
Computer Organization

MIPS Architecture

Department of Computer Science
Missouri University of Science & Technology

hurson@mst.edu

Note, this unit will be covered in three

lectures. In case you finish it earlier, then

you have the following options:

1) Take the early test and start CS3889.module9

2) Study the supplement module

(supplement CS3889.module88)

3) Act as a helper to help other students in

studying CS3889.module8

Note, options 2 and 3 have extra credits as noted in course

outline. 2

Computer Organization

Glossary of prerequisite topics

Familiar with the topics?
No Review

CS3889.module8background

Yes

Remedial action

Yes

No
Take the Module

Take Test

Pass?

Glossary of topics

Familiar with the topics?

Yes

Pass?

Take Test

Yes

Options

Lead a group of students in

this module (extra credits)?

Study more advanced related

topics (extra credits)?

Study next module?

No

Extra Curricular activities

Enforcement

of background

Current Module

At the end give a

test, record the score,

and impose remedial

action if not

successful

No

Computer Organization

MIPS Organization

MIPS ─ Microprocessor without
Interlocked Pipeline Stages

MIPS processors (R2000 and R3000) have 5-
stage pipeline, R4000 and R4400 have 8-stage
pipeline, and the number of pipeline stages for
R10000 varies, based on the functional units
through which the instruction must pass:

Integer instructions 5 stages

Load/Store 6 stages

Floating point 7 stages.

MIPS Organization

MIPS ─ Microprocessor without

Interlocked Pipeline Stages

First MIPS instruction set architecture was

MIPS I followed by MIPS II-MIPS V.

The current MIPS instruction set architecture is

referred to as MIPS32 (for 32-bit architecture)

and MIPS64 (for 64-bit architecture).

MIPS32 has 168 32-bit instructions.

MIPS Organization

General Configuration

A word addressable, 3-address machine

A Load/Store instruction set

Register Mode Operations

32 32 bits registers

Byte Addressable Main memory

Main memory is of size 230 * 32

Fixed instruction length of 32 bits

MIPS Organization

General Configuration

MIPS Supports:

Register,

Base or displacement (Index)

 Immediate

PC relative, and

Pseudo direct addressing modes

MIPS Supports 3 different instruction formats:

R (Register) Type

 I (Immediate) Type

 J (Jump) Type

MIPS Organization

Register Configuration

Name Register no. Usage

$zero 0 Constant zero

$v0-v1 2-3 Return values

$a0-a3 4-7 Input parameters

$t0-t7 8-15 Temporary Values

$s0-s7 16-23 Saved Values

$t8-t9 24-25 Temporary Values

$gp 28 Global pointer

$sp 29 Stack pointer

$fp 30 Frame pointer

$ra 31 Return address

MIPS Organization

Register Configuration

Register zero (r0) is hard-wired to a value of

zero,

r31 is the default register for use with certain

instructions i.e., it is used as implied mode,

r1 is reserved, r26 and r27 are used by the

operating system.

MIPS Organization

Addressing Modes
Register addressing: operand is a register

Base or displacement (Index): operand is at the
memory location whose address is the sum of a
register and a constant specified in the instruction

Immediate: operand is a constant defined in the
instruction

PC relative: the address is the sum of the PC and a
constant defined in the instruction

Pseudo direct addressing: the address is the 26 bits
of the value defined in the instruction concatenated
with the upper 4 bits of PC.

MIPS Organization

Instruction Formats
R-Type Instructions

OP: Basic operation code: op code

 rs: 1st source register

 rt: 2nd source register

 rd: destination register

Shamt: Shift amount

Funct: Function code: modifier to op code.

FunctShamtrsOP rt rd

5 bits6 bits 5 bits5 bits 6 bits5 bits

MIPS Organization

Instruction Formats

R-Type Instructions (Example)

add $t0, $s1, $s2

320170 18 8

1000000000010001000000 10010 01000

MIPS Organization

Instruction Formats

R-Type Instructions (Example)

sll $t2, $s0, 4 (Shift $s0 left 4 positions to $t2)

0400 16 10

0000000010000000000000 10000 01010

MIPS Organization

Instruction Formats
R-Type Instructions (Example)

and $t0, $t1, $t2 (and $t1 with $t2 into $t0)

24090 10 8

0110000000010000000000 10001 01010

MIPS Organization

Instruction Formats

I-Type Instructions

OP: Basic operation code: op code

rs: base (index) register

rt: source/destination register

rsOP rt Constant or address

5 bits6 bits 16 bits5 bits

MIPS Organization

Instruction Formats

I-Type Instructions (Example)
Assume the base address of the array A is in $s2.

lw $t0, 32($s2) (load word A[8] into $t0)

321935 8

000000000010000010001100011 01000

MIPS Organization

Instruction Formats

I-Type Instructions (Example)

addi $s3, $s3, 4 (add constant 4 to s3)

4208 20

000000000000010010100001000 10100

MIPS Organization

Instruction Formats ─ Assembly code

If $t1 has the base for the array A and $s2

corresponds to h, then write an assembly code

for:

A[300] = h + A[300]

lw $t0, 1200($t1)

add $t0, $s2, $t0

sw $t0, 1200($t1)

MIPS Organization

Instruction Formats ─ Machine code

1200935 8

320180 8 8

1200943 8

MIPS Organization

Instruction Formats ─ Machine code

(Binary)

000001001011000001001100011 01000

1000000000010010000000 01000 01000

000001001011000001001101011 01000

MIPS Organization

Instruction Formats

J-Type Instructions

OP: Basic operation code: op code

OP Address

6 bits 26 bits

MIPS Organization

Instruction Formats

J-Type Instructions (Example)

goto 2500

000010 00000000000010011100010000

6 bits 26 bits

MIPS Organization

Instruction Formats
Instructions for making decision (If-then-else)

If (i = = j) f = g + h; else f = g – h;

i = = j

f = g + h f = g - h

yes no

MIPS Organization

Instruction Formats
If (i = = j) f = g + h; else f = g – h;

Assuming i is in S3, j is in S4, g is in S1,
and h is in S2.

bne $s3, $s4, Else goto Else if i j

add $s0, $s1, $s2 f = g + h

j Exit

Else: Sub $s0, $s1, $s2 f = g – h

Exit:

MIPS Organization

Instruction Formats
Instructions for Loops

While (Save[i] = = k)

i += 1

Assume Save is an array whose base is in $s6.
Also assume i and k correspond to registers
$s3 and $s5, respectively;

MIPS Organization

Instruction Formats
Loop: sll $t1, $s3, 2 Multiply i by 4,

add $t1, $t1, $s6 Calculate the effective address

lw $t0, 0($t1) $t0 = Save[i]

bne $t0, $s5, Exit If Save[i] k goto Exit

addi $s3, $s3, 1 i = i + 1

j Loop Repeat the loop

Exit:

MIPS Organization

Instruction Formats

In the previous example, if the loop is starting

at location 80,000, then what is the MIPS

machine code:

0400 9 19Loop: 80000

32090 9 2280004

0935 880008

285 2180012

1198 1980016

20000280020

Exit: 80024

MIPS Organization

Example

Load Upper Immediate (lui) sets the upper 16

bits of a constant in a register

lui $t0, 255

After execution $t0 is:

0000 0000 1111 111100000001111 01000

0000 0000 0000 000011110000 0000 1111

MIPS Organization

Example

Set register $s0 to

lui $s0, 61

ori $s0, $s0, 2304

0000 1001 0000 000000110000 0000 1101

MIPS Organization

Procedure

A procedure is a sequence of instructions that performs a
specific task based on its input parameters.

In the execution of a procedure, the program performs the
following steps:

Place input parameters in a place where it is accessible by the
procedure,

Transfer control to the procedure,

Acquire the storage resources for the procedure,

Execute the procedure,

Place the result in a place accessible to the calling program,

Return control to the point of origin.

MIPS Organization

Procedure
In MIPS:

$a0-$a3 are used to pass parameters,

$v0-$v1 are used to return values,

$ra is used to return to the point of origin.

The Jump-and-link instruction (jal) saves the return
address and jump to the define address:

jal Procedureaddress

The Jump-register (jr) instruction returns the control
to the point of origin:

jr $ra

MIPS Organization

Procedure

Assume the following subroutine was called:

Int leaf_example (int g, int h, int i, int j)

Int f;

F = (g + h) – (I + j)

Return f;

The parameters g, h, i, and j are input parameters and f

is the return value.

If this program is compiled for MIPS then we have:

MIPS Organization

Procedure
The parameters g, h, i, and j correspond to $a0-

$a3, and f corresponds to $s0.

The compiled program starts with the label
“leaf_example”.

Internally the procedure will use some of the
registers (working registers) during the
execution time, as a result, the contents of these
registers must be saved and restore after the
execution of the subroutine. This will be done
in the system stack.

. .

MIPS Organization

Procedure
 addi $sp, $sp, -12 # The first four instructions allow us to save

 sw $t1, 8($sp) the contents of the working registers in the

 sw $t0, 4($sp) stack#

 sw $s0, 0($sp)

 add $t0, $a0, $a1

 add $t1, $a2, $a3

 sub $s0, $t0, $t1

 add $v0, $s0, $zero

 lw $s0, 0($sp) #This instruction and the next three instructions

 lw $t0, 4($sp) are intended to restore the original contents of

 lw $t1, 8($sp) the working registers before control transfers

 addi $sp, $sp, 12 to the callee procedure#

 jr $ra #This instruction transfers the control back to
callee#

Computer Organization

Instruction Cycle
An instruction cycle is implemented in five basic steps:

Instruction Fetch — IF

IR Mem [PC]

NPC PC + 4

Instruction decode and register fetch — ID

A Regs [IR6,..,10]

B Regs [IR11,..,15]

Imm ((IR16)
16 ## IR16,..,31)

Computer Organization

Instruction Cycle
Execution and effective address calculation — EX

Memory reference

ALUoutput A + Imm

Reg.-Reg. ALU instruction

ALUoutput A op-code B

Reg.-Immediate ALU instruction

ALUoutput A op-code Imm

Branch

ALUoutput NPC + Imm,

Cond (A op-code 0)

Computer Organization

Instruction Cycle
Memory access/branch completion — MEM

Memory reference

LMD Mem [ALUoutput] or

Mem [ALUoutput] B

Branch

If (cond.) PC ALUoutput else PC NPC

Computer Organization

Instruction Cycle

Write Back — WB

Reg.-Reg. ALU instruction

Regs [IR16,..,20] ALUoutput

Reg.-Immediate ALU instruction

Regs [IR11,..,15] ALUoutput

Load instruction

Regs [IR11,..,15] LMD

Computer Organization

Pipelined instruction cycle

Inst. i IF ID EX MEM WB

Inst. i+1 IF ID EX MEM WB

Inst. i+2 IF ID EX MEM WB

Inst. i+3
IF ID EX MEM WB

A pipelined instruction cycle gives a peak performance

of one instruction every step.

