
Computer Organization

Arithmetic Logic Unit
Background

1

Department of Computer Science
Missouri University of Science & Technology

hurson@mst.edu

Truth Table for a combinational logic

Inverting gates: a) NAND, b) NOR

A combinational circuit with its truth table

Switching algebra theorems with one variable

Switching algebra theorems with two or three variables variable

Generalized DeMorgan’s theorem

The complement of a logic expression F, which is denoted
as (F)’, is an expression whose value is the opposite of F’s
for every possible input combination.

T14 states that given any n-variable logic expression, its
complement can be obtained by swapping + and . and
complementing all variables.

Example:

 F(W,X,Y,Z) = (W’.X) + (X.Y) + (W.(X’+Z’))

= ((W)’.X) + (X.Y) + (W.((X)’+(Z)’))

 [F(W,X,Y,Z)]’ = (((W)’)’+X’) . (X’+Y’) . (W’+(((X)’)’.((Z)’)’))

= (W+X’) . (X’+Y’) . (W’+(X.Z))

Principle of duality

Any theorem or identity in switching algebra
remains true if 0 and 1 are swapped and . and +
are swapped throughout.

If F(X1, X2,…, Xn) is a fully parenthesized logic
expression involving the variables X1, X2,…, Xn
and the operators ., +, and ’, then the dual of F,
denoted as FD, is the same expression with + and .
swapped.

FD(X1, X2,…, Xn,+, . ,’) = F(X1, X2,…, Xn,, . ,+,’)

Generalized DeMorgan’s theorem can be restated
as:
[F(X1, X2,…, Xn)]’ = FD(X’1, X’2,…, X’n)

F = ∑X,Y,Z(0,3,4,6,7)

F = ΠX,Y,Z(1,2,5)

Definitions

 A literal is a variable or the complement of a variable.
 Examples: X, Y, X’, Y’

 A product term is a single literal or a logical product of two or more
literals.
 Examples: Z’, W.X.Y, X.Y’.Z

 A sum-of-products (SOP) expression is a logical sum of product terms.
 Example: Z’ + W.X.Y + X.Y’.Z

 A sum term is a single literal or a logical sum of two or more literals.
 Examples: Z’, W+X+Y, X+Y’+Z

 A product-of-sums (POS) expression is a logical product of sum terms.
 Example: Z’.(W+X+Y).(X+Y’+Z)

More definitions

 A normal term is a product or sum term in which no variable appears more
than once.
 A nonnormal term can always be simplified to a constant or a normal term using

one of theorems T3, T3’, T5, or T5’.

 Examples of nonnormal terms:

W.X.X’.Y, W+W+X’+Y

 Examples of normal terms: W.X.Y’, W+X’+Y

 An n-variable minterm is a normal product term with n literals. There are 2n

such product terms.
 Some examples of 4-variable minterms:

W’.X’.Y’.Z’, W.X.Y’.Z

 A minterm can be defined as a product term that is 1 in exactly one row of the truth
table.

 An n-variable maxterm is a normal sum term with n literals. There are 2n such
sum terms.
 Some examples of 4-variable maxterms:

W’+X’+Y’+Z’, W+X+Y’+Z

 A maxterm can be defined as a sum term that is 0 in exactly one row of the truth
table.

Integer representation

A minterm can be represented by an n-bit

integer, the minterm number.

Minterm i denotes the minterm

corresponding to row i of the truth table.

Row 5: 101 ; Minterm 5 = X.Y’.Z

Opposite is true for maxterms

Maxterm 5 = X’+Y+Z’

Canonical sum and product
 The canonical sum of a logic function is a sum of the minterms

corresponding to truth table rows (input combinations) for which the
function produces a 1 output.

 F = ∑X,Y,Z(0,3,4,6,7)

= X’.Y’.Z’ + X’.Y.Z + X.Y’.Z’ + X.Y.Z’ + X.Y.Z

 The minterm list is also known as the on-set for the logic function. Each
minterm “turns on” the output for exactly one input combination.

 Any logic function can be written as a canonical sum.

 The canonical product of a logic function is a product of the maxterms
corresponding to truth table rows (input combinations) for which the
function produces a 0 output.

 F = ΠX,Y,Z(1,2,5)

= (X+Y+Z’) . (X+Y’+Z) . (X’+Y+Z’)

 The maxterm list is also known as the off-set for the logic function. Each
minterm “turns off” the output for exactly one input combination.

 Any logic function can be written as a canonical product.

Converting between minterm and

maxterm lists

For a function of n variables, the possible minterm and
maxterm numbers are between 0 and 2n-1.

A minterm or maxterm list contains a subset of these
numbers.

To switch between list types, take the set compliment.

Examples:

∑X,Y,Z(0,1,2,3) = ΠX,Y,Z(4,5,6,7)

∑X,Y(1) = ΠX,Y(0,2,3)

∑W,X,Y,Z(0,1,2,3,5,7,11,13)=ΠW,X,Y,Z(4,6,8,9,10,12,14,15)

Equivalent representations for a

combinational logic function

Truth table

Algebraic sum of minterms, the canonical sum

A minterm using ∑ notation

Algebraic product of maxterms, the canonical
product

A maxterm using Π notation

All of these representations provide exactly the
same information as the others

Given any one representation, the other four can
be derived simply

Combinational circuit analysis

In analyzing a logic circuit, you find a formal

description of its logic function.

Once you have that, you can represent it in all the

different ways you have learned, and play with

equivalent representations

Can also feed it to a program that will generate the

standard form circuit for you

This will not necessarily be the most efficient circuit

that carries out the function

Programs are dumb

Exhaustive search

Given an n-input circuit, construct the truth
table. This involves finding the output
generated for each of the 2n possible
combinations of input variables

This will blow up for anything other than
very small n

Need a better way

Already have it: algebraic representation

Use variable names rather than explicit values

Exhaustive search

Algebraic representation

Equivalent circuit

F = ((X+Y’) . Z) + (X’ . Y . Z’)

= X . Z + Y’ . Z + X’ . Y . Z’

Another equivalent

Circuit synthesis from “verbal” description

The ALARM output is 1 if the PANIC input is 1, or if the

ENABLE input is 1, the EXITING input is 0, and the house is

not secure; the house is secure if the WINDOW, DOOR, and

GARAGE inputs are all 1.

Sum-of-products equivalent

Need for minimization

A logic expression can be synthesized into a

circuit in many different forms.

Some of these forms are “better” than others

Fewer gates

Smaller gates (fewer inputs)

Canonical SOP and POS realizations blow up

quickly. Too many gates!

We need to “minimize” our combinational

circuits.

Typical minimization technique

Generalization of the combining theorems, T10

and T10’

given product term . Y + given product term . Y’ =

given product term

(given sum term + Y) . (given sum term + Y’) =

given sum term

Each expression has been converted to a single term

with one less variable.

One gate has been eliminated, one fewer input

Prime number detector

Given a 4-bit input combination

N = N3N2N1N0, produce a 1 output for

N=1, 2, 3, 5, 7, 11, 13, and 0 otherwise.

F = ∑ N3,N2,N1,N0
(1, 3, 5, 7, 11, 13)

= N3’ . N2’ . N1’ . N0 + N3’ . N2’ . N1 . N0

+ N3 . N2’ . N1 . N0’ +…

Minimization

F = ∑ N3,N2,N1,N0
(1, 3, 5, 7, 11, 13)

= (N3’ . N2’ . N1’ . N0 + N3’ . N2’ . N1 .

N0)

+(N3’ . N2 . N1’ . N0 + N3’ . N2 . N1 .

N0) + …

= N3’ . N2’ . N0 + N3’ . N2 . N0 + …

= N3’ . N0 + …

Canonical sum design

Minimized circuit

Karnaugh maps

Corresponding minterm #

Examples

Minimization

For cells 5 and 7:

F = … + X . Y’ . Z + X . Y . Z

= … + X . Z

Logic expression from K-map

Mark rectangular sets of 2i (wraparound allowed)
1 cells

Literals of corresponding product terms can be
determined directly from the map:
If variable is 0 in every cell of marked area, then the

variable is complemented in the product term

If variable is 1 in every cell of marked area, then the
variable is uncomplemented in the product term

If variable is 0 in some cells of marked area and 1 in
others, it does not appear in the product term

A sum-of-products expression for a function must
contain product terms (marked sets of 1-cells) that
cover all of the 1’s and none of the 0’s on the map.

Product-of-sums expression

By duality, carry out the same process for

the K-map, this time grouping the 0’s

instead of the 1’s.

Each 0 on the map corresponds to a

maxterm in the canonical product of the

logic function.

Entire process can be repeated.

