CS5300

Homework \#3

1) Problems $18.13,19.15$, and 19.18 PP. 689 and 740.
2) Consider the relations $r_{1}(A, B, C), r_{2}(C, D, E)$, and $r_{3}(E, F)$, with primary keys A, C, and E, respectively. Assume that r_{1} has 1,000 tuples, r_{2} has 1,500 tuples, and r_{3} has 750 tuples. Estimate the size (cardinality) of ${ }_{r_{1}}>r_{2}>r_{3}$, and give an efficient strategy for computing the join.
3) Let relations $r_{1}(A, B, C)$ and $r_{2}(C, D, E)$ have the following properties: r_{1} has 20,000 tuples, r_{2} has 45,000 tuples, 25 tuples of r_{1} fit on one block, and 30 tuples of r_{2} fit on one block:
a. Devise an efficient nested loop algorithm to perform $\quad r_{1}>r_{2}$, and b. Estimate the number of block accesses.
4) Consider the relations $r_{1}(A, B, C), r_{2}(C, D, E)$, and $r_{3}(E, F)$. Assume that there are no primary keys, except the entire schema. Let $V\left(C, r_{1}\right)$ be $900, V\left(C, r_{2}\right)$ be 1,100 , and $V\left(E, r_{3}\right)$ be 100 . Assume that r_{1} has 1,000 tuples, r_{2} has 1,500 tuples, and r_{3} has 750 tuples. Estimate the size (cardinality)

,and give an efficient strategy for computing the join. Note $\mathrm{V}(\mathrm{A}, \mathrm{r})$ is the number of distinct values of A in r.
