
1

CS 3889
Performance Metrics

advanced module

A.R. Hurson
323 Computer Science Building,

Missouri S&T
hurson@mst.edu

2

Performance Metrics

Outline
 Amdahl's law
 Green computing
 CPU Time
 Formulation of CPU time in terms of Instruction count, clock cycle

time, and number of clock cycles per instruction
 Formulation of CPU time in terms of Instruction count, clock cycle

time, number of clock cycles per instruction, and role of different
components in a simple computer organization

 How to improve performance?

You are expected to be familiar with:
Major components of a computer,
Flow of operations and control in a simple

computer,
Some performance metrics

3

Performance Metrics

Who has the fastest
The first Top500 list was created in 1993.
In 2012, Top500 list was dominated by IBM

Blue Gene/Q with 4 systems in the top 10. The
largest of which at Lawrence Livermore
National Laboratory with more than 16
Petaflops sustained performance.

4

Performance Metrics

Rank Site Computer/Year Vendor Country Cores
Rmax

(Pflops)
Rpeak

(Pflops)
Power
(MW)

1
RIKEN Advanced Institute for
Computational Science

K computer, SPARC64 VIIIfx
2.0GHz,/ 2011 Fujitsu

Japan 548,352 8.162 8.774 9.899

2
National Supercomputing
Center in Tianjin

Tianhe-1A - NUDT / 2010 NUDT China 186,368 2.566 4.701 4.040

3
DOE/SC/Oak Ridge National
Laboratory

Jaguar - Cray XT5-2.6 GHz /
2009 Cray Inc.

USA 224,162 1.759 2.331 6.951

4
National Supercomputing
Centre in Shenzhen

Nebulae - Dawning TC3600
Blade/ 2010 Dawning

China 120,640 1.271 2.984 2.580

5
GSIC Center, Tokyo Institute
of Technology

TSUBAME 2.0/2010 NEC/HP Japan 73,278 1.192 2.288 1.399

6 DOE/NNSA/LANL/SNL
Cielo - Cray XE6 8-core 2.4 GHz
/2011Cray Inc.

USA 142,272 1.110 1.365 3.980

7
NASA/Ames Research
Center/NAS

Pleiades - 2.93 Ghz,/ 2011 SGI USA 111,104 1.088 1.315 4.102

8 DOE/SC/LBNL/NERSC
Hopper - Cray XE6 12-core 2.1
GHz / 2010 Cray Inc.

USA 153,408 1.054 1.289 2.910

9
Commissariat a l'Energie
Atomique (CEA)

Tera-100 - Bull bullx super-node
S6010/S6030 / 2010 Bull SA

France 138,368 1.050 1.255 4.590

10 DOE/NNSA/LANL Roadrunner - 3.2 Ghz /2009 IBM USA 122,400 1.042 1.376 2.346
5

The Top10 supercomputers (as of 2011)

Performance Metrics

Trend in Supercomputer technology (as of 2011)

#1

#500
Sum

6

Performance Metrics

Countries Share

7

Absolute Counts
US: 274
China: 41
Germany: 26
Japan: 26
France: 26
UK: 25

Performance Metrics

Countries Count Share % Rmax Sum (GF) Rpeak Sum (GF) Processor Sum

Australia 6 1.20 % 400406 552142 40344

Austria 2 0.40 % 188670 243386 26172

Belgium 2 0.40 % 83840 151472 16704

Brazil 2 0.40 % 269730 330445 37184

Canada 8 1.60 % 640129 890598 82684

China 61 12.20 % 7136315 14331013 881832

Denmark 2 0.40 % 198408 260395 22218

Finland 2 0.40 % 117858 180690 18640

France 25 5.00 % 3180744 4100571 454928

Germany 30 6.00 % 3242111 4181323 568952

India 2 0.40 % 187910 242995 18128

Ireland 1 0.20 % 40495 76608 7200

Israel 2 0.40 % 135361 280436 23928

Italy 5 1.00 % 471746 748248 42080

Japan 26 5.20 % 11182236 13641290 832838

Korea, South 4 0.80 % 950833 1126280 123384

Netherlands 1 0.20 % 50924 64973 3456

Norway 1 0.20 % 40590 51060 5550

Poland 5 1.00 % 315075 448204 44274

Russia 12 2.40 % 1341586 2290994 115120

Saudi Arabia 4 0.80 % 359240 414841 81920

Singapore 2 0.40 % 94073 144562 13192

Spain 2 0.40 % 135860 197696 14160

Sweden 5 1.00 % 489530 661642 75280

Switzerland 4 0.80 % 317895 383373 49480

Taiwan 2 0.40 % 220504 313570 32148

United Kingdom 27 5.40 % 1872107 2806546 260572

United States 255 51.00 % 25265849 36064596 38875568

Rapid change in
Countries Share

9

Trend in Supercomputer technology (as of June 2012)
Performance Metrics

Who has the fastest
If the projection holds we can expect Exaflops

system by 2019.

10

Performance Metrics

11

Performance Measures
Speed up — How much faster a task will run

using the machine with enhancement relative to
the original machine.

S = Execution time on Original Machine
Execution time on Enhanced Machine

Performance Metrics

12

Performance Measures
Efficiency — It is the ratio between speed up

and number of processors involved in the
process:

Ep =
Sp

p

Performance Metrics

13

Performance Measures
Efficiency can be discussed, mainly, within the scope

of concurrent system.
Efficiency indicates how effectively the hardware

capability of a system has been used.
Assume we have a system that is a collection of ten

similar processors. If a processor can execute a task in
10 seconds then ten processors, collectively, should
execute the same task in 1 second. If not, then we can
conclude that the system has not been used effectively.

Performance Metrics

Performance Measures
Green computing
Power consumption and power management

14

Performance Metrics

Is one number enough?
As per our discussion, so far, performance was the

major design constraint. However, the power is
becoming a problem.

Power consumption became an issue with the growth of
wireless technology and mobile devices. However, it is
becoming even more of concern since feeding several
Magawatt of power to run a supercomputer is not a
trivial task and requires a great amount of supporting
infrastructure

15

Performance Metrics

Is one number enough?

16Top500 Performance

Performance Metrics

Is one number enough?

17Top500 Power

Performance Metrics

Is one number enough?

18

Performance Metrics

Challenges for creating Exaflops machine are:
 Energy and Power,
Memory and Storage,
 Concurrency and locality, and
 Resiliency

An Exaflps machine should consume at most 20 Megawatt
of power which corresponds to 50 Gflop/W. To reach this
goal, power efficiency needs to be increased by a factor of
25 compared to today’s most power efficient system (IBM
Blue Gere/Q)

19

Performance Metrics

20

Performance Measures
Amdahl's law — The performance improvement

gained by improving some portion of an
architecture is limited by the fraction of the time
the improved portion is used — a small number of
sequential operations can effectively limit the
speed up of a parallel algorithm.

Performance Metrics

21

Performance Measures
Amdahl's law allows a quick way to calculate

the speed up based on two factors — The
fraction of the computation time in the original
task that is affected by the enhancement, and,
the improvement gained by the enhanced
execution mode (speed up of the enhanced
portion).

Performance Metrics

22

Performance Measures — Amdahl's law

 Speedup

FractionFractiontimeExecutiontimeExecution
enhanced

enhanced
enhancedoldnew

1

Speedup
FractionFraction

timeExecution
timeExecutionSpeedup

enhanced

enhanced
enhanced

new

old
overall

1

1

S
Execution timeold

Execution timeenhanced

1

+
 =

f (1 - f) p/
Where f and p represent the unchanged portion and
the speed up of the enhanced portion, respectively.

Performance Metrics

23

Performance Measures
Example — Suppose we are considering an

enhancement that runs 10 times faster, but it is
only usable 40% of time. What is the overall
speed up?

56.1
64.
1

10
4.6.

1

S

Performance Metrics

24

Performance Measures
Example — If 10% of operations, in a program,

must be performed sequentially, then the
maximum speed up gained is 10, no matter how
many processors a parallel computer has.

Performance Metrics

25

Performance Measures
Example — Assume improving the CPU by a

factor of 5 costs 5 times more. Also, assume
that the CPU is used 50% of time and the cost
of the CPU is 1/3 of the overall cost. Is it cost
efficient to improve this CPU?

Performance Metrics

26

Performance Measures

67.1
6.
1

5
5.5.

1

S

machineoriginaltheoftimesmachinenewtheoft 33.25
3
11

3
2cos

Performance Metrics

27

Performance Measures
The CPU time (T) is the time needed to execute

a given program, excluding the time waiting for
I/O or running other programs.
CPU time is further divided into:
The user CPU time and
The system CPU time.

Performance Metrics

28

Performance Measures
CPU =

Time Clock cycles
CPU * Clock

Cycle time

Rate
Clock

CPU =
Time

Clock cycles
CPU

 ()CPIi Ii
i =1

n
 T = Ic * CPI * =

The CPU time is estimated as

Performance Metrics

29

Performance Measures
Example — It takes 10 seconds to run a program

on machine A that has a 400 MHz clock rate.

We are intended to build a faster machine that will
run this program in 6 seconds. However, machine
B requires 1.2 times as many clock cycles as
machine A for this program. Calculate the clock
rate of machine B:

Performance Metrics

30

Performance Measures

ClockRate
cleCPUClockCyCpuTime

A

A
A

Second
Cycles

cleCPUClockCy A

106*400
10

106*4000cleCPUClockCy A

ClockRate
cleCPUClockCyCPUTime

B

A
B

*2.1

MHzClockRateB
8006

*4000*2.1 106

Performance Metrics

31

Performance Measures
Example — Two machines are assumed: In machine A

conditional branch is performed by a compare
instruction followed by a branch instruction. Machine
B performs conditional branch as one instruction.

On both machines, conditional branch takes two clock
cycles and the rest of the instructions take 1 clock
cycle. 20% of instructions are conditional branches.

Finally, clock cycle time of A is 25% faster than B's
clock cycle time. Which machine is faster?

Performance Metrics

32

Performance Measures
CPIA = .8*1+.2*2 = 1.2
tB = tA*1.25
CPUA = ICA*1.2* tA

CPIB = .25*2+.75*1 = 1.25
CPUB = .8ICA*1.25tA*1.25 = ICA*1.25*tA

So A is faster.

Performance Metrics

33

Performance Measures
Example — Now assume that cycle time of B

can be made faster and now the difference
between the cycle times is 10%. Which
machine is faster?
CPUA = ICA*1.2* tA

CPUB = .8ICA*1.1tA*1.25 = ICA*1.1*tA

Now B is faster.

Performance Metrics

34

Performance Measures
The execution of an instruction requires going

through the instruction cycle. This involves the
instruction fetch, decode, operand(s) fetch,
execution, and store result(s):

 T = Ic * CPI * = Ic * (p+m*k)*

Performance Metrics

35

Performance Measures
The equation

 T = Ic * CPI * = Ic * (p+m*k)*

is the major basis for this course. We will
refer to this equation through out the course.

Performance Metrics

36

Performance Measures
P is the number of processor cycles needed to

decode and execute the instruction, m is the
number of the memory references needed, and k
is the ratio between memory cycle time and
processor cycle time, memory latency.

Performance Metrics

37

With respect to the CPU time
 T = Ic * CPI * = Ic * (p+m*k)*
in the following sections we will study two
major issues:
Design and implementation of ALU in an

attempt to reduce P,
Design and implementation of memory

hierarchy in an attempt to reduce m and k.

Performance Metrics

38

Question
With respect to our earlier definition of CPU

time, discuss how the performance can be
improved?

 ()CPIi Ii
i =1

n
 T = Ic * CPI * =

Performance Metrics

39

In response to this question, the CPU time
can be reduced by reducing the IC, CPI,
and/or .
Note the performance improvement with

respect to the due to the advances in
technology is beyond the scope of this
discussion.

Performance Metrics

40

Two Design philosophies
IC can be reduced by increasing the

functionality of the system — increasing the
instruction set by allowing hardware support
for more complex instructions.
This design pattern results in the so-called

complex instruction set computer (CISC).

RISC vs. CISC

41

Two Design philosophies
CPI can be reduced by allowing hardware

support for just simple instructions.
This design pattern results in the so-called

reduced instruction set computer (RISC).

RISC vs. CISC

42

Two Design philosophies
In an effort to improve the performance one

design philosophy suggest complexity and the
other suggest simplicity!

RISC vs. CISC

43

Complex Instruction Set Computer
The introduction of the IBM System/360 family was

the beginning of modern computer technology — a
series of computers with different levels of performance
for different prices, all running identical software
(Compatibility).

As noted before, this originated the distinction between
computer architecture and hardware.

RISC vs. CISC

44

Complex Instruction Set Computer
Micro-programming was the primary

technological innovation behind this new
marketing concept — i.e., Computer Family.
Micro-programming relied on a small control

memory and was an elegant way of building the
processor control unit for a large instruction set.

RISC vs. CISC

45

Complex Instruction Set Computer
The main memory of these systems were magnetic

core memories.
The small control memories were based on a

technology about 10 times faster than core
memory.
The rapid growth of semiconductor memory also

influenced the implementation of micro-
programming at the mini and micro computer
levels.

RISC vs. CISC

46

Complex Instruction Set Computer
Due to the high cost and low performance of magnetic

core memory, memory efficiency was the dominating
concern in the previous metric parameters — execution
speed was proportional to the program size.

This belief led to the invention of many instruction
formats that reduced program size.

RISC vs. CISC

47

Complex Instruction Set Computer
The rapid growth of integrated technology,

along with the belief that execution time is
proportional to the program size, motivated the
following design principles:
Large control memory would add little or nothing to

the cost of the machine.
Moving software functions to micro code would

result in faster computer and more reliable
functions.

RISC vs. CISC

48

Complex Instruction Set Computer
Architectural techniques that led to smaller

programs also led to faster computers.

Stacks or memory-to-memory architectures
were superior execution models.

RISC vs. CISC

49

Complex Instruction Set Computer
Let us look at the translation of A B + C in

three execution models:

RISC vs. CISC

50

Complex Instruction Set Computer
Memory-to-Memory organization

8 1 6 1 6 1 6
A D D B C A

Instruction Length 56 bits
Data Size 96 bits (data words are 32 bits each)
Total Memory 152 bits

RISC vs. CISC

51

Complex Instruction Set Computer
Register-to-Register Organization

Load
Load
ADD

Store

r B

r C

r A

r A

B
C

A
r B r C

8 4 16

Instruction Length 104 bits
Data Size 96 bits
Total Memory 200 bits

RISC vs. CISC

52

Complex Instruction Set Computer
Memory-to-Register Organization

Load
ADD

Store

B
C
A

8 16

Instruction Length 72 bits
Data Size 96 bits
Total Memory 168 bits

RISC vs. CISC

53

Complex Instruction Set Computer
In general, Complex Instruction Set Computer

(CISC) supports:
Relatively large instruction set containing some

complex and time consuming instructions.
Large number of addressing modes.
Large number of instruction formats.

RISC vs. CISC

54

Complex Instruction Set Computer
VAX 11/780 Architectural Features

 It is a 32-bit machine.
 It has an instruction set of size 303.
 It supports different data types:

 Integer:byte, word, long word, Quad word, octa word.
 Floating point: 32-bit-8-bit exponent, 64-bit-8-bit exponent, 64-

bit-11-bit exponent, 128-bit-15-bit exponent.
 Packed decimal.
 Character String.
 Variable length bit field.

RISC vs. CISC

55

Complex Instruction Set Computer
VAX 11/780 Architectural Features
It supports 16 different addressing modes.
It supports several instruction formats:
op.code, {operandi} 0 i 6

RISC vs. CISC

56

Complex Instruction Set Computer
Characteristics of Some Computer Architectures

Year
Number of Instructions

Control Memory Size
Instruction Size

Technology

Execution Model

Cache Size

IBM 370/168 VAX 11/780 Dorado iAPX-432

1973
208

420 Kbits
16-48

ECL MSI
Register-Memory,
Memory-Memory,
Register-Register

64 Kbits

1978
303

480 Kbits
16-456
TTL MSI

Register-Memory,
Memory-Memory,
Register-Register

64 Kbits

1978
270

136 Kbits
8-24

ECL MSI

Stack

64 Kbits

1982
222

64 Kbits
6-321

NMOS VLSI
Stack,

Memory-Memory

0

RISC vs. CISC

57

Complex Instruction Set Computer
With the continuing growth of semiconductor

memory, the architecture research community
argued for richer instruction sets:
Richer instruction sets would simplify compilers,
Richer instruction sets would alleviate the software

crisis,
Richer instruction sets would improve architectural

quality.

RISC vs. CISC

58

Complex Instruction Set Computer
To support a machine with a complex

instruction set one is required to develop a very
complex and sophisticated control unit to
differentiate between the numerous options
available in order to activate appropriate control
signals.

RISC vs. CISC

59

Complex Instruction Set Computer
To summarize:
Slow access to memory motivated an architectural

design that reduced number of accesses to the main
memory. This was achieved by supporting a large
variety of instructions and addressing modes.
Complexity of the control unit and compatibility of

various architectures were supported through micro-
programming.

RISC vs. CISC

60

Complex Instruction Set Computer
CISC Philosophy results in:

Complex Control Units:
 Large design time,
 Higher probability of errors,
 Harder to locate and correct faults,
 Longer instruction cycle, and
 Longer clock cycle.

More complex compiler
Lower hardware utilization — creation of redundant features.

RISC vs. CISC

61

From CISC to RISC
As discussed before, computer architects were reaching

some design principles (CISC), however, the
implementation world was changing:
Semiconductor memory was replacing core memory — As a

result, main memories would no longer be 10 times slower
than control memories.

Control store ROMs were changing to control store RAMs —
Since it was practically impossible to develop a large error free
micro-program.

RISC vs. CISC

62

From CISC to RISC
Cache memories were included in the architectures.
Compilers found it difficult to help close the

semantic gap — Attempts to close the semantic gap
had actually introduced a performance gap.

As a result some computer architects got
motivated to reevaluate the adapted
architectural design principles.

RISC vs. CISC

63

Reduced Instruction Set Computer
Functions should be kept simple unless there is a

very good reason to do otherwise.
Micro instructions should not be faster than simple

instructions.
Simple decoding and pipelined execution are more

important than program size.
Compiler technology should be used to simplify

instructions rather than to generate complex
instructions.

RISC vs. CISC

64

Reduced Instruction Set Computer
Functions should be kept simple
The effective speed of a computer can be

maximized by migrating all but the most
frequently used functions into software.
Included in hardware are only those

performance features that are pointed to by
dynamic studies of high level language
programs.

RISC vs. CISC

65

Reduced Instruction Set Computer
Functions should be kept simple
A resource is incorporated in the architecture

only if its incorporation is justified by its
frequency of use, and if its incorporation does
not slow down other resources that are used
more frequently.

RISC vs. CISC

66

Reduced Instruction Set Computer
Simplicity of the instruction set and addressing modes

results in a small, fast and relatively easily to design
decoder to analyze the instructions. This allows one to
effectively develop an instruction pipeline.

This results in the execution of one instruction per
pipeline pulse — CPI equal to 1.

RISC vs. CISC

67

Reduced Instruction Set Computer
Instruction Pipelining
Assume an instruction cycle can be partitioned into

the following stages:
 IF : instruction fetch
OE : operand execute
 ID : instruction decode
OS : operand store
OF : Operand fetch

RISC vs. CISC

68

Reduced Instruction Set Computer
Non-pipelined instruction cycle:

i IF ID OF OE OS

i+1 IF ID OF OE OS

i+2 IF ID OF OE OS

RISC vs. CISC

69

Reduced Instruction Set Computer
Pipelined instruction cycle:

i+ 2 IF ID O F O E O S

i+ 1 IF ID O F O E O S

i IF ID O F O E O S

RISC vs. CISC

70

Reduced Instruction Set Computer
Pipelined instruction cycle:
Naturally, instruction pipelining is not without its

own problems. A concept known as hazard effects
the performance of a pipeline organization.
Related to our discussion, in the following two types

of hazard will be discussed.

RISC vs. CISC

71

Reduced Instruction Set Computer
Pipelined instruction cycle — Pipelined with

data interlock (Data Dependence Hazard)

ADD ID B,C A A+

A ID A+1INC ID Bubble

Data Dependency

RISC vs. CISC

72

Reduced Instruction Set Computer
Pipelined instruction cycle — Pipelined with

branch interlock (Control Dependence Hazard)

IMP ID PC A PC+

Bubble

Branch Address
Dependency

IF ID OF OE OS

RISC vs. CISC

73

Reduced Instruction Set Computer
Delayed Branch — To get the advantage of the

instruction pipeline, it would be necessary to
insert a NO-OP operation — in the worst case
every branch would take several NO-OP
instructions.
A better approach is to find some independent

instructions and switch the order of the
instructions in the program.

RISC vs. CISC

74

Reduced Instruction Set Computer

The branch instruction is not data dependent on
the ADD at address 101, so switching the JMP
and ADD results an equivalent result.

Address Traditional Machine Delayed Branch Optimized Delayed Branch
100 Load X,A Load X,A Load X,A
101 ADD 1,A ADD 1,A JMP 105
102 JMP 105 JMP 106 ADD 1,A
103 ADD A,B NO-OP ADD A,B
104 SUB C,B ADD A,B SUB C,B
105 Store A,Z SUB C,B Store A,Z
106 Store A,Z

RISC vs. CISC

75

Reduced Instruction Set Computer
Common RISC Features
Operations are register-to-register with only LOAD

and STORE instructions to access memory.
The operations and addressing modes are reduced.
Instruction formats are simple and do not cross word

boundaries.
RISC branches avoid pipeline penalties.

RISC vs. CISC

76

Reduced Instruction Set Computer

Architectural Features of Some Earlier RISC Machines

Year
Number of Instructions
Control Memory Size

Instruction Length
Technology
Execution Model

1980
120
0

32
ECL MSI
Register-Register

1982
39
0

32
NMOS, VLSI
Register-Register

1983
55
0

32
NMOS, VLSI
Register-Register

IBM 801 RISC1 MIPS

RISC vs. CISC

77

CISC Characteristics
Instruction set usually larger than 100,
Number of addressing modes supported is

usually larger than 4,
Number of instruction formats supported in

usually larger than 4,
Most instructions require multiple cycles for

execution,

RISC vs. CISC

78

CISC Characteristics
Support of memory-to-memory model of

execution,
Existence of special purpose registers,
Micro-programmed control unit, and
Machine instructions at a relatively high

level, which is close to the level of high
level language statements.

RISC vs. CISC

79

RISC Characteristics
Most instructions require single cycle for

execution,
Memory is accessed just through LOAD

and STORE instructions,
Hardwired control unit,
Supports relatively few instruction formats

and addressing modes,

RISC vs. CISC

80

RISC Characteristics
Fixed instruction length format,
Highly pipelined instruction cycle,
Large number of on chip registers,
Instruction set is targeted for a specific

application, and
Use of co-processor for complex

operations requiring hardware support.

RISC vs. CISC

81

RISC vs. CISC
Back to our original question — based on the

equation

 T = Ic * CPI * = Ic * (p+m*k)*
what is a better design philosophy, RISC or CISC?

RISC vs. CISC

82

Reduced Instruction Set Computer
As noted before, a RISC concept in the best

case would allow a CPI equal to 1. Is it
possible to break this barrier?
Reducing the clock cycle time and hence

increasing the frequency is one way to improve
the performance. Address the shortcoming(s) of
this approach.

RISC vs. CISC

83

Questions
True or False: shorter length instructions imply

faster processor (why)?
Length of the operation code affects the length

of the instructions. Define two schemes which
allows one to reduce the length of the op-code.
Name and explain different factors which affect

the length and format of an instruction.

RISC vs. CISC

84

Problem
Within the scope of RISC, use delay branch

technique to reduce pipeline penalties
(instruction format — op-code, destination,
source1, source2): Justify your answer.
Assuming new value of PC is determined in ID

stage and instructions in the block are
independent of R4, R5, and R6, then we have:

RISC vs. CISC

85

Problem
Sequence of InstructionsSequence of Instructions

Before After

ADD R 1, R 2, R 3 IF R 2 = 0 Then

ADD R 1, R 2, R 3

ADD R 1, R 2, R 3SUB R 4, R 5, R 6

ADD R 1, R 2, R 3

IF R 2 = 0 Then

IF R 1 = 0 Then

IF R 1 = 0 Then

SUB R 4, R 5, R 6

ADD R 1, R 2, R 3ADD R 1, R 2, R 3

IF R 1 = 0 Then

SUB R 4, R 5, R 6

IF R 1 = 0 Then

SUB R 4, R 5, R 6

RISC vs. CISC

