
A.R. Hurson
323 CS Building
hurson@mst.edu

CS5300
Database Systems

Database Recovery

Note, this unit will be covered in two
lectures. In case you finish it earlier, then
you have the following options:

1) Take the early test and start CS5300.module8
2) Study the supplement module

(supplement CS5300.module7)
3) Act as a helper to help other students in

studying CS5300.module7
Note, options 2 and 3 have extra credits as noted in course
outline.

2

Database Systems

Glossary of prerequisite topics

Familiar with the topics?
No Review

CS5300.module7.background

Yes

Remedial action
Yes

No
Take the Module

Take Test

Pass?

Glossary of topics

Familiar with the topics?
Yes

Pass?

Take Test

Yes

Options

Lead a group of students in
this module (extra credits)?

Study more advanced related
topics (extra credits)?

Study next module?

No

{

Extra Curricular activities

Enforcement
of background

{Current
Module

At the end: take
exam, record the

score, impose
remedial action if not

successful

No

3

Database Systems

You are expected to be familiar with:
Relational database model,
SQL
Transaction processing and concurrency control

If not, you need to study
CS5300.module7.background

4

Database Systems

 Need for recovery
According to ACID property, transactions are logical basic unit

of database processing. Either all of the operations of a
transaction must be executed successfully and their results are
permanently recorded (transaction is committed) or transaction
did not have any effect on the database and any other
transactions (transaction is aborted).

Therefore, if a transaction fails after executing some of its
operations, their effect must be wiped out of database (i.e.,
operations already executed must be undone and have no lasting
effect).

Database Systems

5

Centralized Transaction Execution

User application User application

Transaction Manager

Scheduler

Recovery Manager Operations

Result

Scheduled
operations

Database Systems

6

 Transaction states

Active

Partially
committed Committed

Failed AbortedFailed

Database Systems

7

8

Centralized Transaction Execution
Transaction Manager is responsible for

coordinating the execution of the database
operations on behalf of an application.
Scheduler is responsible for the implementation

of a specific concurrency control algorithm.
Recovery manager is responsible to implement

procedures that transform database into a
consistent state after a failure.

Database Systems

A computer system, like any other system, is
subject to failure from a variety of causes. In
the event of failure, information may be lost.
Therefore, database system must take actions in
advance to ensure that the information can be
recovered (preserving atomicity and durability
properties of transactions).

A recovery scheme, restores the database to its
consistent state before the failure.

Database Systems

9

There are various types of failure that must be
dealt with differently:
Transaction failure
Logical error
System error

System crash
Disk failure

Database Systems

10

Another classification of Failures
Computer failure (system crash)
Transaction or system error
Local errors or exception
Concurrency control enforcement
Disk failure
Physical problems and catastrophes

Database Systems

11

Recovery from a transaction failure means that the
database must be restore to its consistent state before
failure. To do this, a system log about the changes
made in the database are maintained.

Using the system log then the following general
recovery strategy will be follows:
 In case of massive failure, the database is restored by using

its back up and redoing the operations of committed
transactions.

 In other cases, the database is forced to its earlier consistent
state by undoing and/or redoing some of the operations of
failed and/or finished transaction(s).

Database Systems

12

Based on update policy, one can distinguish two main
recovery protocol for non-catastrophic transaction
failures:
Deferred update: where the database is not updated before

the commit point.
 Immediate update: where the database may be updated by

some operations before the commit point.

13

Database Systems

The log is the widely used structure for
recording database modifications. It is a
sequence of log records.

Database Systems

14

An update log record describes a single database write and
consists of the following information:
 Transaction identifier
 Data-item identifier
 Old value
 New value

Other log records record significant events during the
course of a transaction:
 <Ti start>
 <Ti, Xj, V1, V2>
 <Ti commit>
 <Ti abort>

Database Systems

15

Deferred Update (No-undo/Redo algorithm)

This approach ensures atomicity be recording all
database modifications in the log, but deferring the
execution of write operations until the transaction is
done with its final action (partially committed).

Database Systems

16

Deferred Update (No-undo/Redo algorithm)

The execution of transaction Ti proceeds as
follows:
Before Ti starts its execution, a record <Ti start> is

written to the log,
A write(x) operation by Ti, inserts a new record in the

log,
When Ti partially commits, a record <Ti commit> is

added to the log

Database Systems

17

Deferred Update (No-undo/Redo algorithm)
Consider the following two transactions:

Assume these two transactions are executed serially in the
order of T0, T1. Further assume that the contents of A, B,
and C are $1,000, $2,000, and $700.

Database Systems

18

T0: Read (A);
A := A – 50;
Write (A);
Read (B);
B := B + 50;
Write (B);

T1: Read (C);
C:= C – 100;
Write (C);

Deferred Update (No-undo/Redo algorithm)
Portion of the log related to these two transactions look like”

<T0 start>
<T0, A, 950>
<T0, B, 2050>
<T0 commit>
<T1 start>
<T1, C, 600>
<T1 commit>

Database Systems

19

Deferred Update (No-undo/Redo algorithm)

<T0 start>
<T0, A, 950>
<T0, B, 2050>
<T0 commit>

A=950
B=2050

<T1 start>
<T1, C, 600>
<T1 commit>

C=600

Database Systems

20

Log Database

Deferred Update (No-undo/Redo algorithm)
 Let us look at the following scenarios:
 Case1: Crash occurs just after the log record write(B) of T0. Then, the

log looks as:

<T0 start>
<T0, A, 950>
<T0, B, 2050>

 When the system comes back up, no redo actions is needed, since no
changes has been made to the database and the contents of A and B
accounts remain the same. The log records of incomplete transaction T0
may be deleted from the log.

Database Systems

21

Log

Deferred Update (No-undo/Redo algorithm)
 Case2: Crash occurs just after the log record write(C) of T1. Then, the

log looks as:

<T0 start>
<T0, A, 950>
<T0, B, 2050>
<T0 commit>
<T1 start>
<T1, C, 600>

 When the system comes back up, operation redo(T0) is performed
(because of <T0 commit>) the contents of A and B accounts will be 950
and 2050, respectively, and C remains the same as before (700). The
log records of incomplete transaction T1 may be deleted from the log.

Database Systems

22

Log

Deferred Update (No-undo/Redo algorithm)
 Case3: Crash occurs just after the log record <T1 commit>. Then, the

log looks as:

<T0 start>
<T0, A, 950>
<T0, B, 2050>
<T0 commit>
<T1 start>
<T1, C, 600>
<T1 commit>

 When the system comes back up, operations redo(T0) and redo(T1) are
performed (because of <T0 commit> and <T1 commit>). The contents of
A, B, and C accounts will be 950, 2050, and 600, respectively.

Database Systems

23

Log

Deferred Update (No-undo/Redo algorithm)
Before reaching the commit point, all updates are recorded

in the local transaction workspace.
Before commit, the updates are recorded persistently in the

log, and then after commit, the updates are written to the
database on disk.

 If the transaction fails before reaching commit point, the
database is unchanged, so undo is not needed.

 It may be necessary to redo the effect of the operations of a
committed transaction from the log, though.

Database Systems

24

Database Systems

 Immediate Update (Undo/Redo algorithm)
This scheme allows database modification to happen while

transaction is in active state. In the event of failure or crash,
the system must use the old-value of the log records to store
the modified data items to the value they had prior to the
execution of transaction (i.e., undo).

Before the execution of transaction Ti, the record <Ti start>
is written to the log. Any write(x) by Ti precedes by
inserting a <Ti, X, Vold, Vnew> record to the log. When Ti
partially commits, the <Ti commit> will be recorded to the
log.

25

Active

Partially
committed Committed

Failed AbortedFailed

Immediate Update (Undo/Redo algorithm)
 Consider the following two transactions:

Assume these two transactions are executed serially in the
order of T0, T1. Further assume that the contents of A, B,
and C are $1,000, $2,000, and $700.

Database Systems

26

T0: Read (A);
A := A – 50;
Write (A);
Read (B);
B := B + 50;
Write (B);

T1: Read (C);
C:= C – 100;
Write (C);

Immediate Update (Undo/Redo algorithm)
Portion of the log related to these two transactions look

like:
<T0 start>
<T0, A, 1000, 950>
<T0, B, 2000, 2050>
<T0 commit>
<T1 start>
<T1, C, 700, 600>
<T1 commit>

Database Systems

27

Immediate Update (Undo/Redo algorithm)
One possible order in which the actual output took place in

both database and log is as follows:

<T0 start>
<T0, A, 1000, 950>
<T0, B, 2000, 2050>

A=950
B=2050

<T0 commit>
<T1 start>
<T1, C, 700, 600>

C=600
<T1 commit>

Database Systems

28

Log Database

Database Systems

 Immediate Update (Undo/Redo algorithm)
The recovery scheme uses two recovery

procedures:
Undo(Ti) to restore the value of all data items updated

by Ti to the old values.
Redo(Ti) to set the value of all data items updated by Ti

to the new values.

29

Database Systems

 Immediate Update (Undo/Redo algorithm)
After a failure, the recovery scheme consults the

log to determine which transactions need to be
redone and which transactions need to be undone.
Transaction Ti needs to be undone if the log contains <Ti

start> but does not contain <Ti commit>.
Transaction Ti needs to be redone if the log contains <Ti

start> and the <Ti commit>.

30

Immediate Update (Undo/Redo algorithm)
Let us look at the following scenarios:
 Case1: Crash occurs just after the log record write(B) of T0. Then, the

log looks as:

<T0 start>
<T0, A, 1000, 950>
<T0, B, 2000, 2050>

 When the system comes back up, the record <T0 start> is in the log but
the record <T0 commit> is not, so T0 must be undone. Undo(T0) restores
A and B accounts to 1000 and 2000, respectively.

Database Systems

31

Log

Immediate Update (Undo/Redo algorithm))
 Case2: Crash occurs just after the log record write(C) of T1. Then, the

log looks as:

<T0 start>
<T0, A, 1000, 950>
<T0, B, 2000, 2050>
<T0 commit>
<T1 start>
<T1, C, 700, 600>

 When the system comes back up, two recovery actions need to be taken:
Undo(T1) and redo(T0). At the end of recovery procedure the contents of
A, B, and C accounts will be 950, 2050, and 700, respectively.

Database Systems

32

Log

Immediate Update (Undo/Redo algorithm)
Case3: Crash occurs just after the log record <T1 commit>.

Then, the log looks as:

<T0 start>
<T0, A, 1000, 950>
<T0, B, 2000, 2050>
<T0 commit>
<T1 start>
<T1, C, 700, 600>
<T1 commit>

 When the system comes back up, both T0 and T1 need to be redone. The
contents of A, B, and C accounts will be 950, 2050, and 600,
respectively.

Database Systems

33

Log

Database Systems

 Immediate Update (Undo/Redo algorithm)
The database may be updated by some operations of the

transaction before reaching its commit point. However,
these operations are recorded in the log permanently, by
force-writing.

 If the transaction fails before reaching its commit point then
the effect of its operations must be undone (rolled back).

34

Checkpoints
In case of failure and after recovery from failure,

the log must be consulted to determine which
transaction need to be undone and which
transaction needs to be redone. In principle, we
need to search the entire log!
This is too time consuming and in many instances

unnecessary.

Database Systems

35

Database Systems

Checkpoints
The concept of checkpoints is used to reduce the

overhead.
While maintaining the log, system periodically

performs checkpoints (the following sequence of
actions):
Outputs onto stable storage all log records residing in

main memory,
Outputs to the disk all modified buffer blocks,
Outputs onto stable storage a log record <checkpoints>.

36

Checkpoints
Transactions are not allowed to perform any

update while a checkpoint is in progress.
The presence of a <checkpoints> record

allows the system to streamline the recovery
procedure.

Database Systems

37

Database Systems

Checkpoints
Assume transaction Ti has committed before a

checkpoint. As a result a <Ti commit> record
appears before <checkpoints> record in the log. As
a result, all database modifications made by Ti
must have been done to the database either prior to
the checkpoint or as part of checkpoint process.

38

Database Systems

Shadow Paging (No Undo/No Redo algorithm)

Shadow paging is an alternative to log-based
recovery procedure.
Under certain circumstances, shadow paging

offers fewer disk accesses. However, it is
much harder to be extended for concurrent
execution of transactions.

39

Database Systems

Shadow Paging (No Undo/No Redo algorithm)

Database is partitioned into fixed-length
blocks (i.e., pages). A page table is used to
hold addresses of pages on the disk. Each
page has an entry in the page table.

40

Shadow Paging (No Undo/No Redo algorithm)

Database Systems

41Pages on Disk

•
•
••

•
•

Page Table

1
2
3
4

Shadow Paging (No Undo/No Redo algorithm)
In shadow paging, two page tables are going to be

maintained during the course of a transaction:
Current Page Table
Shadow page table

At the start of a transaction, both page tables are
identical. During the course of transaction, current
page table may change (due to write operation), but
shadow page table remains unchanged.

Database Systems

42

Shadow Paging (No Undo/No Redo algorithm)

Database Systems

43Pages on Disk

•
•
••

•
•

Shadow Page Table

1
2
3
4

•
•
•

Current Page Table

1
2
3
4

Shadow Paging (No Undo/No Redo algorithm)
All input and output operations use the current page

table to locate database pages on disk.

Database Systems

44

Shadow Paging (No Undo/No Redo algorithm)
Assume Tj performs a write(X) operation and X resides on

the ith page. The system executes write(X) as follows:
I. If the ith page is not in main memory, then the system issues

input(X)
II. If this is the 1st write performs on the ith page, the current page

table is modified as follows
a. System finds an unused page on disk
b. System copies the content of the ith page to the page found in

(a)
c. Current page table is modified to the page found in (a)

III. Value of xj is assigned to X in the buffer page

Database Systems

45

Shadow Paging (No Undo/No Redo algorithm)
When a transaction commits, the current page table

becomes the new shadow page table and the next
transaction is allowed to start execution. Critical issue is the
fact that the shadow page table must be stored in a non-
volatile storage since it provides the only means of locating
database pages.

After system comes back up, it copies the shadow page
table into main memory and uses it for subsequent
transactions. Unlike log-based schemes, it does not need to
invoke undo operations.

Database Systems

46

Shadow Paging (No Undo/No Redo algorithm)
To commit a transaction we must do the following:

I. Ensure that all buffer pages in main memory that have
been modified are output to disk

II. Output the current page table to disk
III. Output the disk address of the current page table to the

fixed location in stable storage containing the address of
the shadow page table

Database Systems

47

Concurrent transactions
So far, we considered recovery in an environment

where only a single transaction at a time is executing.
We extend the scope of log-based recovery scheme
to deal with multiple concurrent transactions.

Database Systems

48

Concurrent transactions
We are going to make the following assumptions:
The system has one disk buffer and a single lock,
If transaction T has updated a data item Q, no other

transaction may update the same data item until T has
committed or has been rolled back (using strict two-phase
locking ensures this requirement), and
Immediate update scheme is used and we permit a buffer

block to have data items updated by one or more
transactions.

Database Systems

49

Transaction Rollback
Failed transaction Ti is rolled back by using the log.

The system scans the log backward; for every log
record of the form <Ti, Xj, V1, V2> in the log, data
item Xj is restored with its old value V1. Scanning
stops when log record <Ti start> is detected.

Database Systems

50

	CS5300�Database Systems��Database Recovery
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems

