
1

CS 3889
Arithmetic Logic Unit

A.R. Hurson
323 CS Building,

Missouri S&T
hurson@mst.edu

2

Arithmetic Logic Unit

Outline
Motivation
 Design of a simple ALU
 How to design an ALU
 Fast ALU design

 Fast Adder
 Fast Multiplier
 Fast Divider

You are expected to be familiar with:
 Representation of numbers,
 Basic arithmetic operations in digital systems,

including: addition, multiplication, and
division,
Concept of serial, parallel, and modular ALU

If not then you need to study
CS3889.module4

3

Arithmetic Logic Unit

4

Arithmetic and Logic Unit (ALU)
In an attempt to improve the performance, this

section will talk about the Arithmetic Logic
Unit.
In regard to our earlier CPU time, we are

looking at techniques to reduce p.
 T = Ic * CPI * τ = Ic * (p+m*k)* τ

Arithmetic Logic Unit

5

Arithmetic and Logic Unit (ALU)
It is a functional box designed to perform basic

arithmetic, logic, and shift operations on the data.

Implementation of the basic operations such as
logic, program control, and data transfer operations
are easier than arithmetic and I/O operations.
Therefore, in this section we concentrate on
arithmetic operations.

Arithmetic Logic Unit

6

Arithmetic and Logic Unit (ALU)
An ALU can be of three types:
Serial
Parallel (see CS 3889.module4 for definitions and

more discussion about serial and parallel ALU)
Functional (Modular)

Arithmetic Logic Unit

7

Arithmetic and Logic Unit (ALU)
Is it possible to improve the performance of an

ALU beyond the performance of a modular
ALU?
Naturally, we can improve the performance

(physical speed) by taking advantage of the
advances in technology.
How can we improve the logical speed of the

ALU further?

Arithmetic Logic Unit

8

Arithmetic and Logic Unit (ALU)
In a functional ALU, is it possible to devise

algorithms which allow one to improve the
performance of the basic operations?
If this is a valid direction, then the question of

how to design a fast ALU will change to “how
to design a fast adder, a fast multiplier, ...?”

Arithmetic Logic Unit

9

Question
As a computer architect, how do you design an

ALU? In another words, in an attempt to
design an ALU, what issues do you need to
take into consideration?

Arithmetic Logic Unit

10

Fast Adder
How to design an adder faster than a parallel adder?
What is the major bottle-neck in a parallel adder?
Is the carry generation and propagation the major

bottleneck?
Is it possible to eliminate, moderate, or reduce the delay

of carry generation and propagation?

Arithmetic Logic Unit

11

Arithmetic and Logic Unit (ALU)
Carry Lookahead
Scheme 1
Scheme 2

Carry Select
Carry Lookahead plus Carry Select

Arithmetic Logic Unit

12

Fast Adder
Carry Lookahead — Generate and propagate

carries ahead of time, relative to a parallel
adder.

Arithmetic Logic Unit

13

Fast Adder
Basic Building Block — A 4-Bit Adder

FA FA FA FACarry-out

B A B A B A B A

C

Carry-in

FFFF4 3
2

4

44

3

33

2

22

1

1

11

C C CC5

Arithmetic Logic Unit

14

Fast Adder
Basic Building Block — A 4-Bit Adder (Timing)

F1 = 4∆t C2 = 4∆t
F2 = 6∆t C3 = 6∆t
F3 = 8∆t C4 = 8∆t
F4 = 10∆t C5 = 10∆t

Arithmetic Logic Unit

15

Fast Adder
Carry Lookahead (Scheme 1)

Ci+1=AiBi+(Ai⊕Bi)Ci=AiBi+(Ai+Bi)Ci

Carry Generate term (Gi) Carry Propagate Term (Pi)

Arithmetic Logic Unit

16

Fast Adder
Carry Lookahead (Scheme 1)
In a 4-bit full adder

C1 = 0
C2 = g1+P1C1

C3 = g2+P2C2 = g2+P2g1+P2P1C1

C4 = g3+P3C3 = g3+P3g2+P3P2g1+P3P2P1C1

C5 = ...

Arithmetic Logic Unit

17

Fast Adder — Carry Lookahead (Scheme 1)

Extended 4-Bit Full Adder

Carry Lookahead (Scheme 1)

(F.A.) (F.A.) (F.A.) (F.A.)

C5 F4
g4 P4

C4

AB 44 AB 11AB 22AB 33

C1C2C3

F1
g1 P1F2

g2 P2
F3

g3 P3

FA FA FA FACarry-out

B A B A B A B A

C

Carry-in

FFFF4 3
2

4

44

3

33

2

22

1

1

11

C C CC5

Arithmetic Logic Unit

18

Fast Adder — Carry Lookahead (Scheme 1)

Extended 4-Bit Full Adder — Timing
d ≅ 2∆t
ps and gs are generated in d
Cs are generated after another d
Fs are generated after another d

Arithmetic Logic Unit

19

Fast Adder — Carry Lookahead (Scheme 1)

Extended
4-Bit F.A.

Extended
4-Bit F.A.

Extended
4-Bit F.A.Carry-out

Fn-3 - Fn F5- F8 F1- F4

Bn-3 - Bn A n-3 - A n B5- B8 A 5- A 8 B1- B4 A1- A 4

C1C5C9

Carry Lookahead (Scheme 1)

(F.A.) (F.A.) (F.A.) (F.A.)

C5 F4
g4 P4

C4

AB 44 AB 11AB 22AB 33

C1C2C3

F1
g1 P1F2

g2 P2
F3

g3 P3

Arithmetic Logic Unit

20

Fast Adder — Carry Lookahead (Scheme 2)

CLA 2

4-Bit F.A.

B1 - B4 A 1 - A 4

C1

F1 - F4

CLA 2 CLA2
B29-32 A 29-32

4-Bit F.A.Carry-out 4-Bit F.A.

B5 - B8 A5 - A8

F5 - F8F29-32

Timing
CLA = 5∆t
Cascades of CLAs overlap 1∆t operation

FA FA FA FACarry-out

B A B A B A B A

C

Carry-in

FFFF4 3
2

4

44

3

33

2

22

1

1

11

C C CC5

Arithmetic Logic Unit

21

Fast Adder
Carry Select
Carry-in to a 4-bit full adder is either 0 or 1.
Duplicate each stage - e.g., 4-bit full adder.
Initiate each unit in a stage with carry-in of 0 and 1.
Use a multiplexer to select the correct answer.

Arithmetic Logic Unit

22

Fast Adder — Carry Select

MUX

4-Bit
Full Adder

4-Bit
Full Adder

4-Bit
Full Adder

Carry-in

F5
"- F8

"

B5 - B8 A5 - A8
B5 - B8 A5 - A8

1 0
B1 - B4 A1 - A4

F1 - F4

F5
'- F8

'

12∆t
10∆t

10∆t

12∆t

10∆t

F5-F8

FA FA FA FACarry-out

B A B A B A B A

C

Carry-in

FFFF4 3
2

4

44

3

33

2

22

1

1

11

C C CC5

Arithmetic Logic Unit

23

Questions
Calculate the execution time of a 16-bit adder using

carry lookahead scheme 1.
Formulate the execution time of an n-bit adder using

carry lookahead scheme 1 (n is a multiple of 4).
Calculate the execution time of a 16-bit adder using

carry lookahead Scheme 2.
Formulate the execution time of an n-bit adder using

carry lookahead scheme 2 (n is a multiple of 4).

Arithmetic Logic Unit

24

Questions
Calculate the execution time of a 16-bit adder

using carry select scheme.
Formulate the execution time of an n-bit adder

using carry select scheme.
Is it possible to combine carry lookahead and

carry select concepts to design a faster adder?

Arithmetic Logic Unit

25

Multiplication
Multiplication can be performed as a sequence of

repeated additions.
A * B is interpreted as add A, B times. However,

such a scheme is very inefficient with a time
complexity of O(m) where m is the magnitude of B.
A better approach to multiplication, add-and-shift,

produces a time complexity of O(n) where n is the
length of the B.

Arithmetic Logic Unit

26

Add-and-shift — hardware configuration
Multiplier and multiplicand are two n-bit

unsigned numbers,
Result is a 2n-bit number stored in an

accumulator and multiplier registers.
B

AC

Parallel Adder

Q

Least
Significant
Bit

Cout

Multiplier

Multiplicand

Accumulator

Arithmetic Logic Unit

27

Add-and-shift — Algorithm
In each iteration the least-significant bit of

multiplier is checked;
if one, then multiplicand is added to the accumulator

and the contents of accumulator and multiplier is
shifted right one position.
if zero, just shift accumulator and multiplier to the

right.
See module3.background for additional discussion

about Add-and-shift algorithm.

Arithmetic Logic Unit

28

Multiplication — Booth's Algorithm
Booth's algorithm is an extension to the add-and-shift

approach.
In each iteration two bits of multiplier are being

investigated and proper action(s) will be taken
according to the following coding table:

00 no action shift right once
01 add multiplicand shift right once
10 sub multiplicand shift right once
11 no action shift right once
See module3.background for more discussion about Booth’s
algorithm.

Arithmetic Logic Unit

29

Multiplication — Modified Booth's Algorithm
Check 3 bits of multiplier at a time and take

proper steps as follows:
000 no action shift right twice
001 add multiplicand shift right twice
010 add multiplicand shift right twice
011 add 2*multiplicand shift right twice
100 sub 2*multiplicand shift right twice
101 sub multiplicand shift right twice
110 sub multiplicand shift right twice
111 no action shift right twice

Arithmetic Logic Unit

30

Multiplication — Booth's Algorithm
Any version of Booth's algorithm allows a

sequence of consecutive 1s to be bypassed.
Modified Booth's Algorithm is faster than Booth's

Algorithm.
Booth's Algorithm can be further extended by

looking at 4 bits, (5 bits, ...) at a time and taking
proper actions according to the proper encoding
table.

Arithmetic Logic Unit

31

Multiplication — Modified Booth's Algorithm
001011 * 011001

000000 0110010
001011

Answer

Extension

010 ⇒ add B, shift twice

100 sub 2B, shift twice

011 add 2B, shift twice

001011 0110010
000010 1101100
101010

101100 1101100
111011 0011011
010110

010001 0011011
000100 010011 0

⇒

⇒

Arithmetic Logic Unit

32

Multiplication
The add-and-shift algorithm can be used to

multiply numbers (say A and B) in 2s

complement, if the result is adjusted properly.
Three cases can be recognized.
Case 1: A positive; B negative
Case 2: A negative; B positive
Case 3: A negative; B negative

Arithmetic Logic Unit

33

Multiplication — Case 1: A positive B negative
Proof

A * = A * (2n - B) = 2nA - A * B
A * B = 2nA - A *
22n - A * B = 22n - 2nA + A *

= 2n(2n -A) + A * = 2n + A *

B

B

B

A

B

B

AB

A

Multiply A and B using add-and-shift algorithm and
adjust the result by 2n .

Arithmetic Logic Unit

34

Questions
Justify case 2 and case 3.
Is it possible to use the same technique for 1s

complement numbers?

Arithmetic Logic Unit

35

Multiplication — Example
Perform 00101 * 11010 using add-and-shift

algorithm, numbers are in 2s complement
format:

Arithmetic Logic Unit

36

0 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 0 1 1 0 1
 0 0 1 0 1
0 0 0 1 0 1 0 1 1 0 1
0 0 0 0 1 0 1 0 1 1 0
0 0 0 0 0 1 0 1 0 1 1
 0 0 1 0 1
0 0 0 1 1 0 0 1 0 1 1
0 0 0 0 1 1 0 0 1 0 1
 0 0 1 0 1
0 0 1 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 0 0 1 0
 1 1 0 1 1
 1 1 1 1 1 0 0 0 1 0

Shift right EACA

An = 1, add B

An = 1, add B

Shift right EACA
An = 1, add B

Shift right EACA
Adjust the result

E AC A

Answer

An = 0, shift right EACA

An = 0, shift right EACA

Arithmetic Logic Unit

37

Fast Multiplication
Reduction of Summands
Generate matrix of summands (partial products).
Go over several reduction stages using 2-2 and 3-2

adders.
In final stage (2 rows) use a fast adder to generate

the result.

Arithmetic Logic Unit

38

Fast Multiplication — Reduction of Summands

* * * *

* * * *
* * * *
* * * *

* * * *

* * * *
* * * * * * *

*
* * * * * * *

* * * * *

* * * * *

Partial
Products

Final Stage
use a fast adder

{

Arithmetic Logic Unit

39

Fast Multiplication — Reduction of Summands
01011
11001

0 1 0 1 1

0 0 0 0 0
0 0 0 0 0

0 1 0 1 1

0 1 0 1 1

0 1 1 0 0 1 0 1 1
0 0 0 0 0 0 0

1 0 1
1

0 1 1 1 0 0 0 1 1
0 0 0 0 0 1 0

1
0 0 1 1 0 0 0 0 1 1
0 0 0 1 1 0
0 1 0 0 0 1 0 0 1 1

Arithmetic Logic Unit

40

Fast Multiplication — Reduction of Summands
It is suitable for unsigned numbers.
Number of reduction stages depends on the

length of the multiplier.
Execution time:

TRS = ∆t + m * (4 ∆t) + P

Time to generate
matrix of summands No. of reduction

stages

Execution time
of the fast adder

Arithmetic Logic Unit

41

Fast Multiplication
Iterative Method
Multiplication of 2 n-bit numbers can be converted

into four multiplications of n/2-bit numbers and two
additions.
This scheme can be iteratively applied to all

multiplication terms

Arithmetic Logic Unit

42

Fast Multiplication — Iterative Method

X = 2n/2 a + b, Y = 2n/2 c + d
X*Y=(2n/2 a+b)*(2n/2 c+d)= 2n(ac)+ 2n/2 (ad+bc)+bd

Arithmetic Logic Unit

43

Fast Multiplication — Iterative Method

Arithmetic Logic Unit

44

Fast Multiplication
Iterative Method — An Example

x = a3a2a1a0

y = b3b2b1b0

x*y = 24(a3a2)(b3b2)+ 22[(a3a2)(b1b0)+(a1a0)(b3b2)]+
 (a1a0)(b1b0)

Arithmetic Logic Unit

45

Fast Multiplication
Iterative Method — An Example

x = 1010
y = 1100

Arithmetic Logic Unit

46

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

a7b0 a6b0 a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a7b1 a6b1 a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a7b2 a6b2 a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a7b3 a6b3 a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a7b4 a6b4 a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a7b5 a6b5 a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

a7b6 a6b6 a5b6 a4b6 a3b6 a2b6 a1b6 a0b6

a7b7 a6b7 a5b7 a4b7 a3b7 a2b7 a1b7 a0b7

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

Arithmetic Logic Unit

47

Fast Multiplication
Hurson's Scheme — Observations
In a parallel multiplier unit first an n*n matrix of

partial products (M) is generated and then elements
in each column are added.

mij ε M =
1 i f Bi=Qj = 1 1 ≤i, j ≤n

0 otherwise
{

Arithmetic Logic Unit

48

Fast Multiplication
Hurson's Scheme — Observations

An element mij in M is the result of an
AND operation between the ith bit of multiplicand and jth bit of
multiplier.

 In each column, zero elements do not affect the summation in
that column and carry to the next column.

Each pair of 1s in a column contributes a carry to the next
column.

The result of summation for each column is either zero (even
number of 1s) or one (odd number of 1s).

Arithmetic Logic Unit

49

Fast Multiplication — Hurson's Scheme
Generate only non-zero elements in each

column.
For each pair of 1s in a column generate a carry

to the next column.
Count the number of 1s in each column.

Arithmetic Logic Unit

50

Fast Multiplication
Hurson's Scheme — Example

*Q = 11011
B = 11010

111111110
1 11

 1

11111
1 11

1 01011 1110

1 111111110

Matrix of partial products
without zero elements

Generate carries

Count the number of 1s
in each column

Arithmetic Logic Unit

51

Fast Multiplication
Full Adder Tree
Generate matrix of summands.
Use a binary tree of full-adders to calculate the

result in a pipeline fashion

Arithmetic Logic Unit

52

Fast Multiplication — Full Adder Tree

FA

FA

FA

FA

Carry

FA

FA

FA P 2n-1 ... P 0

0000000********
000000********0
00000********00
0000********000
000********0000
00********00000
0********000000
********0000000

Arithmetic Logic Unit

53

Questions
For an n * n multiplication, calculate the

execution time of the operation using full adder
tree scheme.
Show the "snap shots" of the events to perform:

1101 * 1011 using full adder tree scheme.

Arithmetic Logic Unit

54

Fast Multiplication — Column Compression

Assume that a population counter is available
that can count the number of 1s in an n-bit
word, producing a 1+ log2n bit result.
Similar to the reduction of summands

technique one can go through several reduction
stages to compress the number of bits in each
column.

Arithmetic Logic Unit

55

Fast Multiplication — Column Compression

Generate matrix of summands.
Go over several stages using population

counters.
In final stage (2 elements in each column) use a

fast adder to generate the result.

Arithmetic Logic Unit

56

Fast Multiplication — Column Compression
1 0 1 1

0 0 0 0
0 0 0 0

1 0 1 1

Matrix of
Summands

0 0 1
0 0 1

0 0 0
0 1 0

0 0 1
0 0 0

0 0 1

1st Compression
Stage

Arithmetic Logic Unit

57

Fast Multiplication — Column Compression
01

01
00

00
10

00
01

00
00

2nd Compression Stage
(Final Stage)

0001100011Result

Arithmetic Logic Unit

58

Question
Formulate the execution time of an n * n

multiplier unit using column compression
scheme.

Arithmetic Logic Unit

59

Division
Similar to multiplication, one can develop a

routine to perform division as a sequence of
subtractions.
However, such an algorithm is very inefficient

and slow.
Instead one can develop an algorithm which

performs division as a sequence of Compare,
Shift and Subtract operations.

Arithmetic Logic Unit

60

Division
One should note that division in a binary system is

much simpler than the division in decimal system, since
the quotient digits are either 0 or 1.

To minimize the hardware requirements, we
should remember that:
Comparison can be performed via arithmetic operation (s).
Subtraction can be performed via complement-addition.

In other words; division requires almost the same
hardware modules as multiplication does.

Arithmetic Logic Unit

61

Division
 Division can be carried out as a sequence of n iterations.
 Dividend is a double register.
 One bit of the quotient is generated in each iteration.
 At the end of the operation, the quotient is in the 1st half part of the

double register (low-order part), and remainder is in the 2nd half
part.

 Sign of the quotient is the X-OR of the signs of dividend and
divisor.

 Sign of the remainder is the same as the sign of the dividend.

Arithmetic Logic Unit

62

Division
Methods of Division
There are several different algorithms for division:
Restoring Method
Non-Restoring Method
Direct Comparison

Arithmetic Logic Unit

63

Fast Division — SRT Method
Faster direct division can be developed on

normalized numbers by observing sequences of
more than one bit of the dividend or partial
remainder - i.e., sequences of 0s and 1s can be
skipped.
This method was proposed to improve binary

floating-point arithmetic.

Arithmetic Logic Unit

64

Fast Division — SRT Method
Assumptions
The dividend and divisor are binary fractions.
The divisor (B) is an n-bit normalized number —

i.e., B = .1bn-2 ... b1b0, .5≤B<1.
The dividend-quotient (AQ) combination is a 2n-bit

register - i.e.,
k Zeros

AQ = .00 ... 0 1 a n-(k+2) a 1 a 0 q n-1 ... q 1 q 0

Arithmetic Logic Unit

65

Fast Division — SRT Method
Assumptions
The dividend is normalized during the division

operation.
Divide overflow condition will be detected and steps

are taken in order for it to be overcome.

Arithmetic Logic Unit

66

Fast Division — SRT Method
The divisor is normalized and the dividend-

quotient combination is adjusted by shifting it
left the same number of positions that the
divisor was shifted during normalization.
This step allows that the relative magnitudes of

divisor and dividend remain the same.

Arithmetic Logic Unit

67

Fast Division — SRT Method
AQ is normalized — i.e., for each shift left a 0

is inserted for q0 Skipping over zeros.

K Zeros
AQ =.1 an- 2 ... a 1 a0 q n- 1 ... q k 00 ... 0

After this step, repeat the following sequence of
steps:

Arithmetic Logic Unit

68

Fast Division — SRT Method
Subtract divisor from the dividend:
If positive result, a 1 is inserted for q0 and left shift

AQ register.

Arithmetic Logic Unit

69

Fast Division — SRT Method
If negative result - i.e., k

AQ = 1.1 ... a 1 a 0 q n-1 ... 00 ... 0

k+1 m
AQ = 1.0 ... a 1 a 0 q n-1 ... 0 ... 0 111 ... 1

 Insert 0 for q0 and shift left AQ register
 Shift over 1s, and insert 1s until

Add B to A and shift AQ to left

Arithmetic Logic Unit

70

Fast Division — SRT Method
Perform the following operation

A Q
AQ = .00000 10111 (23 * 2-10)

B = .00101 (5 * 2-5)
Normalized B = .10100

Normalized B = 1.01100

Arithmetic Logic Unit

71

Fast Division — SRT Method
.00000 10111

Adjust AQ .00010 111**
Shift over 0s .10111 **000
Subtract B 1.01100
Positive Result: 0.00011 **000

Shift AQ left, q0 ← 1 .0011* *0001
Shift over 0s .11**0 00100

Remainder Quotient

Arithmetic Logic Unit

72

Fast Division — SRT Method

A Q
AQ = .00001 10111 (55 * 2-10)

B = .01010 (10 * 2-5)
Normalized B = .10100

Normalized B = 1.01100

Arithmetic Logic Unit

73

Fast Division — SRT Method
.00001 10111

Adjust AQ .00011 0111*
Shift over 0s .11011 1*000
Subtract B 1.01100
Positive Result: 0.00111 1*000

Shift AQ left, q0 ← 1 .01111 *0001
Shift over 0s .1111* 00010
Subtract B 1.01100
Positive Result: 0.0101* 00010
Shift AQ left, q0 ← 1 .101* 0 00101

Arithmetic Logic Unit

74

Fast Division — SRT Method

A Q
AQ = .00101 00100

B = .01111
Normalized B = .11110

Normalized B = 1.00010

Arithmetic Logic Unit

75

Fast Division — SRT Method
.00101 00100

Adjust AQ .01010 0100*
Shift over 0s .10100 100*0
Subtract B 1.00010
Negative Result: 1.10110 100*0

Shift AQ left, q0 ← 0 1.01101 00*00
Add B .11110
Positive Result: 0.01011 00*00
Shift AQ left, q0 ← 1 .10110 0*001
Subtract B 1.00010
Negative Result: 1.11000 0*001

Arithmetic Logic Unit

76

Fast Division — SRT Method
Negative Result: 1.11000 0*001
Shift AQ left, q0 ← 0 1.10000 *0010

Shift over 1s 1.0000* 00101
Add B .11110
Negative Result: 1.1111* 00101
Shift AQ left, q0 ← 0 1.111*0 01010

Correct remainder by 1.1111*
shifting A and adding B .11110

0.1110*

quotient

Remainder

Arithmetic Logic Unit

77

Fast Division — Divisor Reciprocation
This method generates the reciprocal of the

divisor using an iterative process, and then
obtains the quotient by multiplying the dividend
by the divisor reciprocal

A/B = A * (1/B)

Arithmetic Logic Unit

78

Fast Division — Divisor Reciprocation
The divisor (B) is assumed to be a positive and

normalized number,
1/2 ≤ B < 1 ⇒ 1 < 1/B ≤ 2

B = .1b2b3 … bn ⇒ X0 = 1.d1d2 … dn

An initial value X0 ≈ 1/B is determined using a
ROM table or a combinational logic circuit,

Arithmetic Logic Unit

79

Fast Division — Divisor Reciprocation
Then the following iterative cycles will be

performed to determine the inverse value with
reasonable accuracy

a 0 =Bx 0
x 1 =x 0 (2- a 0)
a 1 =a0 (2- a0)

, x 2 =x 1 (2- a 1)
a 2 =a1 (2- a1) ,

x n =x n-1 (2- a n-1)
a n =a n-1 (2- a n-1)

The number of iterations (n) will be chosen to
satisfy the following relation: 1-B x n ≤ ε

Relative error

Arithmetic Logic Unit

80

Fast Division — Divisor Reciprocation
Assume B = .75 ⇒ 1/B = 1.3333 …
Take X0 = 1, naturally X0 is not the exact

inverse of B and the error is δ = .333333...
X1 = X0 (2-BX0)= 1 (2-.75) = 1.25 δ = .08333...
X2 = X1 (2-BX1)= 1.25 (2-.75 * 1.25) = 1.328125

δ = .005208333...
X3 = X2 (2-BX2)= 1.328125 (2-.75 * 1.32815)

=1.333313 δ = .000020333...

Newton’s Method

Arithmetic Logic Unit

81

Fast Division — Multiplicative Division
The operation of division is replaced by that of

finding a factor F such that:
B * F =1 and A * F = Q

An iterative method can be used to determine
F.

Arithmetic Logic Unit

82

Fast Division — Multiplicative Division
In each iteration a constant factor (multiplying

factor) Fi (1 ≤ i ≤ n) is calculated to converge
the denominator (Divisor) rapidly toward 1.

Q = A * F0 * F1 * ... * Fn

B * F0 * F1 * ... * Fn

Arithmetic Logic Unit

83

Fast Division — Multiplicative Division
The numerator (dividend) and the denominator

(divisor) are both positive fractions.
The divisor is a normalized number and the

dividend is shifted accordingly.

1/2 ≤ B < 1, B = 1- δ ⇒ 0 < δ ≤ 1/2

Arithmetic Logic Unit

84

Fast Division — Multiplicative Division
Fi

s(0 ≤ i ≤ n) are chosen such that Bi-1 < Bi,
Where B0 = B* F0

B1 = B* F0*F1
•
•
•

Bi-1 = B * F0*F1* ... * Fi-1
Bi = B * F0*F1* ... * Fi-1 *Fi

•
•
•

Bn = Bn-1 *Fn

Arithmetic Logic Unit

85

Fast Division — Multiplicative Division
B = 1 - δ ⇒ F0 = 1 + δ, hence:

B0 = (1- δ)(1+ δ) = 1- δ2 ⇒ B0 is closer to 1 than B

F1 = 1+ δ2 hence:
B1=B0 * F1 = (1- δ2)(1+ δ2)=(1- δ4)

•
•
•

Fi = 1+ δ2i

Arithmetic Logic Unit

86

Fast Division — Multiplicative Division
Note: The initial multiplying factor (F0) can be

obtained by a table look up.
Note: Since we are dealing with binary

numbers

Fi = 1+ δ2i
 = 2 - (1- δ2i

) = 2 - Bi-1 = Bi-1

Arithmetic Logic Unit

87

Fast Division — Multiplicative Division
For each iteration two multiplications are

required:
One to process the next denominator from which the

next multiplying factor is obtained, and
One that produces the next numerator.

Arithmetic Logic Unit

88

Fast Division — Multiplicative Division

F0 Obtain B0=B * F0 A0=A*F0

F1= 0 B1=B0 * F1 A1=A0 * F1

If B1 = 1 then A1=Q, Terminate
F2= 1 B2=B1 * F2 A2=A1 * F2

If B2 = 1 then A2=Q, Terminate
B

B

Arithmetic Logic Unit

	CS 3889�Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit
	Arithmetic Logic Unit

