
Computer Organization
Arithmetic Logic Unit

1

Department of Computer Science
Missouri University of Science & Technology

hurson@mst.edu

Note, this unit will be covered in five
lectures. In case you finish it earlier, then
you have the following options:

1) Take the early test and start CS3889.module5
2) Study the supplement module

(supplement CS3889.module4)
3) Act as a helper to help other students in

studying CS3889.module4
Note, options 2 and 3 have extra credits as noted in course
outline. 2

Database System Architecture

Glossary of prerequisite topics

Familiar with the topics?
No Review

CS3889.module4.background

Yes

Remedial action
Yes

No
Take the Module

Take Test

Pass?

Glossary of topics

Familiar with the topics?
Yes

Pass?

Take Test

Yes

Options

Lead a group of students in
this module (extra credits)?

Study more advanced related
topics (extra credits)?

Study next module?

No

{

Extra Curricular activities

Enforcement
of background

{Current Module

At the end give a
test, record the score,
and impose remedial

action if not
successful

No

Database System Architecture

Computer Organization

Arithmetic Logic Unit
It is a functional box designed to perform

"basic" arithmetic, logic, and shift operations
on the data.
Implementation of the basic operations such as

logic, program control, and data transfer
operations are easier than arithmetic and I/O
operations. Therefore, in this section we
concentrate on arithmetic operations.

4

Computer Organization

Arithmetic Logic Unit
For a simple machine, the ALU should at least be able

to perform operations such as:
 add
 increment
 subtract
 decrement
•
•
•

A simple ALU is basically an adder and some control
circuits augmented by special circuits to carry out the
logic and shift operations .

5

Computer Organization

Arithmetic Logic Unit
An ALU can be of three types:
Serial
Parallel
Functional (Modular)

6

Computer Organization

Arithmetic Logic Unit
Similar to the definition of serial and parallel

adders, one can define serial and parallel ALUs.
In a serial ALU during each clock pulse one bit

of operand(s) participates in the operation.
In a parallel ALU operation on all the bits of

operand(s) is initiated simultaneously.
In a simple word a parallel ALU can be looked

at as a cascade of identical units forming a one
dimensional array of cells.

7

Computer Organization

Arithmetic Logic Unit ─ Parallel ALU
ALU operation is determined by the control signals.
In a very simple form, the bit-pattern of the control

signals is determined by the operation code.
In a parallel ALU, one needs to determine the design of

a unit and then replicate it.

8

1C

B1 A1

F1

C2

F2

C3

B2 A2

C

B A

Fn

n

nn

Cn+1

Control Signals

Computer Organization

Arithmetic Logic Unit ─ Parallel ALU
(Example)

S2, S1, S0, and M are the control signals.
Ai, Bi, and Ci are the operand bits and carry-in,

respectively.
Fi and Ci+1 are the result bit and carry-out,

respectively.

9

Computer Organization

Arithmetic Logic Unit ─ Parallel ALU (Example)

10

A
i

S
2

X
i

C i+1

F
i

Y
i

B
i

S
1

S
0

C
i

M

Z
i

Computer Organization

Arithmetic Logic Unit ─ Parallel ALU (Example)

The function of each stage can be defined as:

Fi = Xi ⊕ Yi ⊕ Zi

Ci+1 = XiYi +(Xi ⊕ Yi)Zi = XiYi+XiZi+YiZi
By appropriate setting of the control signals one can

initiate a variety of the operations.

11

Computer Organization

Arithmetic Logic Unit ─ Parallel ALU (Example)

For example:

12

M=1
S2 =1
S1 =1
S0 =1
C1 =0

⇒ F ←A - 1

M = 0
S2 =1

S1 =1

S0 =1

⇒ F ←A

Computer Organization

Arithmetic Logic Unit
As discussed before a parallel ALU offers a

higher speed relative to a serial ALU.
How can one improve the performance (speed)

of ALU further? In other words; is it possible
to build (design) an ALU faster than a parallel
ALU?

13

Computer Organization

Arithmetic Logic Unit ─ Functional (modular) ALU
 In this model, ALU is a collection of independent units each

tailored (specialized) for a specific operation. As a result,
execution of independent operations can be overlapped.

 This approach allows an additional degree of concurrency relative
to a parallel ALU, since it allows several operations to be
performed on data simultaneously.

 However, this speed improvement comes at the expense of extra
overhead which is needed to detect data independent operations.

14

Computer Organization

Arithmetic Logic Unit ─ Functional (modular) ALU

15

Adder Adder1 2 Subtractor

Multiplier

Computer Organization

Arithmetic Logic Unit ─ Question
 Is it possible to improve the performance of an ALU further?
 Naturally, we can improve performance (physical speed) by taking

advantage of the advances in technology.
 How can we improve the logical speed of the ALU further?
 In a functional ALU, is it possible to devise algorithms which

allow one to improve the performance of the basic operations?
 If this is a valid direction, then the question of "How to design a

fast ALU?" will change to "How to design a fast adder, a fast
multiplier, ...?"

16

Computer Organization

Arithmetic Logic Unit ─ Arithmetic Algorithm
The goal is to develop a set of algorithms which allow

the execution of basic arithmetic operations on data
values presented in different formats and notations (i.e.,
fixed point, floating point, signed numbers).

In general fixed point operations are easier and faster
than floating point operations.

Signed numbers could be in signed magnitude or signed
complement format.

17

Computer Organization
Arithmetic Logic Unit ─ Comparison of 2-Unsigned Numbers

(Direct Comparison)
 Two binary bits (a, b) are equal iff:

 Consequently two registers of n-bits are equal iff:
x = xn-1∧xn-2∧ . . . ∧ x0 = 1 where xi = Ai ∧ Bi 0 ≤ i ≤ n-1

 In other words

1
1

0
=

−

=
=⇒= ∧ xi

n

i
xBA

18

() () 1=∧∨∧= babax

Computer Organization

Arithmetic Logic Unit ─ Comparison of 2-Unsigned
Numbers (Direct Comparison)

Similarly

19

A > B⇒A n- 1 Bn- 1 + n- 1A n- 2Bn- 2 + . . . + n- 1 n- 2 . . . 1A 0B0 = 1x x x x

A < B ⇒A n-1 Bn-1 + n-1 A n-2 Bn-2 + . . . + n-1 n-2 . . . 1A 0B0 = 1x x x x

Computer Organization

Arithmetic Logic Unit ─ Comparison of 2-Unsigned Numbers
(Direct Comparison)
Example:

A= 1 1 0 0 1 1 1
B= 1 1 0 1 0 0 0

x6 x5 x4 x3 x2 x1 x0
1 1 1 0 0 0 0

x6∧x5∧ x4∧ x3∧ x2∧ x1∧ x0 = 1 ∧ 1 ∧ 1 ∧ 0 ∧ 0 ∧ 0 ∧ 0 = 0
⇒A≠B

20

Computer Organization

Arithmetic Logic Unit ─ Comparison of 2-Unsigned Numbers
(Direct Comparison)

00000000123456

3456456566

001123456

2233445566

=++++++=+

+++++

BAxxxxxxBAxxxxx
BAxxxxBAxxxBAxxBAxBA

21

x6∧x5 ∧ x4 ∧ x3 ∧ x2 ∧ x1 ∧ x0 = 1 ∧ 1 ∧ 1 ∧ 0 ∧ 0 ∧ 0 ∧ 0 = 0
⇒A≠B

⇒A > B

10001000123456

3456456566

001123456

2233445566

=++++++=+

+++++

ABxxxxxxABxxxxx
ABxxxxABxxxABxxABxAB

⇒A < B

Computer Organization

Arithmetic Logic Unit ─ Comparison of 2-Unsigned Numbers (Direct
Subtraction)
 Assume E is the borrow-out of a parallel subtractor then:

if A ≥ B then E = 0
if A < B then E =1
if A = B then E = 0 and result all 0s
 In other words, to check the relative magnitude of two unsigned

numbers say, A and B. Perform A-B and then check the borrow-
out. The relative magnitude of A and B is determined according to
the above relationships.

22

Computer Organization

Arithmetic Logic Unit ─ Comparison of 2-
Unsigned Numbers (2s Complement Addition)
Assume E is the carry-out of a parallel adder

then:
if A < B then E = 0
if A ≥ B then E = 1
if A = B then E = 1 and result all 0s

23

Computer Organization
Arithmetic Logic Unit ─ Comparison of 2-Unsigned Numbers

(2s Complement Addition)
Proof:

if A ≥ B ⇒ A - B ≥ 0 ⇒ 2n + A - B ≥ 2n ⇒ E = 1
if A < B ⇒ A – B < 0 ⇒ 2n + A - B < 2n ⇒ E = 0
if A = B ⇒ A - B = 0 ⇒ 2n + A - B = 2n ⇒ E = 1 and

result all 0s

To determine the relative magnitude of two unsigned
numbers, perform and then check the carry-out.

BABABABA nn −+=−+=+=− 22
~

BA ~+

24

Computer Organization

Arithmetic Logic Unit ─ Comparison of 2-Unsigned Numbers

(1s Complement Addition)

Assume E is the carry-out of a parallel adder then:
if A ≤ B then E = 0
if A = B then E=0 and result all 1s
if A > B then E =1
To determine the relative magnitude of two

unsigned numbers, perform and then check
the carry-out.

BA+

25

Computer Organization

Arithmetic Logic Unit ─ Comparison of 2-
Unsigned Numbers (Direct Subtraction)
Example

26

1

 A
- B

1100111
1101000
1111111

Borrow-out

⇒ E = 1 ⇒ A < B

Computer Organization

Arithmetic Logic Unit ─ Comparison of 2-
Unsigned Numbers (2s Complement Addition)
Example

27

0

 A 1100111
0011000
1111111

Carry-out

⇒ E = 0 ⇒ A < B
B+

Computer Organization

Arithmetic Logic Unit ─ Comparison of 2-
Unsigned Numbers (1s Complement Addition)
Example

28

. .

0

A 1100111
0010111
1111110

Carry-out

⇒E = 0 ⇒A < B
B+

Computer Organization

Questions
Prove the aforementioned formulas for the 1s

complement addition operation.
How can one determine the relative magnitude

of signed numbers?

29

Computer Organization

Arithmetic Logic Unit ─ Addition Algorithm (2s

Complement Numbers)

Add numbers including the sign bits. If there is
a carry-out of the last digit, then disregard it.

30

Computer Organization

Arithmetic Logic Unit ─ Addition Algorithm (1s

Complement Numbers)

Add numbers including the sign bits. If there is
a carry-out then increment the result by 1 (wrap
around the carry).

31

Computer Organization

Arithmetic Logic Unit ─ Addition Algorithm (Signed
magnitude numbers)
Addition (Subtraction):

When the signs of numbers (say A and B) are identical
(different) add the two magnitudes. Sign of the result is the
same as A.

When the signs of A and B are different (identical), compare
the magnitudes and subtract the smaller magnitude from the
larger one. Sign of the result is the same as the sign of the
larger magnitude.

 If result zero then set the sign of the result to 0.

32

Computer Organization

Arithmetic Logic Unit ─ Addition Algorithm
(Signed magnitude numbers)
How to reduce hardware requirements of the

proposed algorithm?
Subtraction can be converted into addition.
Magnitudes can be compared using an adder.

33

Computer Organization

Arithmetic Logic Unit ─ Addition Algorithm (Signed magnitude
numbers)

 cc = 0 if (addition and As = Bs) or (subtraction and As ≠ Bs)
 cc = 1 if (addition and As ≠ Bs) or (subtraction and As = Bs)

34

B Register

Complementor

Parallel Adder

A Register

Bs

E

End
Carry

As

cc

Computer Organization

Arithmetic Logic Unit ─ Addition Algorithm (Signed
magnitude numbers)

Example

35

A (+29)
+B (+14)

⇒ 0011101
0001110+

011101
001110 Add the magnitudes.

⇒ Same signs and addition

101011
E

0 E = 0

A = 0101011 Final result (+43).

Computer Organization

Arithmetic Logic Unit ─ Addition Algorithm (Signed
magnitude numbers)

Example

36

A (-14)
+B (-7)

⇒ 101110
100111+

01110
00111 Add the magnitudes.

⇒ Same signs and addition

10101
E

0 E = 0

A = 110101 Final result (-21).

Computer Organization

Arithmetic Logic Unit ─ Addition Algorithm
(Signed magnitude numbers)
Example

37

A (-14)
-B (-7)

⇒ 101110
100111-

01110
11001 Add 2s complete of B to A.

⇒ Same signs and subtract

00111
E

1 E = 1, A>B

A = 100111 Final result (-7).

Computer Organization

Arithmetic Logic Unit ─ Addition Algorithm
(Signed magnitude numbers)
Example

38

A (+14)
-B (+20)

⇒ 001110
010100-

01110
01100 Add 2s complete of B to A.

⇒ Same signs and subtract

11010
E

0 E = 0, A<B, take 2s complement of result

A = 100110 Final result (-6).

Computer Organization

Arithmetic Logic Unit ─ Addition Algorithm
(Signed magnitude numbers)
Example

39

A (-14)
-B (-14)

⇒ 101110
101110-

01110
10010 Add 2s complete of B to A.

⇒ Same signs and subtract

00000
E

1 E = 1, and result zero

A = 000000 Final result (+0).

Computer Organization

Arithmetic Logic Unit ─ Addition Algorithm
(Signed magnitude numbers)
Example

40

Computer Organization

Arithmetic Logic Unit ─ Addition Algorithm
(Signed magnitude numbers)
Example

41

A
+B

0 1 0 1 1 1
1 0 1 0 1 1

1 011 1
1 010 1 Take 2s complement of B and add.

⇒ Different signs and addition

0 110 0
E

1 E = 1 and result ≠ 0 ⇒ A > B

A = 0 0 1 1 0 0 Fin al r esu lt .

Computer Organization

Arithmetic Logic Unit ─ Addition Algorithm (Signed
magnitude numbers)

Example

42

A
- B

0 0 0 1 1 1
0 0 1 0 1 1

0 0 1 1 1
1 0 1 0 1

1 1 1 0 0
E

0

A = 1 0 0 1 0 0

Same signs and subtraction.

Take 2s complement of B and add.

E = 0 ⇒ B > A

Final result, take 2 s complement
of result.

Computer Organization

Questions
What is an overflow?
How can we detect overflow for:
Signed magnitude addition?
1s complement addition?
2s complement addition?

43

Computer Organization

Arithmetic Logic Unit ─ Addition Overflow
Overflow occurs when two numbers of n digits

each are added and the sum occupies n+1 digits.
An overflow cannot occur after an addition if one

number is positive and the other is negative.
In general, overflow can only occur when adding

numbers of the same sign or subtracting numbers
of different signs.

44

Computer Organization

Arithmetic Logic Unit ─ Addition Overflow (Signed magnitude
numbers)
 Detection of overflow in signed magnitude addition is simple.

Carry-out of the magnitude bits represents an overflow:

If (cc = 0 and E = 1) then AVF ⇐ 1 otherwise AVF ⇐ 0
45

B

Complementor

Parallel-Adder

AE
A s

AVF

Bs

Overflow
Bit

CC

Computer Organization

Arithmetic Logic Unit ─ Addition Overflow (2s Complement
Numbers)
Overflow is occurred when adding numbers of the same

sign results in a number of a different sign.

Overflow occurs if Cn ⊕ Cn-1 = 1
46

Parallel-Adder

B

A

B

s

s

A

FA

C

C

n

n-1

Computer Organization

Arithmetic Logic Unit ─ Multiplication Algorithm
Multiplication can be performed as a sequence of

additions.
B * Q ⇒ add B, Q times
Two general approaches have been adapted for

multiplication.
Software approach
Hardware approach

47

Computer Organization

Arithmetic Logic Unit ─ Multiplication Algorithm

Software approach
AC ⇐ 0;
For i = 1 to Q do;

AC ⇐ (AC) + (B);
End;

Time complexity of this algorithm is 0(m) where m is
the magnitude of Q.

48

Computer Organization

Arithmetic Logic Unit ─ Multiplication Algorithm

Software approach
 Time complexity of the algorithm can be improved if the number of

iterations is based on the multiplier length:
AC ⇐ 0;
For i = 1 to n Do;

if Q1 = 1 then Cout AC ⇐ (AC) + (B);
ACn...AC2AC1Qn...Q2Q1⇐ CoutACn...AC2AC1Qn ...Q2;
End;

49

Computer Organization

Arithmetic Logic Unit ─ Multiplication Algorithm

Hardware Approach
The simplest hardware approach is based on the previous

algorithm - e.g., add and shift.
 In each iteration the least-significant bit of multiplier (Q) is

checked;
 If one, then B is added to the accumulator and the contents of

accumulator and Q is shifted right one position.
 If zero, just shift accumulator and Q to the right.

50

Computer Organization

Arithmetic Logic Unit ─ Multiplication Algorithm (Signed
magnitude numbers)
Hardware Configuration

A double register (AC and Q) holds the final result.
Sign of the result is the EX-OR of the signs of multiplier and

multiplicand.

51

B B

AC

Parallel Adder

Q

Least
Significant Bit

s

QsACs

Cout

Computer Organization

Arithmetic Logic Unit ─ Multiplication Algorithm (Signed
magnitude numbers)

Example

52

1 1 1 0 1 1

B s B

E AC
0 0 0 0 00 1 0 0 1 1

0 1 1 0 1 1 1 0 0 1

1 0 1 0 0 0 1 1 0 0

3) 0 1 0 1 0 0 0 1 1 0

4) 0 0 1 0 1 0 0 0 1 1

1 0 0 0 0 0 0 0 0 1

1 1
AC Qs s

Q1=1 then EAC ← (AC)+(B)

Shift E(AC)(Q) to the right

Q1=1 then EAC ← (AC)+(B)

Shift E(AC)(Q) to the right

Q1=0 shift E(AC)(Q) to the right

Q1=0 shift E(AC)(Q) to the right

Q1=1 then EAC ← (AC)+(B)

Shift E(AC)(Q) to the right

Q1
0Q s

0 1 1 0 1 1 1 0 0 11) 1

1 0 1 0 0 0 1 1 0 02) 1

1 0 0 0 0 0 0 0 0 15) 1

Computer Organization

Arithmetic Logic Unit ─ Multiplication
Algorithm (2s Complement numbers)
Pre-Post Complementation
Convert negative numbers to positive numbers.
Apply "add and shift" algorithm.
Convert the result - if necessary.

53

Computer Organization

Arithmetic Logic Unit ─ Multiplication
Algorithm (2s Complement numbers)
Extension of "add and shift"
Convert the multiplier to a positive number - i.e., if

multiplier is negative then multiply the multiplier
and the multiplicand by -1.
Apply a modified "add and shift" algorithm in which

addition and shift operations are done for 2s

complement numbers.

54

Computer Organization

Arithmetic Logic Unit ─ Multiplication
Algorithm (2s Complement numbers)
Booth's Algorithm
Instead of checking one bit of the multiplier at a

time, check two bits at a time and take proper
actions according to the following table:

00 no action, shift right.
01 add multiplicand, shift right.
10 subtract multiplicand, shift right.
11 no action, shift right.

55

Computer Organization

Arithmetic Logic Unit ─ Multiplication
Algorithm (2s Complement numbers)
Booth's Algorithm
It is suitable for 2s complement numbers.
On average, Booth's Algorithm is faster than "add

and shift".
Always, extend the multiplier by a zero on the right.

56

Computer Organization

Arithmetic Logic Unit ─ Multiplication
Algorithm (2s Complement numbers)
Booth's Algorithm (Example)

57

1101101

0000000 0000111 0

0010011

Extension

1111110 1111011 0

B * Q

1st 2 bits are 10 ⇒subtract (add 2s complement)

Shift right
1st 2 bits are 11 ⇒ shift right
1st 2 bits are 11 ⇒ shift right
1st 2 bits are 01 ⇒add

Shift right
1st 2 bits are 00 ⇒ shift right
1st 2 bits are 00 ⇒ shift right
1st 2 bits are 00 ⇒ shift right

0010011 0000111 0
0001001 1 000011 1
0000100 11 00001 1
0000010 011 0000 1
1101101
1101111 011 0000 1
1110111 1011 000 0
1111011 11011 00 0
1111101 111011 0 0

Computer Organization

Questions
Why is Booth's algorithm faster than "add and

shift" algorithm (in general)?
Why does Booth's Algorithm work?

58

Computer Organization

Arithmetic Logic Unit ─ Division Algorithm

Similar to multiplication, one can develop a
software routine which performs division as a
sequence of subtractions. Naturally, such an
algorithm is very inefficient and slow.

59

Computer Organization

Arithmetic Logic Unit ─ Division Algorithm

Similar to the pencil and paper routine, one can
develop an algorithm which performs division
as a sequence of Compare, Shift, and Subtract
operations.
One should note that division in a binary

system is much simpler than the division in
decimal system, since the quotient digits are
either 0 or 1.

60

Computer Organization

Arithmetic Logic Unit ─ Division Algorithm

To minimize the hardware requirements for
division, we should remember that:
Comparison can be performed via arithmetic

operation(s).
Subtraction can be performed via complement-

addition.
In other words; division requires almost the

same hardware modules as multiplication does.

61

Hardware configuration for multiplication

62

B B

AC

Parallel Adder

Q

Least
Significant Bit

s

QsACs

Cout

Computer Organization

Computer Organization

Arithmetic Logic Unit ─ Division Algorithm (Signed
magnitude numbers)
Division can be carried out as a sequence of n (n is the

length of divisor) iterations.
Dividend is a double register.
One bit of the quotient is generated in each iteration.
At the end of the operation, the quotient is in the 1st half

part of the double register (low-order part), and
remainder is in the 2nd half part.

Sign of the quotient is the XOR of the signs of dividend
and divisor.

Sign of the remainder is the same as the sign of the
dividend.

63

Computer Organization
Arithmetic Logic Unit ─ Division Algorithm (Example)

Extended
Sign Bit 0011

E A Q B
0 0000 1011

Shift left EAQ.
Subtract B.

E=1⇒Q1 ←0.

0
0
1

0000
0001
1101

1 1110

1011
011

011
Restore A.0 0011

0 0001 0110 Shift left EAQ.
Subtract B.

E=1⇒Q1 ←0.

0
1

0010
1101

110

1 1111 110
Restore A.0 0011

0 0010 1100 Shift left EAQ.
Subtract B.
E=0⇒Q1 ←1.

0
1

0101
1101

100

0 0010 100
0 0010 1001 Shift left EAQ.

Subtract B.

E=0⇒Q1 ←1.

R Q

0
1

0101
1101

001

0
0

0010
0010

001
0011

Computer Organization

Arithmetic Logic Unit ─ Division Algorithm (Example)
 Restoring Method

65

Extended
Sign Bit 0011

Shift left EAQ.
Subtract B.

E=1 ⇒Q1 ←0.
Restore A.
Shift left EAQ.

Subtract B.

E=1 ⇒Q1 ←0.
Restore A.
Shift left EAQ.

Subtract B.

E=0 ⇒Q1 ←1.
Shift left EAQ.

Subtract B.

E=0 ⇒Q1 ←1.

E A Q B

R Q

0

0
0
1

0000

0000
0001
1101

1
0

1110
0011

1011

1011
011

011

0
0
1

0001
0010
1101

0110
110

1
0

1111
0011

110

0
0
1

0010
0101
1101

1100
100

0
0
0
1

0010
0010
0101
1101

100
1001
001

0
0

0010
0010

001
0011

Q
n

Computer Organization

Arithmetic Logic Unit ─ Division Algorithm (Divide Overflow)

 In the division algorithm for signed magnitude numbers, if the 1st

half part of dividend is larger than or equal to the divisor, then the
quotient overflows to the remainder part. This phenomenon is
called divide overflow. As a result, a wrong answer will be
generated.

 To avoid divide overflow and also due to the fact that division is a
time consuming operation, the divide overflow condition is
checked at the beginning of the operation. In case of divide
overflow, proper actions will be taken (in the form of say an
interrupt).

66

Computer Organization

Arithmetic Logic Unit ─ Methods of Division
There are several different algorithms for

division:
Restoring Method
Non-Restoring Method
Direct Comparison

67

Computer Organization

Arithmetic Logic Unit ─ Methods of Division
Restoring Method: In the restoring method, the

contents of the partial remainder is restored
whenever it is detected that the divisor is larger
than the partial remainder.

68

Computer Organization

Arithmetic Logic Unit ─ Methods of Division
Non-Restoring Method: In non-restoring

method, if it is detected that the divisor is larger
than the partial remainder, its contents are not
restored.
However, in the next iteration, instead of

subtracting the divisor from the partial
remainder, it will be added to the partial
remainder.

69

Computer Organization

Arithmetic Logic Unit ─ Methods of Division
Direct Comparison: divisor is compared against

partial remainder. If it is smaller than or equal
to partial remainder, it will be subtracted and
quotient digit is set to 1. Otherwise, just the
quotient digit is set to zero.

70

Computer Organization

Arithmetic Logic Unit ─ Methods of Division
Naturally, restoring and non-restoring techniques are

equivalent.
Consider the consecutive sequence of iterations for both

restoring and non-restoring techniques (next slide).
As can be seen, both schemes generate the same value

as the partial remainder. However, the non-restoring
technique should be faster than the restoring method
since it requires fewer number of operations.

71

Computer Organization

Arithmetic Logic Unit ─ Methods of Division

72

Restoring

Non-Restoring

Subtract, Restore, and Shift
in the first iteration

(2 ((A-B)+B) -B) = 2A-B

Subtract in the second
Iteration

Addition in the second Iteration
2 (A-B) +B = 2A-B

Subtraction and shift
in the first iteration

Computer Organization

Arithmetic Logic Unit ─ Division Algorithm (Example)
 Restoring Method

73

Extended
Sign Bit 0011

Shift left EAQ.
Subtract B.

E=1 ⇒Q1 ←0.
Restore A.
Shift left EAQ.

Subtract B.

E=1 ⇒Q1 ←0.
Restore A.
Shift left EAQ.

Subtract B.

E=0 ⇒Q1 ←1.
Shift left EAQ.

Subtract B.

E=0 ⇒Q1 ←1.

E A Q B

R Q

0

0
0
1

0000

0000
0001
1101

1
0

1110
0011

1011

1011
011

011

0
0
1

0001
0010
1101

0110
110

1
0

1111
0011

110

0
0
1

0010
0101
1101

1100
100

0
0
0
1

0010
0010
0101
1101

100
1001
001

0
0

0010
0010

001
0011

Q
n

Computer Organization

Arithmetic Logic Unit ─ Division Algorithm (Example)
 Non-restoring Method

74

0000

0000
0001
1101
1110
1110
1100
0011
1111
1111
1111
0011
0010
0010
0101
1101
0010
0010

0
0
1
1
1
1
0
1
1
1
0
0
0
0
1
0
0

1011

1011
0111

0111
0110
1101

1101
1100
1001

1001
1001
0011

0011
0011

0 0011

Shift left EAQ.
Subtract B.

E=1 ⇒ Q 1 ← 0.
Shift left EAQ.

E=1 ⇒ Q 1 ← 0.
Shift left EAQ.

Add B.

Add B.

E=0 ⇒ Q 1 ← 1.
Shift left EAQ.
Subtract B.

E=0 ⇒ Q 1 ← 1.

R Q

E A Q B

0

Computer Organization

Arithmetic Logic Unit ─ Floating Point Numbers
 A number N in base r can be represented in many ways. For

example, decimal number 2.945 can be represented as:
.2945 * 10+1

29.45 * 10-1

•
•
•

 A scientific or floating point format of a number is a unique
representation in which a number is represented as the multiple of
2 parts:

 For example, +16.23 = +.1623 * 10+2

75

a power of the base (called exponent)* a fraction (called mantissa)

Computer Organization

Arithmetic Logic Unit ─ Floating Point Numbers
 Such a representation in the computer requires two registers, one to

represent the exponent and one to represent the mantissa.
 Note that each part is a signed number which could be represented

in signed magnitude or signed complement format.
 A floating point number is normalized if the most significant digit

of the mantissa is non-zero.
 In most systems the exponent is represented in excess base. This

means positive exponent. Therefore, a fixed value (e.g., biased
value) will be added to the exponent. For example, IBM uses
excess 64 for the power, and DEC10 uses excess 128 to represent
the power.

76

Computer Organization

Arithmetic Logic Unit ─ Floating Point Numbers

Convert (-25.75)10 to a floating point number for IBM:
(-25.75)10 = -(11001.11)2 = -(.1100111 * 25)2 =

(.0001100111 * 28)2 = - .000110011100 * 162

77

Computer Organization

Arithmetic Logic Unit ─ Floating Point Addition and Subtraction
Check for zeros.
Align the mantissas (smaller exponent should be equated to

the larger one).
Add or subtract the mantissas.
Normalize the result.
If exp1 ≥ exp2 then

If exp1 < exp2 then

78

() () ()
rr bbmantissamantissaflfl 121 expexpexp

2121 **

 ±=±

−−

() () () rr bmantissabmantissaflfl 212 exp
2

expexp

121 **

 ±=±

−−

Computer Organization

Arithmetic Logic Unit ─ Floating Point Multiplication
 Check for zeros.
 Add the exponents.
 Adjust the exponent of the result.
Multiply the mantissas.
 Normalize the result.

79

fl1 * fl2 = (mantissa1) * (mantissa)2 * r b
(exp1 + exp2)

Computer Organization

Arithmetic Logic Unit ─ Floating Point Division

Check for zeros.
Align the dividend (for divide overflow

condition).
Subtract the exponents.
Adjust the exponent of the result.
Divide the mantissas.

80

fl1 / fl2 = (mantissa1) / (mantissa)2 * r b
(exp1 - exp2)

Computer Organization

Arithmetic Logic Unit
Singed magnitude number: A method to represent

signed numbers.
2s complement number: A method to represent signed

numbers.
1s complement number: A method to represent signed

numbers.
Addition overflow: A case where the addition result is

too big to fit in the destination register.

81

Computer Organization

Arithmetic Logic Unit
 Divide overflow: A case when the quotient result is too big to fit

in the quotient register.
 Add-and-shift algorithm: A method to perform multiplication.
 Booth's algorithm: A method to perform multiplication for 2s

complement numbers.
 Restoring technique: A method to perform division.
 Non-restoring technique: A faster method than restoring technique

to perform division.

82

Computer Organization

Arithmetic Logic Unit
 Biased value: A fixed and positive value added to the exponent of

a floating point number. The goal is to deal with positive
(unsigned) exponents.

 Normalized number: A floating point number is normalized if the
the first digit in the mantissa is a non zero digit.

 Aligning the mantissa: A process by which the mantissa is shifted
to the right by the number of differences between two exponents.

Mantissa: The fraction portion of a floating point number.

83

Computer Organization

Questions:
 Prove that two unsigned numbers can be compared by means of 1s

complement addition.
 How do we detect overflow for signed magnitude addition?
 How do we detect overflow for 2s complement addition (note I am

looking for another technique than the one discussed in this unit)?
 Prove that the add-and-shift algorithm, as implemented in this unit,

does not generate an overflow.
 Justify the following statement. On average, Booth’s algorithm is

faster than add-and-shift algorithm.

84

Computer Organization

Questions:
 On average, Booth’s algorithm is faster than add-and-shift

algorithm, this means that in some cases Booth’s algorithm would
be slower than add-and-shift algorithm. Can you give an example
that supports this?

 Add-and-shift checks one bit of multiplier during each iteration,
Booth’s algorithm checks two bits of multiplier during each
iteration and as we discussed Booth’s algorithm is faster that add-
and-shift. Can you come up with an algorithm that multilies two
numbers faster than Booth’s algorithm?

85

Computer Organization

Questions:
In case of a floating point addition or subtraction

operation, why should we always align the mantissa of
the smaller number?

In the case of multiplication of two floating point
numbers, after adding the exponents, why should we
subtract one excess base from the result?

In the case of division of two floating point numbers,
after subtracting the exponents, why should we add one
excess base to the result?

86

	Computer Organization�Arithmetic Logic Unit
	Database System Architecture
	Database System Architecture
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization
	Computer Organization

