CS5300
 Database Systems

Relational Algebra

A.R. Hurson
323 CS Building
hurson@mst.edu

Database Systems

This module is intended to introduce:

* relational algebra as the backbone of relational model, and
*set of operations defined within the scope of relational model.

Database Systems

Note, this unit will be covered in two lectures. In case you finish it earlier, then you have the following options:

1) Take the early test and start CS5300.module3
2) Study the supplement module (supplement CS5300.module2)
3) Act as a helper to help other students in studying CS5300.module2
Note, options 2 and 3 have extra credits as noted in course outline.

Database Systems

Extra Curricular actifities

Database Systems

Y You are expected to be familiar with:

* Relational data model
* Basic operations in relational model

If not, you need to study
CS5300.module2.background

Database Systems

Relational Algebra

* Relational model is based on set theory. A relation is simply a set.
*The relational algebra is a set of high level operators that operate on relations. Each relational operator assumes one or two relations as input (unary or binary operators) and produces a relation as output. Relational algebra is composed of eight operators divided into two groups.

Database Systems

Relational Algebra

* The traditional set operations: UNION, INTERSECTION, DIFFERENCE, and CARTESIAN PRODUCT.
*The special relational operations: RESTRICT, PROJECT, JOIN, and DIVIDE.

Database Systems

Relational Algebra
*Two relations are called Union-compatible if and only if they have identical headings, more precisely;
-They have the same set of attributes, and
Corresponding attributes are defined on the same domain.
*Union, Intersection, and Difference require their operands to be union-compatible.

Database Systems

Set Operation

* Union: The union of two union-compatible relations A and B is a relation with the same heading as A and B (same schema) and a body consisting of the set of all tuples t belonging to either A or B (or both).

$$
A \cup B=\{t \mid t \in A \text { or } t \in B\}
$$

Database Systems

-Set Operation

* Intersection: Intersection of two unioncompatible relations A and B is a relation with the same heading as each of A and B (same schema) and with a body consisting of the set of the tuples t belonging to both A and B.

$$
A \cap B=\{t \mid t \in A \text { and } t \in B\}
$$

Database Systems

Set Operation

* Difference: Difference between two unioncompatible relations A and B is a relation with the same heading as A and B (same schema) and with a body consisting of the set of tuples belonging to A and not to B.

$$
\mathrm{A}-\mathrm{B}=\{\mathrm{t} \mid \mathrm{t} \in \mathrm{~A} \text { and } \mathrm{t} \notin \mathrm{~B}\}
$$

Database Systems

Set Operation

* Cartesian Product: Cartesian product of two product-compatible (disjoint headings) relations A and B, is a relation with a heading that is the coalescing of the headings of A and B (concatenated schemas) and a body consisting of the set of tuples t such that t is the concatenation of a tuple a from A and a tuple b from B.

$$
\mathrm{AXB}=\{\langle\mathrm{a}, \mathrm{~b}>| \mathrm{a} \in \mathrm{~A} \text { and } \mathrm{b} \in \mathrm{~B}\}
$$

Database Systems

Assume the following two relations:

S\#	SNAME	STATUS	CITY
S1	Smith	20	London
S4	Clark	20	London

B	S\#	SNAME	STATUS	CITY
	S1	Smith	20	London
	S2	Jones	10	Paris

Database Systems

$$
\begin{aligned}
& A \cup B=\begin{array}{cccc}
\text { S\# } & \text { SNAME } & \text { STATUS } & \text { CITY } \\
\text { S1 } & \text { Smith } & 20 & \text { London } \\
\text { S4 } & \text { Clark } & 20 & \text { London } \\
\text { S2 } & \text { Jones } & 10 & \text { Paris }
\end{array} \\
& A \cap B=\begin{array}{cccc}
\text { S\# } & \text { SNAME } & \text { STATUS } & \text { CITY } \\
\text { S1 } & \text { Smith } & 20 & \text { London }
\end{array} \\
& \mathrm{A}-\mathrm{B}=\begin{array}{cccc}
\text { S\# } & \text { SNAME } & \text { STATUS } & \text { CITY } \\
\mathrm{S} 4 & \text { Clark } & 20 & \text { London }
\end{array}
\end{aligned}
$$

Database Systems

Set Operation
*Union, Intersect, and Product are associative operations;

$$
A \cup(B \cup C) \equiv(A \cup B) \cup C
$$

* Union, Intersect, and Product are commutative operations;
*however, $\quad A-B \neq B-A$

Database Systems

Special Relational Operations

* Restriction (Select): Let $\theta \in\{=,<,>, \neq, \ldots\}$, the θ-restriction of relation A on attributes X and Y is a relation with the same heading as A and a body consisting of the set of all tuples t in A that satisfy $X \theta$ Y.

$$
\sigma_{\mathrm{x} \theta \mathrm{y}}(\mathrm{~A})=\left\{\mathrm{t} \mid \mathrm{t} \in \mathrm{~A} \text { and }\left(\mathrm{t}_{\mathrm{x}} \theta \mathrm{t}_{\mathrm{y}} \text { is true }\right)\right\}
$$

* θ-restriction effectively yields a horizontal subset of a given relation.

Database Systems

S\#	Sname	Status	City
S_{1}	Smith	20	London
S_{2}	Jones	10	Paris
S_{3}	Blake	30	Paris
S_{4}	Clark	20	London
S_{5}	Adams	30	Athens

P\#	Pname	Color	Weight	City
P_{1}	Nut	Red	12	London
P_{2}	Bolt	Green	17	Paris
P_{3}	Screw	Blue	17	Rome
P_{4}	Screw	Red	14	London
P_{5}	Cam	Blue	12	Paris
P_{6}	Cog	Red	19	London

Database Systems

$$
\sigma_{\text {city="London" }}(S)=\quad \begin{array}{ccccc}
& \text { S\# } & \text { Sname } & \text { Status } & \text { City } \\
\mathrm{S}_{1} & \text { Smith } & 20 & \text { London } \\
\mathrm{S}_{4} & \text { Clark } & 20 & \text { London }
\end{array}
$$

$$
\begin{array}{ccccccc}
\sigma_{\text {Weight }}<14 \\
& \mathrm{P})= & \mathbf{P} \# & \text { Pname } & \text { Color Weight } & \text { City } \\
& \mathrm{P}_{1} & \text { Nut } & \text { Red } & 12 & \text { London } \\
& \mathrm{P}_{5} & \text { Cam } & \text { Blue } & 12 & \text { Paris }
\end{array}
$$

Database Systems

-Special Relational Operations
*Projection: Projection of a relation A on attributes X, Y, \ldots, is a relation with the heading of ($\mathrm{X}, \mathrm{Y}, \ldots$) and a body consisting of all tuples (X:x, Y:y, ...) such that a tuple t in A with the same X -value x, Y-value y, \ldots

$$
\Pi_{(x, \ldots, \ldots}(\mathrm{A})=\left\{\mathrm{r} \mid \mathrm{r}_{\mathrm{x}}=\mathrm{t}_{\mathrm{s}}, \mathrm{r}_{\mathrm{y}}=\mathrm{t}_{\mathrm{y}}, \ldots \text { and } \mathrm{t} \in \mathrm{~A}\right\}
$$

*Projection operator effectively yields vertical slice of a given relation.

Database Systems

$$
\begin{aligned}
& \Pi_{(\operatorname{cise}}(S)= \\
& \text { City } \\
& \text { London } \\
& \text { Paris } \\
& \text { Athens }
\end{aligned}
$$

Database Systems

Special Relational Operations

* Join (restrictive Cartesian product): Join operation comes in several variations:
-Natural Join
- 0 -Join
-Outer Join
$A \bowtie_{c} B=\sigma_{c}(A X B)$

Database Systems

*Natural Join: Natural join of two relations A and B is a relation consisting of tuples $t=<a$, $b>$ such that a is a tuple of A and b is a tuple of B and the common attribute values of A and B are equal - Equijoin on all common fields.

$$
\mathrm{A} \bowtie_{\mathrm{c}} \mathrm{~B}=\left\{\langle\mathrm{a}, \mathrm{~b}\rangle \mid \mathrm{a} \in \mathrm{~A}, \mathrm{~b} \in \mathrm{~B}, \text { and } \mathrm{a}_{\mathrm{c}}=\mathrm{b}_{\mathrm{c}}\right\}
$$

*Natural join is both associative and commutative.

Database Systems

* θ-Join: Let relations A and B be productcompatible (no attribute names in common) and let $\theta \in\{<,>, \neq, \ldots\}$, then the θ-Join of relation A on attribute X with relation B on attribute Y is a relation consist of tuples t from Cartesian product of A and B such that $t_{x} \theta t_{y}$ is true.

$$
\mathrm{A} \bowtie_{\bullet} \mathrm{B}=\left\{\langle\mathrm{a}, \mathrm{~b}\rangle|<\mathrm{a}, \mathrm{~b}\rangle \in \mathrm{AX} \mathrm{~B}, \text { and } \mathrm{a}_{\mathrm{X}} \theta \mathrm{~b}_{\mathrm{Y}} \text { is true }\right\}
$$

Database Systems

S\#	Sname	Status	S.City	P\#	Pname	Color	Weight	P.City
S_{1}	Smith	20	London	P_{1}	Nut	Red	12	London
S_{1}	Smith	20	London	P_{4}	Screw	Red	14	London
S_{1}	Smith	20	London	P_{6}	Cog	Red	19	London
S_{2}	Jones	10	Paris	P_{2}	Bolt	Green	17	Paris
S_{2}	Jones	10	Paris	P_{5}	Cam	Blue	12	Paris
S_{3}	Blake	30	Paris	P_{2}	Bolt	Green	17	Paris
S_{3}	Blake	30	Paris	P_{5}	Cam	Blue	12	Paris
S_{4}	Clark	20	London	P_{1}	Nut	Red	12	London
S_{4}	Clark	20	London	P_{4}	Screw	Red	14	London
S_{4}	Clark	20	London	P_{6}	Cog	Red	19	London

Database Systems

Division: Let A and B be two relations where set of B attributes are included in the one of A

- $\mathrm{A}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{m}}, \mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{n}}\right)$ and $\mathrm{B}\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{n}}\right)$, then $\mathrm{A} \div \mathrm{B}$ is a relation with the heading (X) and a body of the set of all tuples (X;x) such that (X:x, Y:y) is in A for all tuples (Y:y) in B.

$$
\mathrm{A} \div \mathrm{B}=\{<\mathrm{a}(\mathrm{X})>\mid \exists<\mathrm{a}, \mathrm{~b}>\in \mathrm{A}, \forall\in \mathrm{B}\}
$$

Database Systems

$>$ Consider the following relations:

S\#	P\#		P\#		P\#
S1	P1	B	P1	B"	${ }_{\text {P1 }}$
S1	P3				P3
S1	P4 P5 P6	B'	${ }_{\text {P }}^{\text {P }}$		P3 P4
S1	P5 P6		P4		P5
S2	P1				${ }^{\text {P6 }}$
S2	${ }_{\text {P2 }}$				
S4	${ }^{\text {P2 }}$				
S4	P4				
S4	P5				

Database Systems

$A \div B=$	S\#		S\#	P\#		P\#
$A \div B=$	St	A	S1	P1	B	P1
	S2		S1	P2		
			S1	P3	B'	P\#
			S1	P4	B	P2
$A \div B^{\prime}=$	S\#		S1	P5		P4
	S1		S1	P6		P\#
	S4		S2	P1	B"	P1
			S2	P2		P2
			S3	P2		P3
$\mathrm{A} \div \mathrm{B}^{\prime \prime}=$	S\#		S4	P2		P4
	S1		S4	P4		P5
			S4	P5		P6

Database Systems

Missing Information

* The problem of missing or unknown information is a very important data base issue. Information is very often incomplete. So we need a way of defining such incompleteness and a way to manipulate incomplete data bases. Discussion of the use of the Universal relation assumption has also increased interest in dealing with null values.
* A special column value called null (\perp) is used to represent incomplete data.

Database Systems

Missing Information

* A partial tuple is one that contains one or more null values (\perp). A tuple t is said to be total $(\downarrow \downarrow)$ if and only if it contains no null values. This definition can be extended to relations as well.
* A relation A is total (A \downarrow) if all of its tuples are total.
* Relational operations using a search condition to select tuples will be basically affected by the incomplete data.

Database Systems

Missing Information

* Codd proposed the concept of three-valued logic as the basis to manipulate null values.
*. Three-valued logic

NOT	
T	F
ω	ω
F	T

AND	T	ω	F
T	T	ω	F
ω	ω	ω	F
F	F	F	F

OR	T	ω	F
T	T	T	T
ω	T	ω	ω
F	T	ω	F

Database Systems

Maybe Algebra

* A truth-valued (logic) expression has the value of ω if and only if:
Each occurrence of a null value in the expression can be replaced by a non-null value so as to yield the truth value T for the expression.
- Each occurrence of a null value in the expression can be replaced by a non-null value so as to yield the truth value F for the expression.

Database Systems

- Maybe Algebra
*. Assume the following two relations
r(R)

s(S)

Database Systems

* True Select r when $C=1$:

\mathbf{A}	\mathbf{B}	$\mathbf{C}_{\mathbf{r}}$
a_{1}	$\mathrm{~b}_{1}$	1

\mathbf{A}	\mathbf{B}	$\mathbf{C}_{\mathbf{r}}$
a_{1}	$\mathrm{~b}_{1}$	1
a_{2}	$\mathrm{~b}_{2}$	\perp
a_{3}	$\mathrm{~b}_{3}$	2

*. Maybe Select r when $C=1$:

A	\mathbf{B}	$\mathbf{C}_{\mathbf{r}}$
a_{2}	$\mathrm{~b}_{2}$	\perp

Database Systems

* True Join r and s over C :

$$
\begin{array}{lllll}
\mathbf{A} & \mathbf{B} & \mathbf{C}_{\mathbf{r}} & \mathbf{C}_{\mathrm{s}} & \mathbf{D} \\
\mathrm{a}_{1} & \mathrm{~b}_{1} & 1 & 1 & \mathrm{~d}_{1} \\
\hline
\end{array}
$$

r(R)

\mathbf{A}	\mathbf{B}	$\mathbf{C}_{\mathbf{r}}$
a_{1}	$\mathrm{~b}_{1}$	1
a_{2}	$\mathrm{~b}_{2}$	\perp
a_{3}	$\mathrm{~b}_{3}$	2

*) Maybe Join r and s over C :

\mathbf{A}	\mathbf{B}	$\mathbf{C}_{\mathbf{r}}$	$\mathbf{C}_{\mathbf{s}}$	\mathbf{D}
a_{1}	$\mathrm{~b}_{1}$	1	\perp	$\mathrm{~d}_{2}$
a_{2}	$\mathrm{~b}_{2}$	\perp	1	$\mathrm{~d}_{1}$
a_{2}	$\mathrm{~b}_{2}$	\perp	\perp	$\mathrm{~d}_{2}$
a_{3}	$\mathrm{~b}_{3}$	2	\perp	$\mathrm{~d}_{2}$

Database Systems

*. Maybe Division: Assume the following two relations:

Database Systems

** True Division ($\mathrm{r} \div \mathrm{s}$):

*. Maybe Division ($\mathrm{r} \div \mathrm{s}$):

Database Systems

* A somewhat different views of the null value is taken for the remaining relational algebra operations. For these operations, null values in different tuples are interpreted as being equivalent. Therefore, there is no changing in these operations over their use in traditional relational algebra.
r(R) $\left|\begin{array}{lll}\mathbf{A} & \mathbf{B} & \mathbf{C} \\ \mathrm{a}_{1} & \perp & \mathrm{c}_{1} \\ \mathrm{a}_{1} & \perp & \mathrm{c}_{2} \\ \mathrm{a}_{2} & \mathrm{~b}_{2} & \perp \\ \hline \mathrm{a}_{3} & \mathrm{~b}_{3} & \mathrm{c}_{3}\end{array}\right|$

\mathbf{A}	\mathbf{B}
a_{1}	\perp
a_{2}	$\mathrm{~b}_{2}$
a_{3}	$\mathrm{~b}_{3}$

Database Systems

Missing Information

* Concept of null values can be used to bring the so-called dangling tuples into the join process and make relations union-compatible.

Database Systems

* Outer Join (0): This is a direct consequence of dealing with incompleteness. In outer join, tuples in the join relations that do not match the join condition, will be extended by nulls and appear in the resultant relation.
* There are several variation of outer join:
-Left outer join
\square right outer join
- full outer join

Database Systems

Outer Join r(A,B) and s(C,D) over
(B and C are defined over the same domain and θ is the test condition) is defined as follows:
r © $\mathrm{s}=\mathrm{T} \cup\left(\mathrm{R}_{1} \mathrm{X}(\mathrm{C}: \perp, \mathrm{D}: \perp)\right) \cup\left((\mathrm{A}: \perp, \mathrm{B}: \perp) \mathrm{X} \mathrm{S}_{1}\right)$
Where:
T is the true Join of r and s over $\mathrm{B} \theta \mathrm{C}$,
$\mathrm{R}_{1}=\mathrm{r}-\Pi_{(\mathrm{A}, \mathrm{B})}(\mathrm{T})$
$\mathrm{S}_{1}=\mathrm{s}-\Pi_{(\mathrm{CD})}(\mathrm{T})$

Database Systems

Outer Join: An example, assume θ is equality, and

Database Systems

$$
\begin{aligned}
& \mathrm{r} \text { © } \mathrm{s}=\mathrm{T} \cup\left(\mathrm{R}_{1} \mathrm{X}(\mathrm{C}: \perp, \mathrm{D}: \perp)\right) \cup((\mathrm{A}: \perp, \mathrm{B}: \\
& \mathrm{R}_{1}=\mathrm{r}-\Pi_{(\mathrm{A}, \mathrm{~B})}(\mathrm{T}) \\
& \mathrm{S}_{1}=\mathrm{s}-\prod_{(\mathrm{CDD})}(\mathrm{T}) \\
& \text { T } \begin{array}{lllll}
\text { A } & \mathbf{B} & \mathbf{C} & \mathbf{D}
\end{array} \\
& \begin{array}{llll}
\mathbf{A} & \mathrm{B}^{2} & \mathrm{~b}_{1} & \mathrm{~b}_{1} \\
\mathrm{~d}_{1} \\
\mathrm{a}_{2} & \mathrm{~b}_{2} & \mathrm{~b}_{2} & \mathrm{~d}_{2}
\end{array} \\
& \begin{array}{l|ll}
\mathrm{R}_{1} & \mathbf{A} & \mathbf{B} \\
\mathrm{a}_{3} & \mathrm{~b}_{3}
\end{array} \\
& \text { r(0)s }
\end{aligned}
$$

Database Systems

Assume the following relations:

* Sailors(sid:integer, sname:string, rating:integer, age:real)
* Boats(bid:integer, bname:string, color:string)
* Reserves(sid:integer, bid:integer, day:date)

Database Systems

Sailors

sid	sname	rating	age	Boats		
22	Dustin	7	45.0		bid	bname
color						
29	Burton	1	33.0	101	Interlake	Blue
31	Lubber	8	55.5	102	Interlake	Red
32	Andy	8	25.5	103	Clipper	Green
58	Rusty	11	35.0	104	Marine	red
64	Horatio	7	35.0			
71	Zorba	10	16.0			
74	Horatio	9	35.0			
85	Art	3	25.5			
95	Bob	3	63.5			

Database Systems

Reserved	sid	bid	day
	101	$10 / 10 / 98$	
	22	102	$10 / 10 / 98$
	103	$10 / 8 / 98$	
	22	104	$10 / 7 / 98$
31	102	$11 / 10 / 98$	
31	103	$11 / 6 / 98$	
	31	104	$11 / 12 / 98$
64	101	$9 / 5 / 98$	
64	102	$9 / 8 / 98$	
74	103	$9 / 8 / 98$	

Database Systems

\checkmark Find names of sailors who have reserved a red boat

$$
\Pi_{\text {samene }}\left(\left(\sigma_{\text {color-"‘red" }} \text { Boats }\right) ~ \bowtie \text { Reserves } \bowtie \text { Sailors }\right)
$$

sname
Dustin
Lubber
Horatio

Database Systems

A more efficient solution would do the projections as early as possible:
$\Pi_{\text {same }}\left(\Pi_{\text {sid }}\left(\left(\Pi_{\text {bid }}\left(\sigma_{\text {color="‘red" }}\right.\right.\right.\right.$ Boats $\left.)\right) \bowtie$ Reserves $) \bowtie$ Sailors $)$

Database Systems

Questions

* Find sailors that have reserved a green boat and a red boat.
- Identify sailors reserving red boats
- Identify sailors reserving green boats
\square Intersect the sets and determine the sailors name
* What are the names of the sailors with the lowest rating (whatever that rating is).
\square Compare the rating of each sailor with that of every other sailor
- Result is the set of sailors that never come out on top in one of these comparisons.

