
A.R. Hurson
323 CS Building
hurson@mst.edu

CS5300
Database Systems

SQL

Note, this unit will be covered in five
lectures. In case you finish it earlier, then
you have the following options:

1) Take the early test and start CS5300.module4
2) Study the supplement module

(supplement CS5300.module3)
3) Act as a helper to help other students in

studying CS5300.module3
Note, options 2 and 3 have extra credits as noted in course
outline.

2

Database Systems

Glossary of prerequisite topics

Familiar with the topics?
No Review

CS5300.module3.background

Yes

Remedial action
Yes

No
Take the Module

Take Test

Pass?

Glossary of topics

Familiar with the topics?
Yes

Pass?

Take Test

Yes

Options

Lead a group of students in
this module (extra credits)?

Study more advanced related
topics (extra credits)?

Study next module?

No

{

Extra Curricular activities

Enforcement
of background

{Current
Module

At the end: take
exam, record the

score, impose
remedial action if not

successful

No

3

Database Systems

You are expected to be familiar with:
Basic principles of relational database model,
Basic format of SQL
Data Definition Language
Data Manipulation Language

If not, you need to study
CS5300.module3.background

4

Database Systems

Structured Query Language (SQL)
SQL is a comprehensive language and provides

statements for Data definition and Data
manipulation. Hence, it is both a Data
Definition Language (DDL) and Data
Manipulation Language (DML)

5

Database Systems

Structured Query Language (SQL)
The SQL language has the following features:
Embedded and Dynamic facilities to allow SQL

code to be called from a host language or a query be
constructed at run-time.
Triggers which are actions executed by DBMS

whenever certain changes to the database meet
certain conditions.

Database Systems

6

Database Systems

Structured Query Language (SQL)
Security to control users’ accesses to data objects.
Transaction management commands to allow the

execution of transactions.
Remote database accesses to allow client server or

distributed environments.

7

 Data Definition Language
 CREATE SCHEMA
 CREATE TABLE
 CREATE DOMAIN
 CREATE VIEW
 DROP TABLE
 DROP VIEW
 INSERT
 UPDATE
 DELETE
 ALTER
 Define KEY CONSTRIANTS
 CHECK

Database Systems

8

Running Example

9

Database Systems

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

EMPLOYEE

DEPARTMENT

Dname Dnumber Mgr_ssn Mgr_start_date Dnumber Dlocation

DEPT_Location

Pname Pnumber Plocation Dnum

PROJECT
Essn Pno Hours

WORKS_ON

DEPENDENT
Essn Dependent_name Sex Bdate Relationship

Data Definition Language
CREATE SCHEMA: The general format is as follows:

CREATE SCHEMA schema-name AUTHORIZATION ‘name’

Schema is identified by a name, and includes an
authorization indicating the owner and descriptors
for each element in the schema.
Schema elements are: tables, constraints, views,

domains, …
10

authorization identifierschema name

Database Systems

Running Example
CREATE SCHEMA COMPANY AUTHORIZATION ‘Jsmith’

11

Database Systems

Data Definition Language
CREATE TABLE: The general format is as follows:

CREATE TABLE base-table
(column-definition [, column-definition] …
[, primary-key-definition]
[, foreign-key-definition [, foreign-key-definition] …]);

where a “column-definition” is in the form of
column data-type [NOT NULL]

Note that the specification of primary-key is
optional.

Database Systems

12

CREATE TABLE S
(S# CHAR(5) NOT NULL,

SNAME CHAR(20) NOT NULL,
STATUS INTEGER NOT NULL,
CITY CHAR(15) NOT NULL,

PRIMARY KEY (S#)) ;

This will create an empty table. The data values
now can be entered using INSERT command.

Result: S S# SNAME STATUS CITY

Database Systems

13

Running Example
CREATE TABLE COMPANY.EMPLOYEE

Or
CREATE TABLE EMPLOYEE

(Fname VARCHAR(15) NOT NULL,
Minit CHAR,
Lname VARCHAR(15) NOT NULL,
Ssn CHAR(9) NOT NULL,
Bdate Date,
Address VARCHAR(30),
Sex CHAR,
Salary DECIMAL(10,2),
Super_ssn CHAR(9),
Dno INT NOT NULL,
PRIMARY KEY (Ssn),
FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE (Ssn),
FOREIGN KEY (Dn0) REFERENCES DEPARTMENT (Dnumber)) ; 14

Database Systems

Data Definition Language
It is possible to specify the data type of each

attribute directly, or one can define a domain.
CREATE DOMAIN domain_name AS CHAR(n);

15

Database Systems

defined name

Data Definition Language
It is possible to define a default value for an

attribute by appending the clause
DEFAULT <value> to an attribute definition.
The default value is included in any new tuple if an

explicit value is not provided for that attribute.

16

Database Systems

Running Example
CREATE TABLE EMPLOYEE

(Fname VARCHAR(15) NOT NULL,
Minit CHAR,
Lname VARCHAR(15) NOT NULL,
Ssn CHAR(9) NOT NULL,
Bdate Date,
Address VARCHAR(30),
Sex CHAR,
Salary DECIMAL(10,2),
Super_ssn CHAR(9),
Dno INT NOT NULL DEFAULT 1,
PRIMARY KEY (Ssn),
FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE (Ssn),
FOREIGN KEY (Dn0) REFERENCES DEPARTMENT (Dnumber)) ;

17

Database Systems

Data Definition Language
CHECK clause (The keyword CHECK along

with a conditional expression) can be used to
restrict (enforce a constraint over) attribute or
domain value.
attribute name domain CHECK (conditional expression on
attribute name)

18

Database Systems

Constraints over a single table
CREATE TABLE Students

(Sid CHAR(20),
name CHAR(30),
login CHAR(20),
age INTEGER,
gpa REAL ,
UNIQUE (name, age),
CONSTRAINT Studentskey
PRIMARY KEY (Sid)
CHECK (age >= 16 AND age <=30))

When a new tuple is inserted into the table or an existing tuple
is modified, the conditional statement is checked. If the result
is false, the command is rejected.

Database Systems

19

Running Example
Dnumber INT NOT NULL CHECK (Dnumber > 0 and Dnumber < 21);

CREATE DOMAIN D_NUM AS INTEGER CHECK (D_NUM >0
AND D_NUM <21);

20

Database Systems

Integrity Constraints
As noted before, constraints can be defined

either as the table constraints (over a single
table) or assertions.

Database Systems

21

Constraints over a single table
Primary Key/Candidate Key

CREATE TABLE Student (Sid CHAR(20),
name CHAR(30),
login CHAR(20),
age INTEGER,
gpa REAL ,
UNIQUE (name, age),
CONSTRAINT Studentskey
PRIMARY KEY (Sid))

Studentskey is called the
constraint name - It will
be returned if the
constraint is violated.

Database Systems

22

Constraints over a single table
Foreign Key
Key words FOREIGN KEY and REFERENCE are

used to specify this constraint:
CREATE TABLE Enroll (Sid CHAR(20),

Cid CHAR(20),
grade CHAR(10),
PRIMARY KEY (Sid, Cid),
FOREIGN KEY (Sid)
REFERENCES Students)

Referenced relation

Database Systems

23

Last lecture
Evolution of database computation platform
Centralized
Client/server
Peer to peer
Distributed
???

SQL
Data Definition Language

24

Database Systems

Integrity Constraints
As we discussed in introduction section, a referential

integrity constraint can be violated when tuples are inserted
or deleted, or when a foreign key or primary key is
modified. The default action taken by SQL is to reject the
update operation that causes a violation. Alternatively, one
can use a referential triggered action clause to any foreign
key.

SET NULL, CASCADE, SET DEFAULT on ON DELETE
or ON UPDATE actions will do the job.

25

Database Systems

26

Database Systems

Running Example
CREATE TABLE EMPLOYEE

(Fname VARCHAR(15) NOT NULL,
Minit CHAR,
Lname VARCHAR(15) NOT NULL,
Ssn CHAR(9) NOT NULL,
Bdate Date,
Address VARCHAR(30),
Sex CHAR,
Salary DECIMAL(10,2),
Super_ssn CHAR(9),
Dno INT NOT NULL DEFAULT 1,
PRIMARY KEY (Ssn),
FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE (Ssn)

ON DELETE SET NULL ON UPDATE CASCADE,
FOREIGN KEY (Dn0) REFERENCES DEPARTMENT (Dnumber)

ON DELETE SET DEFAULT ON UPDATE CASCADE) ;

If tuple for supervising employee is
deleted then Super_ssn for all
employee referencing this person
will be set to NULL

If Ssn for supervising employee is
updated then Super_ssn for all
employee referencing this person
will be updated

Data Definition Language
INSERT command can be used to insert a single

tuple to a relation.
INSERT
INTO S (S#, SNAME, STATUS, CITY)
VALUES (‘S1’, ‘SMITH’, 10, ‘LONDON’);

or
INSERT INTO S
VALUES (‘S1’, ‘SMITH’, 10, ‘LONDON’);

RESULT
S# SNAME STATUS CITY
S1 SMITH 10 LONDON

Database Systems

27

Running Example
INSERT INTO EMPLOYEE

VALUES (‘Richard’, ‘K’, ‘Marini’, ‘653298653’, ‘1962-
12-30’, ‘98 Oak Forest, Katy, TX’, ‘M’, 37000,
‘987654321’, 4);

INSERT INTO EMPLOYEE (FNAME, LNAME, DNO, SSN)
VALUES (‘Richard’, ‘Marini’, 4, ‘653298653’);

28

Database Systems

Data Definition Language
It is possible to insert multiple tuples into a

relation by a single INSERT command. In this
case, the attribute values forming a tuple are
enclosed in parentheses separated by commas.

29

Data Definition Language
ALTER: Allows to change the definition of a base-

table or any named schema element (i.e., add (drop)
a new attribute (column) to (from) an existing
base-table, add (drop) table constraints, changing a
column definition).
Its general format is as follows:

Database Systems

30

Data Definition Language
ALTER TABLE base-table ADD column data-type
ALTER TABLE base-table DROP column CASCADE (RESTRICT)

To drop a column we must use either CASCADE
or RESTRICT. In case of CASCADE, all
constraints and views that reference the column are
dropped. In case of RESTRICT, the command is
successful if the column is not referenced by other
entities in the schema.

31

Database Systems

ALTER TABLE S ADD DISCOUNT INTEGER;

 Discount column is added (at the right) to the table S. All
existing tuples are (conceptually) expanded, and the value of
the new column is null in every record unless a default value is
defined).

 Update command is used to define values for “DISCOUNT” in
every tuples in S.

 Specification of NOT NULL is not allowed in ALTER
TABLE).

S S# SNAME STATUS CITY DISCOUNT
RESULT

Database Systems

32

Running Example
ALTER TABLE COMPANY.EMPLOYEE ADD JOB VARCHAR(12);

ALTER TABLE COMPANY.EMPLOYEE DROP ADDRESS CASCADE;

It is also possible to ALTER column definition:
ALTER TABLE COMPANY.DEPARTMENT ALTER MGRSSN
DROP DEFAULT;

ALTER TABLE COMPANY.DEPARTMENT ALTER MGRSSN
SET DEFAULT “123456789”;

33

Database Systems

Data Definition Language
DROP TABLE: Allows to destroy an existing

base-table.

DROP TABLE base-table;

Database Systems

34

Example
As discussed before command CREATE can be used

to define a domain:

CREATE DOMAIN Qtyvalue INTEGER DEFAULT 1
CHECK (VALUE >= 1 AND VALUE <=1000)

Here INTEGER is the base type for domain
Qtyvalue, however its contents is restricted by the
CHECK statement.

Database Systems

35

Example
Once a domain is defined, it can be used to limit

contents of a column in a table.
The DEFAULT keyword assigns a default value to a

domain — this value will be automatically assumed
in an attempt to insert a tuple into the relation
without an initial value for an attribute defined over
Qtyvalue.

Database Systems

36

Constraints over a single table
Assume the following tables:
Sailors(sid:integer, sname:string, rating:integer, age:real)
Boats(bid:integer, bname:string, color:string)
Reserves(sid:integer, bid:integer, day:date)

Define a constraint that “Interlake” boat cannot be
reserved.

Database Systems

37

Constraints over a single table
CREATE TABLE Reserves

(Sid INTEGER,
bid INTEGER,
day DATE,
PRIMARY KEY (Sid, bid),
FOREIGN KEY (Sid) REFERENCES Sailors)
FOREIGN KEY (bid) REFERENCES Boats)
CONSTRAINT noInterlakeRes.
CHECK (“Interlake” <>

(SELECT B.bname
FROM Boats B
WHERE B.bid = Reserve.bid)))

Database Systems

38

Data Manipulation Language (DML)
SQL provides four DML statements:

 SELECT,
 UPDATE,
 DELETE, and
 INSERT.

Database Systems

39

Data Manipulation Language (DML)
SELECT A1, A2, …, An

FROM r1, r2, …, rm

WHERE P

ΠA1, A2, …, An(σP(r1× r2 × … × rm))

SELECT specifies field (s) FROM a specific table
(s) WHERE specific condition (s) is true.

40

Database Systems

SELECT [DISTINCT] item(s)
FROM table (s)
[WHERE condition]
[GROUP BY field (s)]
[ORDER BY field (s)];

Target list, a list of attributes

Relation list

Qualifier — expressions involving
constants and/or column names
combined using AND, OR, and NOT.

Database Systems

41

The select Clause
SQL allows duplicates. In cases where we

want to eliminate duplicate, we must use the
keyword DISTINCT.
The select clause allows arithmetic operations

involving +. -, *, and / operations on constant or
attributes of tuples:
SELECT loan-number, branch-name, amount * 100
FROM loan

42

Database Systems

The where Clause
SQL uses the logical connectors and, or, and

not. The operands of logical connectors can be
expressions involving <, <=, >, >+, =, and < >.
SQL allows between (not between) comparison

operator:
SELECT loan-number
FROM loan
WHERE amount between 90000 and 100000

43

Database Systems

The following strategy is used to evaluate
an SQL expression:
Compute the cross-product of relation-list,
Discard resulting tuples if they fail

qualifications (restrict),
Delete attributes that are not in target-list

(project).
If DISTINCT is specified, then duplicate tuples

are eliminated.

Database Systems

44

The following tables are assumed for the rest of
this section:

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

Supplier
Relation
S

Database Systems

45

P# Pname Color Weight City
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

Part
Relation
P

Database Systems

46

S# P# QTY
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

SP
Relation

Database Systems

47

Simple Queries
SELECT S#, STATUS
FROM S
WHERE CITY = ‘Paris’;

S# Status
S2 10
S3 30

RESULT

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

Database Systems

48

Simple Retrieval
SELECT P#
FROM SP;

P#
P1
P2

P3

P4
P5

P6

P1

P2

P2

P2

P4

P5

RESULT

Duplicates are not removed

S# P# QTY
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

Database Systems

49

SELECT DISTINCT P#
FROM SP;

RESULT

P#
P1
P2

P3

P4
P5

P6

S# P# QTY
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

Database Systems

50

Running Example
SELECT BDATE, ADDRESS
FROM EMPLOYEE
WHERE FNAME=‘John’ AND MINIT=‘B’ AND LNAME=‘Smith’;

In relational algebra

ΠBDATE, ADDRESS(σFNAME=‘John’ AND MINIT=‘B’ AND

LNAME=‘Smith’ (EMPLOYEE))

51

Database Systems

Running Example
SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME=‘Research’ AND DNUMBER=DNO;

In relational algebra

ΠFNAME, LNAME, ADDRESS(σDNAME=‘Research’ AND DNUMBER=DNO

(EMPLOYEE × DEPARTMENT))

52

Database Systems

Retrieval of Computed Values: Assume weight in
‘Part relation’ is in Pound;
SELECT P.P#, ‘Weight in Grams = ’, P.Weight * 454
FROM P;

P#
P1 Weight in Grams = 5448
P2 Weight in Grams = 7718
P3 Weight in Grams = 7718
P4 Weight in Grams = 6356
P5 Weight in Grams = 5448
P6 Weight in Grams = 8626

Result

P# Pname Color Weight City
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

Database Systems

53

Naming Fields in the resultant relation
AS and = are two ways to name fields in result;

SELECT Supplier name = Sname, STATUS
FROM S
WHERE CITY = ‘Paris’;

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

Supplier name Status
Jones 10
Blake 30

Result

Database Systems

54

SELECT Sname As Supplier name, STATUS
FROM S
WHERE CITY = ‘Paris’;

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

Supplier name Status
Jones 10
Blake 30

Result

Database Systems

55

Running Example
What is the meaning of the following query?

SELECT E.Fname, E.Lname, S.Fname, S.Lname
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.Super_ssn=S.Ssn;

56

Database Systems

LIKE is the keyword that allows string
matching (pattern matching) operation;

Note that ‘_’ stands for any one character (don’t
care), and ‘%’ stands for 0 or more arbitrary
characters (repeated don’t care).

SELECT Sname As Supplier name, City
FROM S
WHERE CITY LIKE ‘%s’ ;

Database Systems

57

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

Supplier name City
Jones Paris
Blake Paris

Adams Athens

Result

Database Systems

58

Get all parts whose names begin with the letter C.
SELECT P.*
FROM P
WHERE P.Pname LIKE ‘C%’;

P# Pname Color Weight City
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

P# Pname Color Weight City
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

Result

Database Systems

59

Similarly, NOT LIKE can also be used in the
WHERE clause;
SELECT P.*
FROM P
WHERE P.City NOT LIKE ‘%E%’;

In this case, the condition is evaluated to “true” if City does
not contain an ‘E’.

Database Systems

60

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

SELECT S#
FROM S
WHERE Status > 25;

Result

S#
S3
S5

Database Systems

61

Retrieval Involving NULL
Assume for the sake of the example that
supplier S5 has a status value of null.

Get supplier numbers for supplier with status
greater than 25;

Database Systems

62

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams ⊥ Athens

Result

S#
S3

Unlike previous case S5 does not qualify.

Database Systems

63

Get full detail of all suppliers
SELECT *
FROM S;

This is equivalent to:
SELECT S.S#, S.Sname, S.Status, S.City
FROM S;

Database Systems

64

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

RESULT

Database Systems

65

Qualified Retrieval: Get supplier numbers for
suppliers in ‘Paris’ with STATUS > 20
SELECT S#
FROM S
WHERE CITY = ‘Paris’

AND STATUS > 20;
S#
S3

RESULT

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

Database Systems

66

Retrieval with Ordering: The result may be
ordered based on the contents of one or several
fields;
column [order] [, column [order]] …

where ‘order’ is either ASC or DESC, and ASC
as the default.

Database Systems

67

Get supplier numbers and Status for suppliers
in ‘Paris’ in descending order of status.

SELECT S#, STATUS
FROM S
WHERE CITY = ‘Paris’
ORDER BY STATUS DESC;

S# Status
S3 30
S2 10

RESULT

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

Database Systems

68

Join Queries
Simple equi-join

SELECT S.*, P.*
FROM S, P
WHERE S.CITY = P.CITY;

Note that the field referenced in the WHERE clause
here must be qualified by the table names.

Database Systems

69

Conceptually, you may generate the
Cartesian product of the tables listed in
the FROM clause. Then eliminate all the
tuples that do not satisfy the join condition
defined in WHERE clause.

Database Systems

70

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

S
P# Pname Color Weight City
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

P

Database Systems

71

S# Sname Status S.City P# Pname Color Weight P.City
S1 Smith 20 London P1 Nut Red 12 London
S1 Smith 20 London P4 Screw Red 14 London
S1 Smith 20 London P6 Cog Red 19 London
S2 Jones 10 Paris P2 Bolt Green 17 Paris
S2 Jones 10 Paris P5 Cam Blue 12 Paris
S3 Blake 30 Paris P2 Bolt Green 17 Paris
S3 Blake 30 Paris P5 Cam Blue 12 Paris
S4 Clark 20 London P1 Nut Red 12 London
S4 Clark 20 London P4 Screw Red 14 London
S4 Clark 20 London P6 Cog Red 19 London

RESULT

Database Systems

72

Greater-than join: Get all combinations of
supplier and part information such that the
supplier city follows the part city in alphabetical
order;

SELECT S.*, P.*
FROM S, P
WHERE S.CITY > P.CITY;

Database Systems

73

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

S

P# Pname Color Weight City
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

P

Database Systems

74

S# Sname Status S.City P# Pname Color Weight P.City
S2 Jones 10 Paris P1 Nut Red 12 London
S2 Jones 10 Paris P4 Screw Red 14 London
S2 Jones 10 Paris P6 Cog Red 19 London
S3 Blake 30 Paris P1 Nut Red 12 London
S3 Blake 30 Paris P4 Screw Red 14 London
S3 Blake 30 Paris P6 Cog Red 19 London

RESULT

75

Get all combinations of supplier information
and part information where the supplier and part
concerned are co-located, but omitting supplier
with status 20;

SELECT S.*, P.*
FROM S, P
WHERE S.CITY = P.CITY

AND STATUS < > 20;

Database Systems

76

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

S

P# Pname Color Weight City
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

P

Database Systems

77

S# Sname Status S.City P# Pname Color Weight P.City
S2 Jones 10 Paris P2 Bolt Green 17 Paris
S2 Jones 10 Paris P5 Cam Blue 12 Paris
S3 Blake 30 Paris P2 Bolt Green 17 Paris
S3 Blake 30 Paris P5 Cam Blue 12 Paris

RESULT

Database Systems

78

Aggregate Functions
Aggregate functions are used to enhance the

retrieval power of SQL. These are:
COUNT number of values in the column
SUM sum of the values in the column
AVG average of the values in the column
MAX largest value in the column
MIN smallest value in the column

Database Systems

79

Aggregate Functions
For SUM and AVG, column must be numeric

values.
Key word DISTINCT can be used to eliminate the

duplicate values.
For COUNT, DISTINCT must be specified.

Database Systems

80

Get the total number of suppliers
SELECT COUNT (*)
FROM S;

Note that the result is a table with a single
value.

RESULT

5
S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

Database Systems

81

Get the total number of suppliers currently
supplying part;

SELECT COUNT (DISTINCT S#)
FROM SP;

RESULT

4

S# P# QTY
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

Database Systems

82

Get the number of shipments for part ‘P2’;
SELECT COUNT (*)
FROM SP
WHERE P# = ‘P2’;

RESULT

4

S# P# QTY
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

Database Systems

83

Get the total quantity of part ‘P2’ supplied;

SELECT SUM (QTY)
FROM SP
WHERE P# = ‘P2’;

RESULT

1,000

S# P# QTY
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

Database Systems

84

So far we have applied aggregate operators to
all (qualifying) tuples. Sometimes, it is
desirable to apply them to each of several
groups of tuples. Assume the following
relation:

Sailors(sid:integer, sname:string, rating:integer, age:real)

Further assume we have the following query:
Find the age of the youngest sailor for each rating level;

Database Systems

85

In general, we do not know how many rating
levels exist, and also we do not know what the
rating values for these levels are!
To simplify the situation, suppose we know that

rating values go from 1 to 10;

Database Systems

86

We can write 10 queries such as:
SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i; 1 ≤ i ≤ 10

Not a good solution!

Database Systems

87

The GROUP BY and HAVING commands
can be used to solve the issue.

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Database Systems

88

The target-list consist of:
a list of attribute names,
a list of terms having the form aggregate (attribute-

name) AS new-name.
Attribute (s) that appeared in attribute names

must appear in the grouping-list.
The expression appearing in the group-

qualification must have a single value per
group.

Database Systems

89

Order of Operations:
Cartesian product of relation-list is performed.
Restrictions specified in the qualification are

applied.
Projection is enforced to eliminate unnecessary

attributes.
The resultant relation is sorted according to

grouping-list.
The group-qualification in the HAVING clause is

enforced.

Database Systems

90

Use of GROUP BY
The GROUP BY operator conceptually

(logically) rearranges the table represented in
FROM clause into partitions, such that within
any one group all rows have the same value for
the GROUP BY field.

Database Systems

91

For each part supplied, get the part number and
the total shipment quantity.

SELECT P#, SUM (QTY) AS Total
FROM SP
GROUP BY P#;

P# Total
P1 600
P2 1,000
P3 400
P4 500
P5 500
P6 100

RESULT

S# P# QTY
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

Database Systems

92

Use of HAVING
Get part numbers for all parts supplied by more

than one supplier;
SELECT P#
FROM SP
GROUP BY P#
HAVING COUNT (*) > 1;

P#
P1
P2

P4
P5

RESULT

S# P# QTY
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

Database Systems

93

Nested Queries
A nested query is a query that has another

query embedded within it; the embedded query
is called a sub-query. A sub-query typically
appears in the WHERE clause. The sub-query
may appear in FROM clause or HAVING
clause, as well.

Database Systems

94

Get supplier names of suppliers who supply part
‘P2’;

SELECT Sname
FROM S
WHERE S# IN

(SELECT S#
FROM SP
WHERE P# = ‘P2’) ;

The overall query is evaluated by evaluating the
nested part first.

Database Systems

95

RESULT

Sname
Smith
Jones
Blake
Clark

S# P# QTY
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

Database Systems

96

This query is equivalent to:
SELECT Sname
FROM S
WHERE S# IN (‘S1’, ‘S2’, ‘S3’, ‘S4’) ;

This can also be expressed as a join query
SELECT Sname
FROM S, SP
WHERE S.S# = SP.S#

AND SP.P# = ‘P2’;

Database Systems

97

Multiple levels of nesting
Got supplier names for suppliers who supply at

least one ‘red’ part;
SELECT Sname
FROM S
WHERE S# IN

(SELECT S#
FROM SP
WHERE P# IN

(SELECT S#
FROM P

WHERE COLOR = ‘Red’));

Database Systems

98

S# P# QTY
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

P# Pname Color Weight City
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

RESULT

Sname
Smith
Jones
Clark

Database Systems

99

Aggregate function in a sub-query
Get supplier numbers for supplies with status

value less than the current maximum status
value in the S table;

SELECT S#
FROM S
WHERE STATUS <

(SELECT MAX (STATUS)
FROM S);

Database Systems

100

RESULT

S#
S1
S2

S4

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

Database Systems

101

Query Using EXISTS
EXISTS is one of the most fundamental and

general constructs in SQL language.

Database Systems

102

Get supplier names for suppliers who supply
part ‘P2’;

SELECT Sname
FROM S
WHERE EXISTS

(SELECT *
FROM SP
WHERE S# = S.S#

AND P# = ‘P2’)) ;

Database Systems

103

SNAME
Smith
Jones
Blake
Clark

RESULTS# P# QTY
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

To see how the example works,
consider each Sname in turn and
see whether it causes the
existence test to evaluate to True.

Database Systems

104

Get supplier names for suppliers who do not
supply part ‘P2’ (inverse of the previous
example);

SELECT Sname
FROM S
WHERE NOT EXISTS

(SELECT *
FROM SP
WHERE S# = S.S#

AND P# = ‘P2’)) ;

Database Systems

105

S# P# QTY
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

Sname
Adams

RESULT

Database Systems

106

Last query can also be represented by using
negated form of IN;

SELECT Sname
FROM S
WHERE S# NOT IN

(SELECT S#
FROM SP
WHERE P# = ‘P2’) ;

107

Database Systems

Get supplier names for suppliers who supply all
parts;

SELECT Sname
FROM S
WHERE NOT EXISTS

(SELECT *
FROM P
WHERE NOT EXISTS

(SELECT *
FROM SP
WHERE S# = S.S#

AND P# = P.P#)) ;

Database Systems

108

The previous query can be expressed as:
Select supplier names for suppliers such that

there does not exist a part that they do not
supply.

Database Systems

109

RESULT

Sname
Smith

S# P# QTY
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

P# Pname Color Weight City
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

Database Systems

110

Query Using Union: Union is traditional union
operator borrowed from set theory.
Get supplier numbers for parts that either

weight more than 16 Pounds or are supplied by
supplier ‘S2’.

Database Systems

111

SELECT P#
FROM P
WHERE WEIGHT > 16
UNION
SELECT P#
FROM SP
WHERE S# = ‘S2’ ;

Note redundant duplicate rows are always eliminated.
However, we can use UNION ALL operator to include
the duplicates.

Database Systems

112

S# P# QTY
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

P#
P1
P2

P3

P6

RESULTP# Pname Color Weight City
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

Database Systems

113

Previous query can also be written as:
SELECT DISTINCT P#
FROM P, SP
WHERE P.P# = SP.P#
AND P.WEIGHT > 16
OR SP.S# = ‘S2’;

Database Systems

114

115

Database Systems

P SP

Join (P.P# = SP.P#)

Restrict (SP.S# = ‘S2’ OR P.WEIGHT > 16)

Project (P#)

Result

P SP

Join (P.P# = SP.P#)

Restrict (SP.S# = ‘S2’)

Project (P#)

Result

Restrict (P.WEIGHT > 16))

Query Using INTERSECT: Similarly
INTERSECT operator has also been borrowed from
traditional set theory:

SELECT P#
FROM P
WHERE WEIGHT > 16
INTERSECT
SELECT P#
FROM SP
WHERE S# = ‘S2’;

Database Systems

116

S# P# QTY
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

P#
P2

RESULT
P# Pname Color Weight City
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

Database Systems

117

Previous query can also be specified as:
SELECT P#
FROM P, SP
WHERE P.P# = SP.P#
AND P.WEIGHT > 16
AND SP.S# = ‘S2’) ;

Database Systems

118

Modification Operations
The SQL DML supports three modification

operations:
UPDATE
DELETE
INSERT

Note these operations change the contents of
the database, hence they may violate the
integrity constraints.

Database Systems

119

UPDATE: The general format of UPDATE
operation is;

UPDATE table
SET field = scalar-expression

[, field = scalar-expression] …
[WHERE condition] ;

All records in table satisfying condition are
modified in accordance with the assignments.

Database Systems

120

Change the color of part ‘P2’ to yellow,
increase its weight by 5, and set its city to
unknown (null);

UPDATE P
SET COLOR = ‘Yellow’

WEIGHT = WEIGHT + 5,
CITY = NULL

WHERE P# = ‘P2’;

Database Systems

121

Double the status of all suppliers in ‘London’;

UPDATE S
SET STATUS = STATUS * 2
WHERE CITY = ‘London’ ;

Database Systems

122

Set the shipment quantity to zero for all
supplies in ‘London’;

UPDATE SP
SET QTY = 0
WHERE ‘London’ =

(SELECT CITY
FROM S
WHERE S.S# = SP.S#) ;

Database Systems

123

Update Multiple Tables:
UPDATE S
SET S# = ‘S9’
WHERE S# = ‘S2’

UPDATE SP
SET S# = ‘S9’
WHERE S# = ‘S2’

 The first UPDATE will force the database to become
inconsistent, since now in shipment table there is a supplier ‘S2’
that does not exist. The database remains in inconsistent state
until after the second UPDATE is executed.

Database Systems

124

DELETE: This command has the following
general format;

DELETE
FROM table

[WHERE condition];

All records in table satisfying condition are deleted.

Database Systems

125

Delete all shipments with quantity greater than 300;
DELETE
FROM SP

WHERE QTY > 300;

Delete supplier ‘S5’;
DELETE
FROM S

WHERE S# = ‘S5’;

Database Systems

126

Delete all shipments;
DELETE
FROM SP ;

Note that now SP is an empty table.
Delete all shipments for suppliers in ‘London’;

DELETE
FROM SP

WHERE ‘London’ =
(SELECT CITY
FROM S
WHERE S.S# = SP.S#) ;

Database Systems

127

INSERT: Insert comes in two formats;

INSERT
INTO table [(field [, field] …)]
VALUE (literal [, literal] …) ;

In this case a record with the contents defined
in VALUE clause is added to the table.

Database Systems

128

INSERT
INTO table [(field [, field] …)]

sub-query ;

In this case, the result of the sub-query (may be
multiple rows) is added to the table.

In both cases, omitting the list of fields means all
fields in the table, in left to right order.

Database Systems

129

Add part ‘P7’ (city ‘Athens’, weight 24) name
and color unknown to the P relation;

INSERT
INTO P (P#, CITY, WEIGHT)
VALUE (‘P7’, ‘Athens’, 24) ;

Note we assumed that COLOR and Pname are not defined
as ‘NOT NULL’.

Database Systems

130

Add part ‘P8’ (name ‘Sprocket’, color ‘Pink’, city
‘Nice’, weight 14) to the P relation;

INSERT
INTO P
VALUE (‘P8’, ‘Sprocket’, ‘Pink’, 14, ‘Nice’) ;

Add a new shipment with supplier number ‘S20’,
part number ‘P20’ and quantity 1000.

INSERT
INTO SP (S#, P#, QTY)
VALUE (‘S20’, ‘P20’, 1000) ;

Database Systems

131

Join Types and Conditions
Each of the variant of the join operations in

SQL consists of a join type and a join condition.
Join condition defines which tuples in the two

relations match and what attributes are present
in the join result.
Join type defines how tuples in each relation

that do not match any tuple in the other relation
are treated.

132

Database Systems

Join Types and Conditions

 Use of a join condition is mandatory for outer join and
optional for inner join.

 Keyword natural appears before join type, whereas on
and using conditions appear at the end of join
expression.

133

Database Systems

Join Type
Inner join
Left outer join
Right outer join
Full outer join

Join Conditions
Natural
On <predicate>
Using (A1, A2, …, An)

Join Types and Conditions
The ordering of the attributes in the result of a

natural join is as follows:
Join attributes appears first in the same order as they

are in the left hand side relation,
Nonjoin attributes of left hand side relation,
Nonjoin attributes of right hand side relation.

134

Database Systems

Join Types and Conditions
The right outer join is symmetric to the left

outer join.
Tuples from the right hand side relation that do

not match any tuples in the left hand side
relation are padded with nulls and added to the
result relation.

135

Database Systems

Join Types and Conditions
The join condition using (A1, A2, …, An) is

similar to natural join condition, except that the
join attributes are A1, A2, …, An, rather than all
common attributes. In addition, join attributes
A1, A2, …, An appear just once in the join
result.

136

Database Systems

Database Systems

Example
Assume the following relations

137

Loan-number Branch-name amount
L-170 Downtown 3000
L-230 Redwood 4000
L-260 Perryridge 1700

Customer-name Loan-number
Jones L-170
Smith L-230
Hayes L-155

loan

borrower

Example
loan inner join borrower on loan.loan-number =

borrower.loan-number

loan left outer join borrower on loan.loan-
number = borrower.loan-number

138

Database Systems

Loan-number Branch-name Amount Customer-name Loan-number
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230

Loan-number Branch-name Amount Customer-name Loan-number
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230
L-260 Perryridge 1700 Null null

Example
loan natural right outer join borrower

loan full outer join borrower using (loan-number)

139

Database Systems

Loan-number Branch-name Amount Customer-name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-155 null null Hayes

Loan-number Branch-name Amount Customer-name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-260 Perryridge 1700 null
L-155 null null Hayes

What is the result of the following?
INSERT
INTO account

SELECT *
From account

140

Database Systems

For each part supplied, get the part number and
the total quantity supplied supported for that
part and save the result in the database;

CREATE TABLE TEMP
(P# CHAR (6) NOT NULL,
TOTQTY INTEGER NOT NULL,

PRIMARY KEY (P#)) ;

Database Systems

141

INSERT
INTO TEMP (P#, TOTQTY)

SELECT (P#, SUM (QTY)
FROM P#
GROUP BY P# ;

SELECT is executed and result is copied in Temp
relation. User, now, can do whatever he/she wants
to do with Temp relation. Eventually,
DROP TABLE TEMP ;

will eliminate Temp relation from the database.

Database Systems

142

Questions: Using the following relations;
S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

S

P# Pname Color Weight City
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

P

S# P# QTY
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

SP

Database Systems

143

 Get supplier names for suppliers who supply part P2.
 Get supplier names for suppliers who supply at least one red

part.
 Get supplier names for suppliers who supplies all parts.
 Get supplier numbers for suppliers who supply at least all those

parts supplied by supplier S2.
 Get supplier names for suppliers who do not supply part P2.
 Get all pairs of supplier numbers such that the two suppliers

concerned are co-located

Database Systems

144

	CS5300�Database Systems��SQL
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Slide Number 29
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Slide Number 75
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems

