
Computer Organization
Improving the Performance

A.R. Hurson
Department of Computer Science and Engineering

The Pennsylvania State University

University Park, Pennsylvania 16802

hurson@cse.psu.edu

Department of Computer Science
Missouri University of Science &

Technology
hurson@mst.edu

Note, this unit will be covered in five

lectures. In case you finish it earlier, then

you have the following options:

1) Take the early test and start CS3889.module8

2) Study the supplement module

(supplement CS3889.module7)

3) Act as a helper to help other students in

studying CS3889.module7

Note, options 2 and 3 have extra credits as noted in course

outline. 2

Computer Organization

Glossary of prerequisite topics

Familiar with the topics?
No Review

CS3889.module7.background

Yes

Remedial action

Yes

No
Take the Module

Take Test

Pass?

Glossary of topics

Familiar with the topics?

Yes

Pass?

Take Test

Yes

Options

Lead a group of students in

this module (extra credits)?

Study more advanced related

topics (extra credits)?

Study next module?

No

Extra Curricular activities

Enforcement

of background

Current Module

At the end give a

test, record the score,

and impose remedial

action if not

successful

No

Computer Organization

Computer Organization

Computation Gap

Computation gap is defined as the difference

between computational power demanded by the

application environments and computational

capability of the existing computers.

Today, one can find many applications which

require orders of magnitude more computations

than the capability of the so called super-

computers and super-systems.

Computer Organization

Computation Gap

Suppose a machine capable of handling 106

characters per second is in hand. How long

does it take to search 25 terabytes of data?

NOT PRACTICAL!

25 * 10
12

10
6

= 25 * 10
6

sec. 4 * 10
5

min.

7 * 10
3

Hours 290 days

Computer Organization

Computation Gap ─ SOLUTIONS?

Reduce the amount of needed

computations (advances in software

technology and algorithms).

Improve the speed of the computers:

Physical Speed

Logical Speed

Computer Organization

Computation Gap ─ Advances in Software
Technology and Algorithms

Since the early days of computers, the development
of software support to maximize hardware utility
has stimulated much research.

Software systems were developed to tailor the
embedded hardware features of a system to a
specific application.

Various data structure techniques can be used in
order to achieve a higher performance.

Different algorithms can be developed to improve
performance.

Computer Organization

Computation Gap ─ Advances in Software

Technology and Algorithms

A compiler equipped with an optimizer routine

improves performance during runtime by creating an

efficient target language program.

A vectorized and parallelized compiler can detect the

parallelism in an application program and rearrange the

instructions in the object program to allow the

simultaneous execution of independent instructions or

block of instructions on the target machine, during the

run time.

Computer Organization

Computation Gap ─ Advances in Technology

Transition from vacuum tubes to VLSI has made it

possible to reduce the gate switching delay and size,

and to increase the reliability of the hardware

components.

In 1944, a basic operation was executed in 333 msec.

About 8 years later, due to the advances in technology,

the same basic operation was executed in 282 µsec. In

the early 1960s because of the advances in technology

again, it took 300 sec to perform the same operation.

Computer Organization

Computation Gap ─ Advances in Technology

Is it possible to handle the same basic operation in

300 pico sec?

In the past, performance (speed) improvement due

to the advances in technology has been at the rate of

103 per decade. Should we expect the same

improvement rate forever?

Computer Organization

Computation Gap ─ Advances in Technology

Limitations: Speed of Light and Distance: Light

travels 12 * 109 inch per sec. or 12 inch per sec.

In 300 pico sec. light travels 4 inches. Therefore, in

a hardware unit (basic operation), if the total signal

propagation distance is more than 4 inches then it is

impossible to execute the same basic operation in

300 pico seconds.

Computer Organization

Computation Gap ─ Advances in Technology

Advances in technology reduce the circuit switching

delay and miniaturize the hardware circuits.

Nevertheless, it cannot transfer signals faster than

the speed of light, and cannot eliminate the distance.

In the late 1960s Moore predicted that, component

density on a chip was quadrupling every three or

four years. However, as advances in technology

approach the limit, Moore's Law is no longer

applicable.

Computer Organization

Computation Gap ─ Architectural Advances in

the Uniprocessor Organization

Organization of the conventional uniprocessor systems

can be modified in order to remove the existing

bottlenecks.

Access Gap is one of the problems in the von Neumann

organization.

Access Gap is defined as the time difference between

the CPU cycle time and the main memory cycle time.

Computer Organization

Memory System
Based on different parameters memory system can be

classified in many ways:
By Technology (magnetic memory, semi conductor memory,

etc.,)

By Access Mode (RAM, DAM, SAM, ROM, CAM, etc.,)

By Function (Scratch pad, register, cache, etc.)

Each category can be sub-classified further. For
example, with respect to the access mode RAM can be
further grouped as 2D, 2 1/2 D or 3D, ROM can be
grouped as PROM, or EPROM, and DAM can be of
removable head or fixed head type.

Computer Organization

Memory System ─ Access Mode

 Address Accessible Memory: In this class information is

accessed by its address in the memory space:

 Random Access Memory (RAM): Access time is independent of

the location of the information.

 Sequential Access Memory (SAM): Access time is a function of

the location of the information.

 Direct Access Memory (DAM): Access time is partially

independent of and partially dependent on the location of the

information.

 Content Addressable Memory: In this class information is

accessed by its contents (or partial contents).

Computer Organization

Memory System

Many parameters including: Capacity,

cycle time, access time, data rate, word

length, cost, ... have been used for the

analysis and evaluation of the memory

system.

Computer Organization

Memory System

Capacity: maximum number of bits that can be
assembled in one operating memory module.

Access time:

RAM: Is the time elapse between issuing the address and the
availability of the information.

Non-RAM: Is the time elapse between issuing the address and
identifying the information.

Data Transfer Rate: Is the maximum amount of
information that can be transferred to or from the main
memory in a unit of time.

Computer Organization

Memory System

Access time and capacity are interrelated

in an inverse fashion.

Data transfer rate (bandwidth) is the

reciprocal of memory cycle time.

Computer Organization

Memory System
How to reduce the main memory bottleneck:
Software Solutions: Devise algorithmic

techniques to reduce the number of accesses to the
main memory.

Hardware Solutions: Reduce the access gap.
Advances in technology

 Interleaved memory

Application of registers

Cache memory

•
•
•

Computer Organization

Interleaved Memory

A memory is n-way interleaved if it is composed of n

independent modules, and a word at address i is in

module number i mod n.

This implies consecutive words in consecutive memory

modules.

If the n modules can be operated independently and if

the memory bus line is time shared among memory

modules then one should expect an increase in

bandwidth between the main memory and the CPU.

Computer Organization

Interleaved Memory

To show the effectiveness of memory interleaving,

assume a pure sequential program of n instructions.

For a conventional system in which main memory is

composed of a single module, the system has to go

through n-fetch cycles and n-execute cycles in order to

execute the program.

For a system in which main memory is composed of m

modules, the system executes the same program by

executing n/m-fetch cycles and n-execute cycles.

Computer Organization

Interleaved Memory

Within the scope of interleaved memory, a memory

conflict (contention, interference) is defined if two

or more addresses are issued to the same memory

module.

In the worst case all the addresses issued are

referred to the same memory module.

In this case the system's performance will be

degraded to the level of a single module memory

organization.

Computer Organization

Cache Memory ─ Locality of Reference

Analysis of a large number of typical programs has
shown that most of their execution time is spent in
a few main routines that are executed repeatedly.
This maybe in the form of a single loop, nested
loops, or a few subroutines that repeatedly call
each other.

The main observation is that many instructions in
each of a few localized areas of the program are
repeatedly executed, while the remainder of the
program is accessed relatively infrequently. This
phenomenon is referred to as locality of reference.

Computer Organization

Cache Memory ─ Locality of Reference

Locality comes in tow forms:

Temporal Locality: If an item is referenced, it will

tend to be referenced again soon (loops).

Spatial Locality: If an item is referenced, items

whose addresses are close by will tend to be

referenced soon (sequential nature of most

instructions).

Computer Organization

Cache Memory ─ Locality of Reference

Now, if it can be arranged to have the active

segments of a program in a fast memory, then

the total execution time can be significantly

reduced. Such a fast memory is called a cache

memory.

Cache memory is a level of memory inserted

between the main memory and the CPU.

Computer Organization

Cache Memory

Due to the economical reason, cache is
relatively much smaller than main memory.

The main memory and the cache are partitioned
into blocks of equal size. Naturally, because of
the size gap between the main memory and the
cache, at each moment of time a portion of the
main memory is resident in the cache.

Computer Organization

Cache Memory

Each reference to a memory word is

presented to the cache.

The cache searches its directory:

If the item is in the cache, then it will be

accessed from the cache.

Otherwise, a miss occurs.

Computer Organization
Cache Memory

Tags Data

0117X 35, 72, 55, 30, 64, 23, 16, 14

7620X

3656X

•

•

•

1741X

11, 31, 26, 22, 55, . . .

71, 72, 44, 50, . . .

33, 35, 07, 65, . . .

•

•

•

•

•

•

01173 30

{ }

DataAddress

Computer Organization

In our previous diagram:

A reference to address 01173 is responded by

cache.

A reference to address 01163 produces a miss.
Tags Data

0117X 35, 72, 55, 30, 64, 23, 16, 14

7620X

3656X

•

•

•

1741X

11, 31, 26, 22, 55, . . .

71, 72, 44, 50, . . .

33, 35, 07, 65, . . .

•

•

•

•

•

•

01173 30

{ }

DataAddress

30

CPU

Cache Table

Cache

An address

Successful

Search

Requested

information

Unsuccessful

Search

Operation

Protocol

Computer Organization

Computer Organization

Cache Memory — Issues of Concern
Read Policy
Load Through

Write policy (on hit)
Write through
Write back dirty bit

Write policy (on miss)
Write allocate
No-write allocate

Placement/replacement policy
Address Mapping

Computer Organization

Cache Memory — Replacement Policy

For each read operation that causes a cache
miss, the item is retrieved from the main
memory and copied into the cache. This forces
some other item in cache to be identified and
removed from the cache to make room for the
new item (if cache is full).

The collection of rules which allows such
activities is referred to as the Replacement
Algorithm.

Computer Organization

Cache Memory — Replacement Policy

The cache-replacement decision is critical, a

good replacement algorithm, naturally, can

yield somewhat higher performance than can a

bad replacement algorithm.

Computer Organization

Cache Memory — Address Mapping

Direct Mapping

Associative Mapping

Set Associative Mapping

Computer Organization

Cache Memory — Address Mapping

The following discussion assumes:

B = block size (2b)

C = number of blocks in cache (2c)

M = number of blocks in main memory (2m)

S = number of sets in cache (2s)

Computer Organization

Cache Memory — Direct Mapping

Block K of main memory maps into block (K

modulo C) of the cache.

Since more than one main memory block is

mapped into a given cache position, contention

may arise even when the cache in not full.

Computer Organization

Cache Memory — Direct Mapping

Address mapping can be implemented very

easily.

 Replacement policy is very simple and trivial.

In general, cache utilization is low.

Computer Organization

Cache Memory — Direct Mapping

Main memory address is of the following

form:

A Tag-register of length m-c is dedicated to

each cache block.

TAG Block Word

m-c bc

Computer Organization

Cache Memory — Direct Mapping

Content of (tag-register)c is compared against the tag

portion of the address:

If match then hit; and access information at address

from the cache.

If no-match, then miss-hit; bring block

from main

memory into

block c of cache.

c

Block Word

b

Block

cm-c

TAG

Computer Organization

Cache Memory — Direct MappingBlock 0

Block 1

Block 127

•

•

•

Main Memory

TAG

5

TAG

TAG

TAG Block Word

5 7 4

Cache

Block 0

Block 1

Block 127

Block 128

Block 129

Block 4095

Computer Organization

Cache Memory — Associative Mapping

A block of main memory can potentially reside in any

cache block position. This flexibility can be achieved

by utilizing a wider Tag-Register.

Address mapping requires hardware facility to allow

simultaneous search of tag-registers.

A reasonable replacement policy can be adopted (least

recently used).

Cache can be used very effectively.

Computer Organization

Cache Memory — Associative Mapping

Main memory address is of the following

form:

A tag-register of length m is dedicated to

each cache block.

TAG Word

bm

Computer Organization

Cache Memory — Associative Mapping

Contents of Tag portion of the address is searched

(in parallel) against the contents of the Tag-

registers:

If match, then hit; access information at address

from the cache.

If no-match, then miss-hit; bring block from

memory into the proper cache block.

Cache Block Word

c b

Computer Organization

Cache Memory — Associative Mapping

Block 0

Block 1

•

•

•

Block 127

Block 0

Block 1

Block i

Block 4095

•

•

•

•

•

•

TAG

12

TAG

TAG

Cache

Main Memory

TAG Word

12 4

Computer Organization

Cache Memory — Set Associative Mapping

Is a compromise between Direct-Mapping and
Associative Mapping.

Blocks of cache are grouped into sets (S), and
the mapping allows a block of main memory
(K) to reside in any block of the set (K modulo
S).

Address mapping can be implemented easily at
a more reasonable hardware cost relative to the
associative mapping.

Computer Organization

Cache Memory — Set Associative Mapping

This scheme allows one to employ a reasonable

replacement policy within the blocks of a set

and hence offers better cache utilization than

the direct-mapping scheme.

Computer Organization

Cache Memory — Set Associative Mapping

Main memory address is of the following

form:

A tag-register of length m-s is dedicated to

each block in the cache.

TAG SET Word

m-s s b

Computer Organization

Cache Memory — Set Associative Mapping

Contents of Tag-registerss are compared

simultaneously against the tag portion of the

address:

If match, then hit; access information at address

from the cache.

SET Word

s b

Designated

block in the set.

Computer Organization

Cache Memory — Set Associative Mapping

If no-match, then miss-hit; bring block

from the main memory

into the proper block of

set s of the cache.SET

s

TAG

m-s

Computer Organization

Cache Memory — Set Associative Mapping

Block 0

Block 1

Block 63

Block 65

Block 127

Block 64

Block 128

Block 4095

Block 129

•
•

•

•

•
•

•
•

•

Main Memory

Block 0

Block 1

Block 2

Block 3

Block 127

Block 126

•

•

•

Cache

TAG

6

TAG

TAG

Set 63

Set 1

Set 0

TAG SET Word

6 6 4

Computer Organization

Cache Memory — Hit ratio

Let h be the probability of a cache hit — hit
ratio

and tcache and tmain be the respective cycle
times of cache and main memory then:

teff = tcache + (1-h)tmain

(1-h) is the probability of a miss — miss
ratio.

h =
of accesses responded by cache

Total # of accesses to the memory

Computer Organization

Computation Gap ─ System Architecture

To overcome the technological limitations,

computer designers have long been attracted to

techniques that are classified under the term

"concurrency".

Computer Organization

Computation Gap ─ System Architecture

Concurrency is a generic term that defines

the ability of computer hardware to

simultaneously execute many actions at any

instant. Within this general term are several

well recognized techniques such as

Parallelism, Pipelining and

Multiprocessing.

Computer Organization

Computation Gap ─ System Architecture

Although these techniques have the same origin and are

often hard to distinguish, in practice they are different

in their general approach.

In parallelism concurrency is achieved by replicating

the hardware structure many times, while pipelining

takes the approach of splitting the function to be

performed into smaller pieces and allocating separate

hardware to each piece.

Computer Organization

Pipeline Systems

The term pipelining refers to a design technique that
introduces concurrency by taking a basic function to be
involved repeatedly in a process and partitioning it into
several subfunctions with the following properties:

Evaluation of the basic function is equivalent to some
sequential evaluation of the subfunctions.

Other than the exchange of inputs and outputs, there is no
interrelationships between subfunctions.

Hardware may be developed to execute each subfunction.

The execution times of these hardware units are usually
approximately equal.

Computer Organization

Pipeline Systems

Under the aforementioned conditions, the speed

up from pipelining equals the number of pipe

stages.

However, stages are rarely balanced and

furthermore, pipelining does involve some

overhead.

Computer Organization

Pipeline Systems

The concept of pipelining can be

implemented at different levels. With

regard to this issue, one can then address:

Arithmetic Pipelining

Instruction Pipelining

Processor Pipelining

Computer Organization

Pipeline Systems

Non-pipelined instruction cycle:

Inst. i IF ID EX MEM WB

Inst. i+1 IF ID EX MEM WB

Inst. i+2 IF ID EX MEM WB

Computer Organization

Pipeline Systems

Pipelined instruction cycle:

Inst. i IF ID EX MEM WB

Inst. i+1 IF ID EX MEM WB

Inst. i+2 IF ID EX MEM WB

Inst. i+3 IF ID EX MEM WB

A pipelined instruction cycle gives a peak

performance of one instruction every step.

Computer Organization

Pipeline Systems — Example

Assume a non-pipeline machine has a 10 ns clock

cycles. It requires four clock cycles for the ALU and

branch operations and five clock cycles for the memory

reference operations. Calculate the average instruction

execution time, if the relative frequencies of these

operations are 40%, 20%, and 40%, respectively.

Ave. instr. exec. time = 10 * [(40%+20%) * 4 +

40% * 5] = 44 ns

Computer Organization

Pipeline Systems — Example

Now assume we have a pipeline version of this

machine. Furthermore, due to the clock skew

and set up, pipelining adds 1 ns overhead to the

clock time. Ignoring the latency, now calculate

the average instruction execution time.

Ave. instr. exec. time = 10 + 1 ns, and

Speed up = 44/11 = 4

Computer Organization

Pipeline Systems — Example

Assume that the time required for the five units

in an instruction cycle are, 10 ns, 8 ns, 10 ns, 10

ns, and 7 ns. Further, assume that pipelining

adds 1 ns overhead. Find the speed up factor:

Ave. instr. exec. timeunpipeline = 10 + 8 + 10 +10 + 7 = 45 ns

Ave. instr. exec. timepipeline = 11 ns

Speed up = 45/11 = 4.1

Computer Organization

Pipeline Systems

A concept known as hazard is a major concern

in a pipeline organization.

A hazard prevents the pipeline from accepting

data at the maximum rate that the staging clock

might support.

Computer Organization

Pipeline Systems

A hazard can be of three types:

Structural Hazard: Arises from resource

conflicts when the hardware cannot support all

possible combinations of instructions in

simultaneous overlapped execution — two

different pieces of data attempt to use the same

stage at the same time.

Computer Organization

Pipeline Systems

Data-Dependent Hazard: Arises when an

instruction depends on the result of a

previous instruction — the pass through a

stage is a function of the data value.

Control Hazard: Arises from the pipelining of

instructions that affect PC — Branch.

Computer Organization

Pipeline Systems

Structural Hazard (Assume a Single memory

pipeline system):

Inst. i IF ID EX MEM WB

Inst. i+1 IF ID EX MEM WB

Inst. i+2 IF ID EX MEM WB

Inst. i+3 IF ID EX MEM WB

Inst. i+4 IF ID EX MEM WB

Stall

Computer Organization

Pipeline Systems

Data Hazard

A data hazard is created whenever there is a

dependence between instructions, and they are close

enough that the overlap caused by pipelining would

change the order of access to an operand.

ADD R1, R2, R3

SUB R4, R1, R5

Computer Organization

Pipeline Systems

Data Hazard — Classification

Assume i and j are two instructions and j is the

successor of i, then one could expect three types of

data hazard:

Read after write (RAW)

Write after write (WAW)

Write after read (WAR)

Computer Organization

Pipeline Systems

Data Hazard — Classification

Read after write (RAW) — j reads a source before i

writes it (flow dependence).

Write after write (WAW) — j writes into the same

destination as i does (output dependence).

LW R1, 0(R2) IF ID EX MEM1 WBMEM2

Add R1, R2, R3
IF ID EX WB

Computer Organization

Pipeline Systems

Data Hazard — Classification

Write after read (WAR) — j writes into a

source of i (anti dependence).

SW 0(R1), R2 IF ID EX MEM1 WBMEM2

Add R2, R4, R3
IF ID EX WB

Computer Organization

Pipeline Systems

Data Hazard — Example

Assume 30% of the instructions are load and half

the time the instruction following a load instruction

depends on the result of the load. If the hazard

creates a single-cycle delay, how much faster is the

ideal pipelined machine?

CPIideal = 1

CPInew = (.7 * 1 + .3 * 1.5) = 1.15

Computer Organization

Pipeline Systems

Data Hazard — Pipeline Scheduling or Instruction

Scheduling

Compiler attempts to schedule the pipeline to avoid

the stalls by rearranging the code sequence to

eliminate the hazard — Software support to avoid

data hazard.

Sometimes if compiler can not schedule the

interlocks, a no-op instruction may be inserted.

Computer Organization

Pipeline Systems

Data Hazard — Pipeline Scheduling or Instruction

Scheduling

Let us look at the following sequence of

instructions:

a = b + c

d = e - f

Computer Organization

Pipeline Systems

Data Hazard — Pipeline Scheduling or

Instruction Scheduling

IF

IF

IF

IF

Load Rb, b

Load Rc, c

ADD Ra, Rb, Rc

Store a, Ra

ID

ID

ID

ID EX

EX

EX

EX

MEM

MEM

MEM

MEM

WB

WB

WB

WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Load Re, e

Load Rf, f

SUB Rd, Re, Rf

Store d, Rd

Computer Organization

Pipeline Systems

Control Hazard

If instruction i is a successful branch, then the PC is

changed at the end of MEM phase. This means

stalling the next instructions for three clock cycles:

Computer Organization

Pipeline Systems

Control Hazard

Computer Organization

Pipeline Systems

Control Hazard — Observations

Three clock cycles are wasted for every branch.

However, the above sequence is not even possible,

since we do not know the nature of the instruction

until after the instruction i + 1 is fetched.

Computer Organization

Pipeline Systems

Control Hazard — Solution

Computer Organization

Pipeline Systems

Control Hazard — Solution

Still the performance penalty is severe.

What are the solution(s) to speed up the pipeline?

Computer Organization

Pipeline Systems

Control Hazard — Reducing pipeline branch

penalties

Detect, earlier in the pipeline, whether or not the

branch is successful,

For a successful branch, calculate the value of the

PC earlier,

It should be noted that, these solutions come at the

expense of extra hardware,

Computer Organization

Pipeline Systems

Control Hazard — Reducing pipeline branch

penalties

Freeze the pipeline — Holding any instruction after

the branch until the branch destination is known —

Easy to enforce,

Assume unsuccessful branch — Continue to fetch

instructions as if the branch were a normal

instruction. If a branch is taken, then stop the

pipeline and restart the fetch,

Computer Organization

Pipeline Systems

Control Hazard — Reducing pipeline branch

penalties

Assume the branch is successful — as soon as the

target address is calculated, fetch and execute

instructions at the target,

Delayed Branch — Software attempts to make the

successor instruction valid and useful.

Computer Organization

Pipeline Systems

Control Hazard

Delayed Branch: Assuming branch is detected and

calculated in ID stage.

ADD R 1 , R 2 , R 3

IF R 2 = 0 then

Sequence of

instructions after

ADD R
1

, R
2

, R
3

IF R
2

= 0 then

Sequence of

instructions before

Computer Organization

Pipeline Systems

Control Hazard

Delayed Branch: Assuming branch is detected and

calculated in ID stage.

SUB R
4

, R
5

, R
6

ADD R
1

, R
2

, R
3

IF R
1

= 0 then

Sequence of

instructions after

SUB R
4

, R
5

, R
6

ADD R
1

, R
2

, R
3

IF R
1

= 0 then

Sequence of

instructions before

Computer Organization

Pipeline Systems

Control Hazard

Delayed Branch: Assuming branch is detected and

calculated in ID stage.

SUB R
4

, R
5

, R
6

ADD R
1

, R
2

, R
3

IF R
1

= 0 then

Sequence of

instructions after

SUB R
4

, R
5

, R
6

ADD R
1

, R
2

, R
3

IF R
1

= 0 then

Sequence of

instructions before

