that the processing elements (PEs) in an array processor are controlled by a single control unit which broadcasts instructions to the PEs.  The processors in a systolic architecture are synchronized by a single global clock, but are otherwise locally controlled.  This means that different systolic cells can perform different operations at the same time,.


Systolic architecture has several advantages over conventional systems which have made them popular.  One of these advantages is that systolic architectures make the design of special purpose systems easier (once the proper systolic organization is found).  In special purpose systems, design costs are usually much larger than component costs.  Systolic systems are typically composed of a few different types of cells replicated many times.  Since only a few different cells have to be designed and tested, the design time for a systolic system is smaller than for a more complex, conventional system.  This makes cost-effective special purpose systems practical.


Systolic architectures are also well suited for the constraints of many technologies, especially VLSI.  This is due to the regular, localized interconnections used in systolic architectures.  These interconnections allow components to packed more densely together, decrease data path lengths, and help reduce overall communication overhead.  In addition, by discouraging data broadcasting a major source of delay is eliminated from these systems.


High throughputs can be achieved because a large number of concurrent operations are executed in a systolic array during its use.  At a given moment, many systolic cells are computing different partial results in the array.  In this regard, systolic architectures are similar to pipeline systems.  Because of this massive concurrency, many systolic systems give O(n) speedup over conventional systems, where n is the number of systolic cells in the array.  The high degree of concurrency present in systolic architectures is one reason why systolic systems are not limited to VLSI technology alone.


Perhaps the greatest advantage of systolic architectures is their ability to increase the execution speed of compute-bound problems without increasing their I/O requirements.  A compute-bound application is one where the total number of compute operations is larger than the total number of input and output operations.  For example, matrix multiplication is considered a compute-bound application.  In many typical compute-bound problems, each piece of input data is used in multiple computations throughout the problem.  In a conventional system where the processor and memory are separate, each piece of input data must be fetched once for each computation that it is involved in.  This leads to much time (and input bandwidth) spent refetching pieces of data multiple times from memory.  In a systolic architecture, each piece of data is fetched only once.  Since the input data is not consumed as it flows through the processors in the array, each piece of data is effectively reused for its multiple computations without having to refetch it from the memory.  This means that the entire input memory bandwidth can be used bringing in new input data into the array; it is not divided between fetching new data and refetching old data as in a conventional system.  At any given moment many computations are being performed concurrently on reused data in the array, hence multiple computations are executed for each input memory access.  These factors lead to a faster system performance and a better utilization of resources, especially the available input bandwidth.  Once again these benefits are applicable to all systolic systems, regardless of the technology used to implement the array.

4.
Systolic Issues


Beyond the merits of the systolic array concept are the implementation issues which determine a systolic array's performance efficiency.  The performance trade-offs should be fully understood by the designer at the design stage.


Algorithms and Mapping
Designers must be intimately familiar with the algorithms that they are implementing on systolic arrays.  The heuristic design of systolic arrays from an algorithm is slow, error prone, requires simulation for verification, and often results in a non optimum algorithm.  Automatic array synthesis is a research area of interest.  However, at present, most array designs are based on heuristics.

Integration into Existing Systems
Generally, systolic processors are integrated into an existing host as a backend processor.  System integration is often nontrivial because of the array’s high I/O requirements.  Often, an additional memory subsystem is added between the existing host and the systolic array to support data access and data multiplexing and de-multiplexing since the existing I/O channel of the host rarely satisfies the bandwidth required by the systolic array.  The memory subsystem can range from the complicated support and cluster processors in the Warp array to the simpler staging memory in SPLASH.


Cell Granularity
Low level or high level cell granularity will directly affect the array’s throughput, flexibility, and the set of algorithms which may be efficiently executed.  The basic operation performed in each cycle can range from logical or bitwise operations to word level multiplication and addition to a complete program.  Granularity is subject to technology capabilities and limitations as well as design goals.  For example, integration substrate families have different performance and density characteristics.  Packaging will also introduce input/output pin restrictions.

Extensibility
Since systolic arrays are built around the cellular building blocks, the cell design should be sufficiently flexible to allow it to be used in a wide variety of topologies implemented in a wide variety of substrate technologies.  

Clock Synchronization
Clock lines of different lengths within integrated chips, as well as external to the chips, can introduce skews.  Clock skew risk is greater when data flow within the systolic array is bi-directional.  Wavefront arrays reduce the clock skew problem by introducing more complicated asynchronous inter cellular communications.

Reliability
As integrated circuits grow larger and larger inherent fault tolerant abilities must be added if the same degree of reliability is to be maintained.  Also diagnostics should be built in at design time so proper operation can more easily be verified.

5.
Systolic Arrays — A Taxonomy


Historically, the term systolic array originally referred to special purpose or fixed function systolic architectures.  Their design is manageable and economical when produced in mass quantities, thus, well suited for common applications.  Today, however, technology advances and the extensive resources required to develop an Application Specific Integrated Chip (ASIC) have made general purpose systolic arrays an attractive alternative.


Special purpose systolic arrays have always been thought of as hardware implementations of a given algorithm.  Array designs were bound to the specific application at hand and were not flexible or versatile.  Researchers were quick to point out that every time a systolic array was to be used on a new application, the long, costly, and potentially risky process of designing, testing and fabricating an ASIC had to be undertaken.  Although, the cost and risks involved in undertaking an ASIC design have decreased in recent years, trends away from unique hardware development have also appeared due to budget constraints.  Consequently, general purpose systolic architectures have been proposed as the logical alternative.  They can also provide a testbed for developing, verifying, and debugging new systolic algorithms.

5.1
Special Purpose Systolic Architectures


Special purpose systolic architectures are custom designed for each application.  Few problems resist attack from systolic arrays, but some problems may require elegant algorithms.  Generally speaking, the systolic design must find a performance algorithm which can be efficiently implemented with today's VLSI technology.


One area where systolic algorithms can be easily utilized is matrix operations.  The systolic algorithm for the sum of a scalar product which is computed in a single systolic element is summarized in Figure 2.  After the cell is initialized, a's and the b's are synchronously shifted through the processing element.  The sum of a, b products is stored in the accumulator.  All a and b data synchronously exits the processing element unmodified so it is available for the next element.  At the end of processing, the sum of the products is shifted out of the accumulator.  This principle is easily extended to a matrix product (see self test problems #1).

5.2
General Purpose Systolic Architectures


There are two basic approaches to developing general purpose systolic arrays; the programmable model and the reconfigurable model.  Recently, hybrid models have also been proposed.


In the programmable model, cell architectures and array architectures remain the same from application to application, however, a program controls how data is operated on in the cells and how data is routed through the array.  All communication paths and functional units are fixed and the program determines when and which paths are utilized.  Each systolic cell either programmable or reconfigurable has been specially designed to meet the computational and I/O requirements of systolic cells.  Programmable systolic architectures can be classified in two groups according to their cell interconnection; fixed or programmable.


Fixed cell interconnections limit a given topology to some subset of all possible algorithms.  Other topologies may be emulated with the proper mapping transformation, but reduced performance is often a consequence.  Programmable cell interconnect architectures are typically created by embedding programmable cells in a switch lattice which allows the array to assume many different topologies.  Programmable topologies are either static or dynamic.  Static topologies may be altered between applications and dynamic topologies may be altered within an application.  Statically programmable topologies can be implemented with much less complexity in comparison to dynamically programmable topologies.  Research in the area of dynamically programmable topologies appears to have been limited since a prohibitively complex interconnection network could undermine the regular and simple principles of systolic architectures. The programmable systolic chip (PSC) is one of the first programmable architectures.

[image: image2.wmf]Multiplier

a

i

 * 

b

i

 

Accumulator

a

i

 * 

b

i

 

S

... 

a

3

 

a

2

 

a

1

 

a

 data exit

.

.

.

b

3

b

2

b

1

b

 data exit

a

j

* 

b

j

  +

a

i

* 

b

i

 

�

j=1

i-1

a

i

 

b

i

 

Figure 2: A Systolic processing element which computes

a

i

b

i

�

i=1

n




In the programmable model, cell architectures and array architectures remain the same from application to application, however, a program controls how data is operated on in the cells and how data is routed through the array.  All communication paths and functional units are fixed and the program determines when and which paths are utilized.  Each systolic cell either programmable or reconfigurable has been specially designed to meet the computational and I/O requirements of systolic cells.  Programmable systolic architectures can be classified in two groups according to their cell interconnection; fixed or programmable.


Fixed cell interconnections limit a given topology to some subset of all possible algorithms.  Other topologies may be emulated with the proper mapping transformation, but reduced performance is often a consequence.  Programmable cell interconnect architectures are typically created by embedding programmable cells in a switch lattice which allows the array to assume many different topologies.  Programmable topologies are either static or dynamic.  Static topologies may be altered between applications and dynamic topologies may be altered within an application.  Statically programmable topologies can be implemented with much less complexity in comparison to dynamically programmable topologies.  Research in the area of dynamically programmable topologies appears to have been limited since a prohibitively complex interconnection network could undermine the regular and simple principles of systolic architectures. The programmable systolic chip (PSC) is one of the first programmable architectures.


In the reconfigurable model, cell architectures as well as array architectures are actually changed from one application to another.  The architecture for each application appears as a special purpose array.  Reconfigurable systolic architectures capitalize on Field Programmable Gate Array (FPGA) technology.  FPGA technology allows the user to configure a low level logic circuit for each systolic cell.  Reconfigurable arrays also may have either fixed or reconfigurable cell interconnections.  Reconfiguration of an array's topology is performed by configuring a switch lattice or similar feature.  Typically, any general purpose array which is not programmable in the traditional way is said to be reconfigurable.  All FPGA reconfiguring is static due to technology limitations.
Reconfigurable arrays do not fall into the classic SIMD or MIMD category for the same reason that special purpose systolic arrays do not.  Reconfigurable systolic arrays are generally limited to Very Few Instruction streams and Multiple Data streams (VFIMD) organizations due to FPGA gate density.  Instructions are implicit in the configuration of each of the cells and therefore, there is no need to download them from the workstation.  Since the nature of special purpose systolic architectures is to have very few unique cells which are repeated throughout the array, the entire array also tends to be VFIMD.  Purely reconfigurable architectures are fine grain low level devices best suited for logical or bit manipulations and typically do not have the gate density to support high level functions such as multiplication.  SPLASH is one of the earlier FPGA reconfigurable systolic arrays.


Hybrid models
High level programmable arrays still require extensive efforts to map algorithms to high level languages after algorithm development is completed.  Often when mapping is completed, the resulting system is not as efficient as it would be if it were implemented in a fixed function ASIC.  On the other hand, low FPGA gate density makes it unlikely that large grain tasks will ever be completely implemented in FPGAs or that reconfigurable arrays will replace conventional SIMD and MIMD architectures in the near future.  Consequently, it is a natural step to merge the two approaches keeping the desirable aspects of each and discarding their undesirable aspects.


The hybrid SIMD architecture is best utilized for intensive floating point computational applications but does not degrade in performance as much as high level programmable arrays when significant logical or control operations are included.  The hybrid design combines a commercial floating point multiplier chip and a field programmable gate array controller to form a systolic cell.  The commercial multipliers are used for their economics, speed, and package density whereas the FPGA closely binds the cell to a specific application.  A simulator has been developed which allows simulation and testing of the cell and the array design.  Unlike most commercially available computer aided design utilities which verify designs at the chip level, it allows the performance of algorithms and architectures to be verified through simulation of the complete array.  The simulator maintains the iterative nature of purely reconfigurable array design by allowing hybrid designs to be easily tailored for specific applications.


General purpose, as well as special purpose systolic architectures, may be further classified by the array dimension.  The two most common topologies are the linear array and the two dimensional array.  Linear systolic arrays are by default statically reconfigurable in one dimension space.  Two dimensional arrays allow more efficient execution of complicated algorithms.  Due to I/O limitations, general purpose systolic arrays of dimensions greater than two are not common.  Table 1 summarizes systolic array taxonomy for general purpose and special purpose systems.

6.
Existing Architectures


In reviewing the projects which were initiated during the last decade, it is clear that the trend was to develop large systolic array processors which required elaborate and custom host support.  WARP, the Computer for Experimental Synthetic Aperture Radar, the Cellular Array Processor, and Saxpy-1M all require expensive and complicated I/O support which is necessary to support the intensive instruction I/O as well as the data I/O.  These machines are all characterized as high performance (200 MFLOPS, 320 MFLOPS, and 1000 MFLOPS, respectively).


The introduction of workstations into the workplace has changed the way a significant portion of the computing community views computers.  Improved desktop computing performance will always be in demand since applications will continue to expand and grow.  Workstation architecture can always be improved, especially when considering emerging applications, which were previously nontraditional, like text and speech processing, and gene matching.  It is evident from examining the more recent general purpose systolic array projects that backend systolic processors have proven to be effective in boosting a workstation's performance for these applications.  These arrays are small enough that the host’s open architecture with limited I/O bandwidth does not severely impact the array’s performance for low to moderate level granularity.  Small backend systolic processors are also economically sound.  For example, SPLASH consists of a two board add on set to a SUN workstation.  One board supports the linear array and the other supports a buffer memory; the set costs $13,000-$35,000.


Almost without exception, current research emphasizes reconfigurable cells, reconfigurable arrays, and hybrids of functional units embedded within reconfigurable FPGA arrays.  Reconfigurable based designs have proven to be unmatched for low to moderate granularity requirements but are not yet mature enough for high granularity applications.  In addition, reconfigurable topologies and cells are uniquely fault tolerant.  Fault tolerance is a configuration issue, not an architecture design and fabrication issue.  Arrays and cells may be simply reconfigured around defects.


Hybrids perhaps present the most attractive practical solution at hand to a reconfigurable high level systolic array until FPGA chip density progresses to the point where high level granularity can be accomplished in a very large FPGA.  Hybrids make use of the most attractive features of programmable and reconfigurable methods while adding more flexibility than either method.


No discussion of general purpose systolic arrays is complete without addressing the issues of programming and configuration.  High level language programming is desirable for promoting widespread use of programmable systolic backend processors.  Only the larger systems had mature programming environments.  Currently, the smaller programmable arrays only have implemented assembly programming.  FPGA configurable arrays are traditionally configured with the use of a schematic editor.  The designer logically draws the cellular architecture in the editor and then a utility converts the logical information to downloadable code.  One drawback of the FPGA approach is that it typically takes more effort to configure an FPGA than it does to program a programmable cell.

[image: image3.wmf]Static

Dynamic

Fixed

Static

Dynamic

Fixed

Static

Dynamic

Fixed

Programmable

Fixed

Reconfigurable

Fixed

Fixed

Hybrid

SIMD or MIMD

VFIMD

Programmable

Reconfigurable

Hybrid

General Purpose

Special Purpose

Hardwired

VFIMD

Fixed

Fixed

Organization

Topology

Interconnection

Class

Type

Table 1.  Systolic Array Taxonomy

n-dimensional

n > 2 dimension is rare due to complexity

Dimension

SIMD

 :  Single Instruction stream and Multiple Data stream 

 

MIMD

 :  Multiple Instruction stream and Multiple Data stream 

 

VFIMD

 :  Very Few Instruction stream and Multiple Data Stream


7.
Self Test Problems

1)
Use the basic building block of Figure 2 to design a special purpose systolic organization for matrix product operation.

2)
Compare and contrast systolic organization against pipelining.

3)
Discuss about the major characteristics of the systolic organization.  Moreover, discuss how systolic characteristics have been compromised in the programmable systolic organization.

