
A.R. Hurson
323 CS Building
hurson@mst.edu

CS5300
Database Systems

Relational Algebra

This module is intended to introduce:
relational algebra as the backbone of relational

model, and
set of operations defined within the scope of

relational model.

Database Systems

2

Note, this unit will be covered in two
lectures. In case you finish it earlier, then
you have the following options:

1) Take the early test and start CS5300.module3
2) Study the supplement module

(supplement CS5300.module2)
3) Act as a helper to help other students in

studying CS5300.module2
Note, options 2 and 3 have extra credits as noted in course
outline.

3

Database Systems

Glossary of prerequisite topics

Familiar with the topics?
No Review

CS5300.module2.background

Yes

Remedial action
Yes

No
Take the Module

Take Test

Pass?

Glossary of topics

Familiar with the topics?
Yes

Pass?

Take Test

Yes

Options

Lead a group of students in
this module (extra credits)?

Study more advanced related
topics (extra credits)?

Study next module?

No

{

Extra Curricular activities

Enforcement
of background

{Current
Module

At the end: take
exam, record the

score, impose
remedial action if not

successful

No

4

Database Systems

You are expected to be familiar with:
Relational data model
Basic operations in relational model

If not, you need to study
CS5300.module2.background

5

Database Systems

Relational Algebra
Relational model is based on set theory. A

relation is simply a set.
The relational algebra is a set of high level

operators that operate on relations. Each
relational operator assumes one or two relations
as input (unary or binary operators) and
produces a relation as output. Relational
algebra is composed of eight operators divided
into two groups.

Database Systems

6

Relational Algebra
The traditional set operations:

UNION, INTERSECTION, DIFFERENCE, and
CARTESIAN PRODUCT.

The special relational operations:
RESTRICT, PROJECT, JOIN, and DIVIDE.

Database Systems

7

Relational Algebra
Two relations are called Union-compatible if

and only if they have identical headings, more
precisely;
They have the same set of attributes, and
Corresponding attributes are defined on the same

domain.
Union, Intersection, and Difference require

their operands to be union-compatible.

Database Systems

8

Set Operation
Union: The union of two union-compatible

relations A and B is a relation with the same
heading as A and B (same schema) and a body
consisting of the set of all tuples t belonging to
either A or B (or both).

A ∪ B = {t | t ∈A or t ∈ B}

Database Systems

9

Set Operation
Intersection: Intersection of two union-

compatible relations A and B is a relation with
the same heading as each of A and B (same
schema) and with a body consisting of the set of
the tuples t belonging to both A and B.

A ∩ B = {t | t ∈A and t ∈ B}

Database Systems

10

Set Operation
Difference: Difference between two union-

compatible relations A and B is a relation with
the same heading as A and B (same schema) and
with a body consisting of the set of tuples
belonging to A and not to B.

A — B = {t | t ∈A and t ∉ B}

Database Systems

11

Set Operation
Cartesian Product: Cartesian product of two

product-compatible (disjoint headings) relations A
and B, is a relation with a heading that is the
coalescing of the headings of A and B
(concatenated schemas) and a body consisting of
the set of tuples t such that t is the concatenation of
a tuple a from A and a tuple b from B.

A Χ B = {<a,b> | a ∈A and b ∈ B}

Database Systems

12

Assume the following two relations:

S# SNAME STATUS CITY
S1 Smith 20 London
S4 Clark 20 London

A

S# SNAME STATUS CITY
S1 Smith 20 London
S2 Jones 10 Paris

B

Database Systems

13

S# SNAME STATUS CITY
S1 Smith 20 London
S4 Clark 20 London
S2 Jones 10 Paris

A ∪ B =

A ∩ B = S# SNAME STATUS CITY
S1 Smith 20 London

A — B = S# SNAME STATUS CITY
S4 Clark 20 London

Database Systems

14

Set Operation
Union, Intersect, and Product are associative

operations;

Union, Intersect, and Product are commutative
operations;

however,

A ∪ (B ∪ C) ≡ (A ∪ B) ∪ C

A ∪ B ≡ B ∪A

A — B ≠ B — A

Database Systems

15

Special Relational Operations
Restriction (Select): Let θ ∈{=, <, >, ≠, ...}, the
θ-restriction of relation A on attributes X and Y
is a relation with the same heading as A and a
body consisting of the set of all tuples t in A that
satisfy X θ Y.

θ-restriction effectively yields a horizontal
subset of a given relation.

σX θ Y(A) = {t | t ∈A and (txθ ty is true)}

Database Systems

16

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

P# Pname Color Weight City
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

S

P

Database Systems

17

σcity=“London”(S) = S# Sname Status City
S1 Smith 20 London
S4 Clark 20 London

σWeight < 14(P) = P# Pname Color Weight City
P1 Nut Red 12 London
P5 Cam Blue 12 Paris

Database Systems

18

Special Relational Operations
Projection: Projection of a relation A on

attributes X, Y, …., is a relation with the
heading of (X, Y, …) and a body consisting of
all tuples (X:x, Y:y, …) such that a tuple t in A
with the same X-value x, Y-value y, …

Projection operator effectively yields vertical
slice of a given relation.

Π(X,Y,…)(A) = {r | rx= tx, ry= ty,… and t ∈A }

Database Systems

19

Π(City)(S) = City
London

Paris
Athens

Π(Color, City)(P) = Color City
Red London

Green Paris
Blue Rome
Blue Paris

Database Systems

20

Special Relational Operations
Join (restrictive Cartesian product): Join

operation comes in several variations:
Natural Join
θ-Join
Outer Join

A c B = σc(A Χ B)

Database Systems

21

Natural Join: Natural join of two relations A
and B is a relation consisting of tuples t = <a,
b> such that a is a tuple of A and b is a tuple of
B and the common attribute values of A and B
are equal — Equijoin on all common fields.

Natural join is both associative and
commutative.

A c B = { <a,b> | a∈A, b∈B, and ac=bc}

Database Systems

22

θ-Join: Let relations A and B be product-
compatible (no attribute names in common) and
let θ ∈{<, >, ≠, ...}, then the θ-Join of relation A
on attribute X with relation B on attribute Y is a
relation consist of tuples t from Cartesian
product of A and B such that tx θ ty is true.

A θ B = { <a,b> | <a,b> ∈A Χ B, and aX θ bY is true}

Database Systems

23

A S.City=P.City B
S# Sname Status S.City P# Pname Color Weight P.City
S1 Smith 20 London P1 Nut Red 12 London
S1 Smith 20 London P4 Screw Red 14 London
S1 Smith 20 London P6 Cog Red 19 London
S2 Jones 10 Paris P2 Bolt Green 17 Paris
S2 Jones 10 Paris P5 Cam Blue 12 Paris
S3 Blake 30 Paris P2 Bolt Green 17 Paris
S3 Blake 30 Paris P5 Cam Blue 12 Paris
S4 Clark 20 London P1 Nut Red 12 London
S4 Clark 20 London P4 Screw Red 14 London
S4 Clark 20 London P6 Cog Red 19 London

Database Systems

24

Division: Let A and B be two relations where
set of B attributes are included in the one of A
— A (X1, X2, …., Xm, Y1, Y2, …, Yn) and
B (Y1, Y2, …, Yn), then A ÷ B is a relation
with the heading (X) and a body of the set of
all tuples (X;x) such that (X:x, Y:y) is in A for
all tuples (Y:y) in B.

A ÷ B = { <a (X)> | ∃ <a,b> ∈A , ∀ ∈ B}

Database Systems

25

Consider the following relations:
S# P#
S1 P1
S1 P2
S1 P3
S1 P4
S1 P5
S1 P6
S2 P1
S2 P2
S3 P2
S4 P2
S4 P4
S4 P5

A
P#
P1B

P#
P2
P4

B’

P#
P1
P2
P3
P4
P5
P6

B”

Database Systems

26

A ÷ B = S#
S1
S2

A ÷ B’ = S#
S1
S4

A ÷ B” = S#
S1

Database Systems

27

S# P#
S1 P1
S1 P2
S1 P3
S1 P4
S1 P5
S1 P6
S2 P1
S2 P2
S3 P2
S4 P2
S4 P4
S4 P5

A
P#
P1B

P#
P2
P4

B’

P#
P1
P2
P3
P4
P5
P6

B”

Missing Information
The problem of missing or unknown information is a

very important data base issue. Information is very
often incomplete. So we need a way of defining such
incompleteness and a way to manipulate incomplete
data bases. Discussion of the use of the Universal
relation assumption has also increased interest in
dealing with null values.

A special column value called null (⊥) is used to
represent incomplete data.

Database Systems

28

Missing Information
A partial tuple is one that contains one or more null

values (⊥). A tuple t is said to be total (t↓) if and
only if it contains no null values. This definition
can be extended to relations as well.
A relation A is total (A ↓) if all of its tuples are

total.
Relational operations using a search condition to

select tuples will be basically affected by the
incomplete data.

Database Systems

29

Missing Information
Codd proposed the concept of three-valued logic as the

basis to manipulate null values.
Three-valued logic

NOT
T F
ω ω
F T

AND T ω F
T T ω F
ω ω ω F
F F F F

OR T ω F
T T T T
ω T ω ω
F T ω F

Database Systems

30

Maybe Algebra
A truth-valued (logic) expression has the value

of ω if and only if:
Each occurrence of a null value in the expression

can be replaced by a non-null value so as to yield
the truth value T for the expression.
Each occurrence of a null value in the expression

can be replaced by a non-null value so as to yield
the truth value F for the expression.

Database Systems

31

Maybe Algebra
Assume the following two relations

A B Cr
a1 b1 1
a2 b2 ⊥
a3 b3 2

r(R)
Cs D
1 d1

⊥ d2

s(S)

Database Systems

32

True Select r when C=1:

Maybe Select r when C=1:

A B Cr
a1 b1 1

A B Cr
a2 b2 ⊥

Database Systems

33

A B Cr
a1 b1 1
a2 b2 ⊥
a3 b3 2

r(R)

True Join r and s over C:

Maybe Join r and s over C:

A B Cr Cs D
a1 b1 1 1 d1

A B Cr Cs D
a1 b1 1 ⊥ d2
a2 b2 ⊥ 1 d1
a2 b2 ⊥ ⊥ d2
a3 b3 2 ⊥ d2

Database Systems

34

Cs D
1 d1

⊥ d2

s(S)

A B Cr
a1 b1 1
a2 b2 ⊥
a3 b3 2

r(R)

Maybe Division: Assume the following two
relations:

A B C
a1 b1 c1
a2 b1 c1
a1 b2 c2
a2 b2 ⊥

r(R) B C
b1 c1
b2 c2

s(S)

Database Systems

35

True Division (r ÷ s):

Maybe Division (r ÷ s):

A
a1

A
a2

Database Systems

36

A B C
a1 b1 c1
a2 b1 c1
a1 b2 c2
a2 b2 ⊥

r(R)

B C
b1 c1
b2 c2

s(S)

A somewhat different views of the null value is taken
for the remaining relational algebra operations. For
these operations, null values in different tuples are
interpreted as being equivalent. Therefore, there is no
changing in these operations over their use in
traditional relational algebra.

A B C
a1 ⊥ c1

a1 ⊥ c2

a2 b2 ⊥
a3 b3 c3

r(R) A B
a1 ⊥
a2 b2

a3 b3

Π (A,B)r

Database Systems

37

Missing Information
Concept of null values can be used to bring the

so-called dangling tuples into the join process
and make relations union-compatible.

Database Systems

38

Outer Join : This is a direct consequence of
dealing with incompleteness. In outer join,
tuples in the join relations that do not match the
join condition, will be extended by nulls and
appear in the resultant relation.
There are several variation of outer join:
Left outer join
right outer join
full outer join

θ

Database Systems

39

Outer Join r(A,B) and s(C,D) over B θ C (B and
C are defined over the same domain and θ is the
test condition) is defined as follows:

Where:
T is the true Join of r and s over B θ C ,
R1 = r — Π(A,B)(T)
S1 = s — Π(C,D)(T)

r s = T ∪ (R1 Χ (C : ⊥, D : ⊥)) ∪ ((A : ⊥, B : ⊥) Χ S1)θ

Database Systems

40

Outer Join: An example, assume θ is equality,
and

A B
a1 b1
a2 b2
a3 b3

r C D
b1 d1
b2 d2

b4 d3

s

Database Systems

41

A B C D
a1 b1 b1 d1
a2 b2 b2 d2

T

A B
a3 b3

R1

C D
b4 d3

S1

A B C D
a1 b1 b1 d1
a2 b2 b2 d2
a3 b3 ⊥ ⊥
⊥ ⊥ b4 d3

r sθ

Database Systems

42

r s = T ∪ (R1 Χ (C : ⊥, D : ⊥)) ∪ ((A : ⊥, B : ⊥) Χ S1)θ

R1 = r —Π(A,B)(T)
S1 = s — Π(C,D)(T)

Assume the following relations:

Sailors(sid:integer, sname:string, rating:integer, age:real)
Boats(bid:integer, bname:string, color:string)
Reserves(sid:integer, bid:integer, day:date)

Database Systems

43

sid sname rating age
22 Dustin 7 45.0
29 Burton 1 33.0
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 11 35.0
64 Horatio 7 35.0
71 Zorba 10 16.0
74 Horatio 9 35.0
85 Art 3 25.5
95 Bob 3 63.5

Sailors

bid bname color
101 Interlake Blue
102 Interlake Red
103 Clipper Green
104 Marine red

1 04

Boats

Database Systems

44

sid bid day
22 101 10/10/98
22 102 10/10/98
22 103 10/8/98
22 104 10/7/98
31 102 11/10/98
31 103 11/6/98
31 104 11/12/98
64 101 9/5/98
64 102 9/8/98
74 103 9/8/98

Reserved

Database Systems

45

Find names of sailors who have reserved a red boat

Πsname((σcolor=“red”Boats) Reserves Sailors)

sname
Dustin
Lubber
Horatio

Database Systems

46

A more efficient solution would do the
projections as early as possible:

Πsname(Πsid((Πbid (σcolor=“red”Boats)) Reserves) Sailors)

Database Systems

47

Questions
 Find sailors that have reserved a green boat and a red boat.

 Identify sailors reserving red boats
 Identify sailors reserving green boats
 Intersect the sets and determine the sailors name

 What are the names of the sailors with the lowest rating (whatever that
rating is).
 Compare the rating of each sailor with that of every other sailor
 Result is the set of sailors that never come out on top in one of these

comparisons.

Database Systems

48

	CS5300�Database Systems��Relational Algebra
	Database Systems
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems

