
Computer Organization

Arithmetic Logic Unit
Background

1

Department of Computer Science
Missouri University of Science & Technology

hurson@mst.edu

Truth Table for a combinational logic

Inverting gates: a) NAND, b) NOR

A combinational circuit with its truth table

Switching algebra theorems with one variable

Switching algebra theorems with two or three variables variable

Generalized DeMorgan’s theorem

The complement of a logic expression F, which is denoted
as (F)’, is an expression whose value is the opposite of F’s
for every possible input combination.

T14 states that given any n-variable logic expression, its
complement can be obtained by swapping + and . and
complementing all variables.

Example:

 F(W,X,Y,Z) = (W’.X) + (X.Y) + (W.(X’+Z’))

= ((W)’.X) + (X.Y) + (W.((X)’+(Z)’))

 [F(W,X,Y,Z)]’ = (((W)’)’+X’) . (X’+Y’) . (W’+(((X)’)’.((Z)’)’))

= (W+X’) . (X’+Y’) . (W’+(X.Z))

Principle of duality

Any theorem or identity in switching algebra
remains true if 0 and 1 are swapped and . and +
are swapped throughout.

If F(X1, X2,…, Xn) is a fully parenthesized logic
expression involving the variables X1, X2,…, Xn
and the operators ., +, and ’, then the dual of F,
denoted as FD, is the same expression with + and .
swapped.

FD(X1, X2,…, Xn,+, . ,’) = F(X1, X2,…, Xn,, . ,+,’)

Generalized DeMorgan’s theorem can be restated
as:
[F(X1, X2,…, Xn)]’ = FD(X’1, X’2,…, X’n)

F = ∑X,Y,Z(0,3,4,6,7)

F = ΠX,Y,Z(1,2,5)

Definitions

 A literal is a variable or the complement of a variable.
 Examples: X, Y, X’, Y’

 A product term is a single literal or a logical product of two or more
literals.
 Examples: Z’, W.X.Y, X.Y’.Z

 A sum-of-products (SOP) expression is a logical sum of product terms.
 Example: Z’ + W.X.Y + X.Y’.Z

 A sum term is a single literal or a logical sum of two or more literals.
 Examples: Z’, W+X+Y, X+Y’+Z

 A product-of-sums (POS) expression is a logical product of sum terms.
 Example: Z’.(W+X+Y).(X+Y’+Z)

More definitions

 A normal term is a product or sum term in which no variable appears more
than once.
 A nonnormal term can always be simplified to a constant or a normal term using

one of theorems T3, T3’, T5, or T5’.

 Examples of nonnormal terms:

W.X.X’.Y, W+W+X’+Y

 Examples of normal terms: W.X.Y’, W+X’+Y

 An n-variable minterm is a normal product term with n literals. There are 2n

such product terms.
 Some examples of 4-variable minterms:

W’.X’.Y’.Z’, W.X.Y’.Z

 A minterm can be defined as a product term that is 1 in exactly one row of the truth
table.

 An n-variable maxterm is a normal sum term with n literals. There are 2n such
sum terms.
 Some examples of 4-variable maxterms:

W’+X’+Y’+Z’, W+X+Y’+Z

 A maxterm can be defined as a sum term that is 0 in exactly one row of the truth
table.

Integer representation

A minterm can be represented by an n-bit

integer, the minterm number.

Minterm i denotes the minterm

corresponding to row i of the truth table.

Row 5: 101 ; Minterm 5 = X.Y’.Z

Opposite is true for maxterms

Maxterm 5 = X’+Y+Z’

Canonical sum and product
 The canonical sum of a logic function is a sum of the minterms

corresponding to truth table rows (input combinations) for which the
function produces a 1 output.

 F = ∑X,Y,Z(0,3,4,6,7)

= X’.Y’.Z’ + X’.Y.Z + X.Y’.Z’ + X.Y.Z’ + X.Y.Z

 The minterm list is also known as the on-set for the logic function. Each
minterm “turns on” the output for exactly one input combination.

 Any logic function can be written as a canonical sum.

 The canonical product of a logic function is a product of the maxterms
corresponding to truth table rows (input combinations) for which the
function produces a 0 output.

 F = ΠX,Y,Z(1,2,5)

= (X+Y+Z’) . (X+Y’+Z) . (X’+Y+Z’)

 The maxterm list is also known as the off-set for the logic function. Each
minterm “turns off” the output for exactly one input combination.

 Any logic function can be written as a canonical product.

Converting between minterm and

maxterm lists

For a function of n variables, the possible minterm and
maxterm numbers are between 0 and 2n-1.

A minterm or maxterm list contains a subset of these
numbers.

To switch between list types, take the set compliment.

Examples:

∑X,Y,Z(0,1,2,3) = ΠX,Y,Z(4,5,6,7)

∑X,Y(1) = ΠX,Y(0,2,3)

∑W,X,Y,Z(0,1,2,3,5,7,11,13)=ΠW,X,Y,Z(4,6,8,9,10,12,14,15)

Equivalent representations for a

combinational logic function

Truth table

Algebraic sum of minterms, the canonical sum

A minterm using ∑ notation

Algebraic product of maxterms, the canonical
product

A maxterm using Π notation

All of these representations provide exactly the
same information as the others

Given any one representation, the other four can
be derived simply

Combinational circuit analysis

In analyzing a logic circuit, you find a formal

description of its logic function.

Once you have that, you can represent it in all the

different ways you have learned, and play with

equivalent representations

Can also feed it to a program that will generate the

standard form circuit for you

This will not necessarily be the most efficient circuit

that carries out the function

Programs are dumb

Exhaustive search

Given an n-input circuit, construct the truth
table. This involves finding the output
generated for each of the 2n possible
combinations of input variables

This will blow up for anything other than
very small n

Need a better way

Already have it: algebraic representation

Use variable names rather than explicit values

Exhaustive search

Algebraic representation

Equivalent circuit

F = ((X+Y’) . Z) + (X’ . Y . Z’)

= X . Z + Y’ . Z + X’ . Y . Z’

Another equivalent

Circuit synthesis from “verbal” description

The ALARM output is 1 if the PANIC input is 1, or if the

ENABLE input is 1, the EXITING input is 0, and the house is

not secure; the house is secure if the WINDOW, DOOR, and

GARAGE inputs are all 1.

Sum-of-products equivalent

Need for minimization

A logic expression can be synthesized into a

circuit in many different forms.

Some of these forms are “better” than others

Fewer gates

Smaller gates (fewer inputs)

Canonical SOP and POS realizations blow up

quickly. Too many gates!

We need to “minimize” our combinational

circuits.

Typical minimization technique

Generalization of the combining theorems, T10

and T10’

given product term . Y + given product term . Y’ =

given product term

(given sum term + Y) . (given sum term + Y’) =

given sum term

Each expression has been converted to a single term

with one less variable.

One gate has been eliminated, one fewer input

Prime number detector

Given a 4-bit input combination

N = N3N2N1N0, produce a 1 output for

N=1, 2, 3, 5, 7, 11, 13, and 0 otherwise.

F = ∑ N3,N2,N1,N0
(1, 3, 5, 7, 11, 13)

= N3’ . N2’ . N1’ . N0 + N3’ . N2’ . N1 . N0

+ N3 . N2’ . N1 . N0’ +…

Minimization

F = ∑ N3,N2,N1,N0
(1, 3, 5, 7, 11, 13)

= (N3’ . N2’ . N1’ . N0 + N3’ . N2’ . N1 .

N0)

+(N3’ . N2 . N1’ . N0 + N3’ . N2 . N1 .

N0) + …

= N3’ . N2’ . N0 + N3’ . N2 . N0 + …

= N3’ . N0 + …

Canonical sum design

Minimized circuit

Karnaugh maps

Corresponding minterm #

Examples

Minimization

For cells 5 and 7:

F = … + X . Y’ . Z + X . Y . Z

= … + X . Z

Logic expression from K-map

Mark rectangular sets of 2i (wraparound allowed)
1 cells

Literals of corresponding product terms can be
determined directly from the map:
If variable is 0 in every cell of marked area, then the

variable is complemented in the product term

If variable is 1 in every cell of marked area, then the
variable is uncomplemented in the product term

If variable is 0 in some cells of marked area and 1 in
others, it does not appear in the product term

A sum-of-products expression for a function must
contain product terms (marked sets of 1-cells) that
cover all of the 1’s and none of the 0’s on the map.

Product-of-sums expression

By duality, carry out the same process for

the K-map, this time grouping the 0’s

instead of the 1’s.

Each 0 on the map corresponds to a

maxterm in the canonical product of the

logic function.

Entire process can be repeated.

