CS 3889
Arithmetic Logic Unit

A.R. Hurson
323 CS Building,
Missouri S&T
hurson@mst.edu

Arithmetic Logic Unit

—

& Outline

Motivation
Design of a simple ALU
How to design an ALU

Fast ALU design
® Fast Adder
® Fast Multiplier
® Fast Divider

Arithmetic Logic Unit

@ You are expected to be familiar with:
Representation of numbers,

Basic arithmetic operations in digital systems,
Including: addition, multiplication, and
division,
Concept of serial, parallel, and modular ALU
®If not then you need to study
CS3889.module4

Arithmetic Logic Unit

& Arithmetic and Logic Unit (ALU)
In an attempt to improve the performance, this
section will talk about the Arithmetic Logic
Unit.
In regard to our earlier CPU time, we are
looking at techniques to reduce p.

T=I*CPl*t=Is* (p+m*K)* ©

Arithmetic Logic Unit

@ Arithmetic and Logic Unit (ALU)

It Is a functional box designed to perform basic
arithmetic, logic, and shift operations on the data.

Implementation of the basic operations such as
logic, program control, and data transfer operations
are easler than arithmetic and 1/O operations.
Therefore, In this section we concentrate on

arithmetic operations.

Arithmetic Logic Unit

e

@ Arithmetic and Logic Unit (ALU)

An ALU can be of three types:
® Serial

®Parallel (see CS 3889.module4 for definitions and
more discussion about serial and parallel ALU)

® Functional (Modular)

Arithmetic Logic Unit

& Arithmetic and Logic Unit (ALU)

Is It possible to improve the performance of an
ALU beyond the performance of a modular
ALU?

Naturally, we can improve the performance
(physical speed) by taking advantage of the
advances in technology.

How can we improve the logical speed of the
ALU further?

Arithmetic Logic Unit

& Arithmetic and Logic Unit (ALU)

In a functional ALU, is it possible to devise
algorithms which allow one to improve the
performance of the basic operations?

If this Is a valid direction, then the question of
how to design a fast ALU will change to “how
to design a fast adder, a fast multiplier, ...?”

Arithmetic Logic Unit

@ Question

As a computer architect, how do you design an
ALU? In another words, In an attempt to
design an ALU, what issues do you need to
take into consideration?

Arithmetic Logic Unit

& Fast Adder

How to design an adder faster than a parallel adder?
What is the major bottle-neck in a parallel adder?

Is the carry generation and propagation the major
bottleneck?

Is it possible to eliminate, moderate, or reduce the delay
of carry generation and propagation?

10

Arithmetic Logic Unit

@ Arithmetic and Logic Unit (ALU)

Carry Lookahead
®Scheme 1
®Scheme 2

Carry Select
Carry Lookahead plus Carry Select

11

Arithmetic Logic Unit

-

& Fast Adder

Carry Lookahead — Generate and propagate
carries ahead of time, relative to a parallel
adder.

12

Arithmetic Logic Unit

e

@ Fast Adder
Basic Building Block — A 4-Bit Adder

Carry-out Carry-in

13

Arithmetic Logic Unit

-

& Fast Adder

Basic Building Block — A 4-Bit Adder (Timing)
F,=4At C, =4At
F,=6At C,=6At
F,=8At C,=8At
F,=10At C. = 10At

14

Arithmetic Logic Unit

—

& Fast Adder
Carry Lookahead (Scheme 1)
Cinni=AB+(A®B;))Ci=AB+(Ai+B;)C,

Carry Generate term (G)) Carry Propagate Term (P))

15

Arithmetic Logic Unit

-

& Fast Adder

Carry Lookahead (Scheme 1)
®In a 4-bit full adder
C,=0
C,=9,+P,C,
C3 = 0,1P,C, = 0,4P,0,+P,P.Cy
C4 = 05+P3C3 = 93+P30,+P3P,0,+P3P,P1Cy
C.= ...

16

Arithmetic Logic Unit

@ Fast Adder — carry Lookahead (Scheme 1)
Extended 4-Bit Full Adder

Arithmetic Logic Unit

@ Fast Adder — carry Lookahead (Scheme 1)

Extended 4-Bit Full Adder — Timing
d = 2At
ps and g®are generated in d
Cs are generated after another d
S are generated after another d

18

Arithmetic Logic Unit

@ Fast Adder — carry Lookahead (Scheme 1)

Bi-Bs Ai1-As

< ° 0 e < —

Arithmetic Logic Unit

@ Fast Adder — carry Lookahead (Scheme 2)

Timing
CLA =5At
Cascades of CLAs overlap 1At operation

Bz9-32 Az9-32

4-Bit F.A.

F29-32

Arithmetic Logic Unit

-

& Fast Adder

Carry Select
@ Carry-in to a 4-bit full adder is either 0 or 1.
®Duplicate each stage - e.g., 4-bit full adder.
®[nitiate each unit in a stage with carry-in of 0 and 1.
® Use a multiplexer to select the correct answer.

21

Arithmetic Logic Unit

& Fast Adder — Carry Select

Carry-in

Arithmetic Logic Unit

@ Questions

Calculate the execution time of a 16-bit adder using
carry lookahead scheme 1.

Formulate the execution time of an n-bit adder using

carry

Calcu
carry

ookahead scheme 1 (n is a multiple of 4).

ate the execution time of a 16-bit adder using
ookahead Scheme 2.

Formulate the execution time of an n-bit adder using
carry lookahead scheme 2 (n is a multiple of 4).

23

Arithmetic Logic Unit

@ Questions

Calculate the execution time of a 16-bit adder
using carry select scheme.

Formulate the execution time of an n-bit adder
using carry select scheme.

Is it possible to combine carry lookahead and
carry select concepts to design a faster adder?

24

Arithmetic Logic Unit

€ Multiplication

Multiplication can be performed as a sequence of
repeated additions.

A * B Is Interpreted as add A, B times. However,
such a scheme is very inefficient with a time
complexity of O(m) where m is the magnitude of B.
A better approach to multiplication, add-and-shift,

produces a time complexity of O(n) where n is the
length of the B.

25

Arithmetic Logic Unit

& Add-and-shift — hardware configuration™

Multiplier and multiplicand are two n-bit
unsigned numbers,

Result 1s a 2n-bit number stored In an
accumulator and multiplier registers.

Multiplier

i[K
Least

Accumulator

Significant
Bit

Arithmetic Logic Unit

& Add-and-shift — Algorithm

In each iteration the least-significant bit of
multiplier is checked;

®if one, then multiplicand is added to the accumulator
and the contents of accumulator and multiplier is
shifted right one position.

®if zero, just shift accumulator and multiplier to the
right.

®See module3.background for additional discussion
about Add-and-shift algorithm.

27

Arithmetic Logic Unit

€ Multiplication — Booth's Algorithm

Booth's algorithm is an extension to the add-and-shift
approach.

In each iteration two bits of multiplier are being
Investigated and proper action(s) will be taken
according to the following coding table:

00 no action shift right once
01 add multiplicand shift right once
10 sub multiplicand shift right once
11 noaction shift right once

See module3.background for more discussion about Booth’s
algorithm,
28

Arithmetic Logic Unit

€ Multiplication — Modified Booth's Algorithm
Check 3 bits of multiplier at a time and take

proper st
000
001
010
011
100
101
110
111

eps as follows:

no action

add multiplicand
add multiplicand
add 2*multiplicand
sub 2*multiplicand
sub multiplicand
sub multiplicand
no action

shift right twice
shift right twice
shift right twice
shift right twice
shift right twice
shift right twice
shift right twice
shift right twice

29

Arithmetic Logic Unit

€ Multiplication — Booth's Algorithm

Any version of Booth's algorithm allows a
sequence of consecutive 15 to be bypassed.

Modified Booth's Algorithm is faster than Booth's
Algorithm.

Booth's Algorithm can be further extended by
looking at 4 bits, (5 bits, ...) at a time and taking
proper actions according to the proper encoding
table.

30

Arithmetic Logic Unit

€ Multiplication — Modified Booth's Algorithm

001011 * 011001 Extension

000000
001011

001011
000010
101010

101100
111011
010110

010001

000100 010011

011001

0110010
1101100

1101100
0011011

0011011

Answer /r

010 = add B, shift twice

100 = sub 2B, shift twice

011 — add 2B, shift twice

31

Arithmetic Logic Unit

€ Multiplication

The add-and-shift algorithm can be used to
multiply numbers (say A and B) iIn 25
complement, if the result is adjusted properly.
Three cases can be recognized.

®Case 1: A positive; B negative

®Case 2: A negative; B positive

®Case 3: A negative; B negative

32

Arithmetic Logic Unit

€ Multiplication — Case 1: A positive B negative
Proof

A* B=A*(2"-B)=2"A-A*B

—_~—

A*B=2"A-A* B

2N _A*B =2 2"A+A* B
AB =2"(2"-A)+A*B=2"A +A* B

Multiply A and B using add-and-shift algorithm and

—_~—

adjust the result by 2" . A

33

Arithmetic Logic Unit

e

@ Questions
Justify case 2 and case 3.

Is 1t possible to use the same technique for 1S
complement numbers?

34

Arithmetic Logic Unit

€ Multiplication — Example

Perform 00101 * 11010 using add-and-shift
algorithm, numbers are In 25 complement
format:

35

Arithmetic Logic Unit

AC
00000

00000
00101
00101
00010
00001

00110
00011
00101
01000
00100
11011

11111 00010

A

11010
01101

01101
10110
01011

0010121

01011
00101

00101
00010

An =0, shift right EACA
An =1, add B

Shift right EACA

An =0, shift right EACA
An =1 addB

Shift right EACA
n=1 add B

Shift right EACA
Adjust the result

<— Answer

36

Arithmetic Logic Unit

-

& Fast Multiplication

Reduction of Summands
® Generate matrix of summands (partial products).

®Go over several reduction stages using 2-2 and 3-2
adders.

®In final stage (2 rows) use a fast adder to generate
the result.

37

Arithmetic Logic Unit

& Fast Multiplication — Reduction of Summands

Partial
Products

Final Stage
use a fast adder

Arithmetic Logic Unit

-

@ Fast Multiplication — Reduction of Summands
01011

39

Arithmetic Logic Unit

& Fast Multiplication — Reduction of Summands

It Is suitable for unsigned numbers.

Number of reduction stages depends on the
length of the multiplier.

Execution time:
Trs=At+m=* (4 At)+P

/o \

Timeto generate _ Execution time
matrix of summands No. of reduction of the fast adder
stages

40

Arithmetic Logic Unit

e

& Fast Multiplication

lterative Method

® Multiplication of 2 n-bit numbers can be converted
Into four multiplications of n/2-bit numbers and two
additions.

®This scheme can be iteratively applied to all
multiplication terms

41

Arithmetic Logic Unit

& Fast Multiplication — lterative Method

X=2" a+b Y= 2" c+d

X*Y=(2"? atb)*(2"* c+d)= 2"(ac)+ 2"* (ad+bc)+bd

42

Arithmetic Logic Unit

& Fast Multiplication — lterative Method

X:

ad term y=

\ azbo asbo| Ja;bo agbo

agbi \gd term

Arithmetic Logic Unit

& Fast Multiplication
Iterative Method — An Example

X = 2,8,8,a,
y = bzh,b, by

x*y = 2%(aza;)(bsbo)+ 2°[(azaz)(b1bo)+(a1d)(baby)]+

(a1a9)(b1by)

44

Arithmetic Logic Unit

& Fast Multiplication

Iterative Method — An Example
X =1010
y = 1100

= 01111000

45

a7b7

a7bg

agb7

azbs
aghg

a5b7

Arithmetic Logic Unit

a7b4
agbs
asbe

a4b7

a7b3
36b4
a5b5
asbg

agb7

a7b2
a6b3
a5b4
a4b5
asbg

a2b7

a7b1
aghy
a5b3
a4b4
a3b5
aosbg

a1b7

a7bo a6bo a5b0 a4b0

a6b1 a5b1 a4b1

a5b2 a4b2

i e abn ae s

a3b4 a2b4 a1b4 aob4

abs ajbs aghs
aibs aghe

a0b7

29

28

271 26 25 24 28 22 21

Arithmetic Logic Unit

& Fast Multiplication

Hurson's Scheme — Observations

®In a parallel multiplier unit first an n*n matrix of
partial products (M) is generated and then elements
In each column are added.

1 If B=Q; =1 1<i,|<n
mi & M { Qj J
0

otherwise

47

Arithmetic Logic Unit

@ Fast Multiplication

Hurson's Scheme — Observations

®An element m; in M is the result of an
AND operation between the it" bit of multiplicand and j* bit of
multiplier.

® In each column, zero elements do not affect the summation In
that column and carry to the next column.

® Each pair of 1° in a column contributes a carry to the next
column.

® The result of summation for each column is either zero (even
number of 1°) or one (odd number of 15).

48

Arithmetic Logic Unit

& Fast Multiplication — Hurson's Scheme

Generate only non-zero elements iIn each
column.

For each pair of 15 in a column generate a carry
to the next column.

Count the number of 15 in each column.

49

Arithmetic Logic Unit

& Fast Multiplication
Hurson's Scheme — Example

B =11010
*Q=11011 Matrix of partial products

111%%1110 -~ without zero elements
1

1

W . — Generate carries
11111
111 Count the number of 1s

1010111110 < in each column

50

Arithmetic Logic Unit

-

& Fast Multiplication

Full Adder Tree

® Generate matrix of summands.

®Use a binary tree of full-adders to calculate the
result in a pipeline fashion

51

Arithmetic Logic Unit

& Fast Multiplication — Full Adder Tree

OOOOOOO********
OOOOOO********O
OOOOO********OO
OOOO********OOO

OOO********OOOO
OO********OOOOO

O********OOOOOO
********OOOOOOO

52

Arithmetic Logic Unit

@ Questions

For an n . n multiplication, calculate the
execution time of the operation using full adder
tree scheme.

Show the "snap shots" of the events to perform:
1101 . 1011 using full adder tree scheme.

53

Arithmetic Logic Unit

@ Fast Multiplication — column Compression

Assume that a population counter is available
that can count the number of 1% Iin an n-bit
word, producing a 1+ | log,n_] bit result.

Similar to the reduction of summands
technigue one can go through several reduction
stages to compress the number of bits in each
column.

54

Arithmetic Logic Unit

@ Fast Multiplication — column Compression
Generate matrix of summands.

Go over several stages using population
counters.

In final stage (2 elements in each column) use a
fast adder to generate the result.

55

Arithmetic Logic Unit

-

@ Fast Multiplication — column Compression

Matrix of
Summands

ﬁ

15t Compression
Stage

56

Arithmetic Logic Unit

-

@ Fast Multiplication — column Compression

01
01
2nd Compression Stage 080
(Final Stage) — 10
00
01
00
00

Result » 0001100011

57

Arithmetic Logic Unit

-

@ Question

Formulate the execution time of an n . n
multiplier unit using column compression
scheme.

58

Arithmetic Logic Unit

@ Division
Similar to multiplication, one can develop a

routine to perform division as a sequence of
subtractions.

However, such an algorithm is very inefficient
and slow.

Instead one can develop an algorithm which
performs division as a sequence of Compare,
Shift and Subtract operations.

59

Arithmetic Logic Unit

& Division
One should note that division in a binary system is

much simpler than the division in decimal system, since
the quotient digits are either O or 1.

To minimize the hardware requirements, we
should remember that:

® Comparison can be performed via arithmetic operation (s).

® Subtraction can be performed via complement-addition.

In other words; division requires almost the same
hardware modules as multiplication does.

60

Arithmetic Logic Unit

@ Division
Division can be carried out as a sequence of n iterations.
Dividend is a double register.
One bit of the quotient is generated in each iteration.

At the end of the operation, the quotient is in the 1st half part of the
double register (low-order part), and remainder is in the 2nd half

part.

Sign of the quotient is the X-OR of the signs of dividend and
divisor.

Sign of the remainder is the same as the sign of the dividend.

61

Arithmetic Logic Unit

-

&® Division
Methods of Division

® There are several different algorithms for division:
M Restoring Method
® Non-Restoring Method
M Direct Comparison

62

Arithmetic Logic Unit

@® Fast Division — SRT Method

Faster direct division can be developed on
normalized numbers by observing sequences of
more than one bit of the dividend or partial
remainder - I.e., sequences of 0% and 1° can be
skipped.

This method was proposed to improve binary
floating-point arithmetic.

63

Arithmetic Logic Unit

@® Fast Division — SRT Method

Assumptions
®The dividend and divisor are binary fractions.

®The divisor (B) iIs an n-bit normalized number —
l.e., B=.1b,, ... b;b,, .5<B<1.

® The dividend-quotient (AQ) combination Is a 2n-bit
register - I.e.,

k Zeros

o

AQ=.00..0 lank+ aiaodni .. g1Qo

64

Arithmetic Logic Unit

—

@® Fast Division — SRT Method

Assumptions

®The dividend is normalized during the division
operation.

@ Divide overflow condition will be detected and steps
are taken in order for it to be overcome.

65

Arithmetic Logic Unit

@® Fast Division — SRT Method

The divisor Is normalized and the dividend-
quotient combination iIs adjusted by shifting it
left the same number of positions that the
divisor was shifted during normalization.

This step allows that the relative magnitudes of
divisor and dividend remain the same.

66

Arithmetic Logic Unit

@® Fast Division — SRT Method

AQ 1s normalized — 1.e., for each shift left a O
IS inserted for q,— Skipping over zeros.

After this step, repeat the following sequence of
steps:

67

Arithmetic Logic Unit

-

@® Fast Division — SRT Method

Subtract divisor from the dividend:

®If positive result, a 1 is inserted for g, and left shift
AQ register.

68

Arithmetic Logic Unit

@ Fast Division — SRT Method
®[f negative result - I.e.,

Insert O for g, and shift left AQ register
Shift over 15, and insert 15 until

Add B to A and shift AQ to left

69

Arithmetic Logic Unit

& Fast Division — SRT Method
Perform the following operation

A Q
AQ = .00000 10111 (23 * 2-10)
B = .00101 (5 * 2°5)

Normalized B = .10100

Normalized B = 1.01100

70

Arithmetic Logic Unit

@® Fast Division — SRT Method

.00000 10111
Adjust AQ 00010 111**
Shift over 03 10111 **000
Subtract B 1.01100

Positive Result: 0.00011 **000

Shift AQ left, gy« 1 .0011* *0001
Shift over 08 11**0 00100

Remainder Quotient

71

Arithmetic Logic Unit

@® Fast Division — SRT Method

A Q
AQ = .00001 10111 (55 * 2-10)
B = .01010 (10 * 2-5)

Normalized B = .10100

ormalized B=1.01100

72

Arithmetic Logic Unit

@® Fast Division — SRT Method

Adjust AQ
Shift over 0s
Subtract B
Positive Result:

Shift AQ left, g, « 1
Shift over 0s
Subtract B
Positive Result:
Shift AQ left, g, « 1

00001 10111

00011 0111~

11011 1*000
1.01100

0.00111 1*000

01111 *0001
1111* 00010
1.01100

0.0101* 00010

101*0 00101

73

Arithmetic Logic Unit

@® Fast Division — SRT Method

A Q
AQ = .00101 00100
B = .01111

Normalized B = .11110

"Normalized B = 1.00010

74

Arithmetic Logic Unit

@® Fast Division — SRT Method

Adjust AQ
Shift over 08
Subtract B
Negative Result:
Shift AQ left, g, « 0

Add B

Positive Result:
Shift AQ left, g, « 1
Subtract B

Negative Result:

00101
01010
10100

1.00010

1.10110
1.01101

11110

0.01011
10110

1.00010

1.11000

75

Arithmetic Logic Unit

@® Fast Division — SRT Method

Negative Result: 1.11000
Shift AQ left, g, < 0 1.10000
Shift over 1° 1.0000*
Add B 11110

Negative Result: 1.1111*
Shift AQ left, g, < 0 1.111*0
Correct remainder by 1.1111*
shifting A and adding B 11110

0.1110*

quotient

Remainder
76

Arithmetic Logic Unit

o

& Fast Division — Divisor Reciprocation

This method generates the reciprocal of the
divisor using an iterative process, and then
obtains the quotient by multiplying the dividend
by the divisor reciprocal

A/B = A * (1/B)

77

Arithmetic Logic Unit

@ Fast Division — Divisor Reciprocation

The divisor (B) Is assumed to be a positive and
normalized number,

12<B<1 = 1<1/BL?2

An initial value X, = 1/B Is determined using a
ROM table or a combinational logic circuit,

B=.1bb,... b, = X,=1.d,d, ... d.

78

Arithmetic Logic Unit

@ Fast Division — Divisor Reciprocation

Then the following iterative cycles will be
performed to determine the inverse value with
reasonable accuracy

fx1:x0(2-) fxzle(z- a1) an:xn-l (2- apy)

a9 =BX,

lalzao(z- a0) lazzal(z- ar) |ay=a54 (2- an1)

The number of iterations (n) will be chosen to

satisfy the following relationm

Relative error -g

Arithmetic Logic Unit

@ Fast Division — Divisor Reciprocation
Assume B =.75= 1/B =1.3333 ...

Take X, = 1, naturally X, Is not the exact
Inverse of B and the error 1s 6 = .333333...

X, =X, (2-BX,)=1 (2-.75)=1.25 & =.08333...
X, = X, (2-BX,)= 1.25 (2-.75 * 1.25) = 1.328125

5 = .005208333...
X, = X, (2-BX,)= 1.328125 (2-.75 * 1.32815)
=1.333313 5 = .000020333...

Newton’s Method 80

Arithmetic Logic Unit

—

& Fast Division — Multiplicative Division

The operation of division is replaced by that of
finding a factor F such that:

B*F=landA*F=0Q
An iterative method can be used to determine
=

81

Arithmetic Logic Unit

& Fast Division — Multiplicative Division

In each iteration a constant factor (multiplying
factor) F; (1 <1 < n) is calculated to converge
the denominator (Divisor) rapidly toward 1.

82

Arithmetic Logic Unit

& Fast Division — Multiplicative Division

The numerator (dividend) and the denominator
(divisor) are both positive fractions.

The divisor 1S a normalized number and the
dividend is shifted accordingly.

1/2 <B<1 B=1l-§ —0<g§<1/?

83

Arithmetic Logic Unit

& Fast Division — Multiplicative Division

F3(0 <i < n) are chosen such that B,,; < B,
Where B, = B* F,
B, = B* Fo*Fy

Bii. =B* Fo*F* ... " Fi1
Bi=B* Fo*F.* ...* Fi *F;

Bn = Bn—1 *Fn

84

Arithmetic Logic Unit

& Fast Division — Multiplicative Division
B=1-6 = F,=1+ 9, hence:
B, = (1- 8)(1+ 8) = 1- 6> = B, iscloser to 1 than B
F, = 1+ &2 hence:
B,=B, * F, = (1- 8)(1+ 8)=(1- 8"

85

Arithmetic Logic Unit

& Fast Division — Multiplicative Division

Note: The initial multiplying factor (F,) can be
obtained by a table look up.

Note: Since we are dealing with Dbinary
numbers

Fo=1+ 8% =2-(1- 8)=2- B., =By,

86

Arithmetic Logic Unit

—

& Fast Division — Multiplicative Division

For each iteration two multiplications are
required:

®One to process the next denominator from which the
next multiplying factor is obtained, and

®One that produces the next numerator.

87

Arithmetic Logic Unit

& Fast Division — Multiplicative Division

F, Obtain B,=B * F, A,;=A*F,
F1=By Bi=By*F, A=A*Fy
If B, =1 then A;=Q, Terminate

F, B,=B,*F, A=A TF,
If B, =1 then A,=Q, Terminate

88

	CS 3889�Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit

