CS5300
Database Systems

SOL | —

A.R. Hurson
323 CS Building
hurson@mst.edu

Database Systems

Note, this unit will be covered In five
lectures. In case you finish it earlier, then

you have the following options:

1) Take the early test and start CS5300.module4

2) Study the supplement module
(supplement CS5300.module3)

3) Act as a helper to help other students in
studying CS5300.module3

Note, options 2 and 3 have extra credits as noted in course
outline. 2

Database Syst

Glossary of prerequisite t

Familiar with the topi

Yes 1

Take Test

|

No) .
Pass? e Remedial action
Yes l

Glossary of topics <

|

No
Familiar with the topics? ——» Take the Module

Yes 1 /

Take Test

|

Pass?

Yes 1

Options

e

Study next module?

>

A 4

) 3.
Extra Curricular activities

Database Systems

@ You are expected to be familiar with:

Basic principles of relational database model,

Basic format of SQL
Data Definition Language

Data Manipulation Language
®If nott you need to @ study
CS5300.module3.background

Database Systems

@ Structured Query Language (SQL)

SQL 1s a comprehensive language and provides
statements for Data definition and Data
manipulation. Hence, i1t 1s both a Data
Definition Language (DDL) and Data
Manipulation Language (DML)

Database Systems

@ Structured Query Language (SQL)

The SQL language has the following features:

Embedded and Dynamic facilities to allow SQL
code to be called from a host language or a query be
constructed at run-time.

Triggers which are actions executed by DBMS
whenever certain changes to the database meet
certain conditions.

Database Sys

@ Structured Query Languag

WSecurity to control users’ accesses to data objects.

@Transaction management commands to allow the
execution of transactions.

" Remote database accesses to allow client server or
distributed environments.

Database Sys

@ Data Definition Language
CREATE SCHEMA

CREATE TABLE

CREATE DOMAIN

CREATE VIEW

DROP TABLE

DROP VIEW

INSERT

UPDATE

DELETE

ALTER

Define KEY CONSTRIANTS

CHECK

¥ M M M Nk M Mk K N *

Database Sys’
€ Running Example

Fname ‘Minit ‘Lname Ssn ‘Bdate ‘ Address |Sex | Salary | Super_ssn | Dno

Dnumber Mgr_start_date Dnumber | Dlocation

Essn

Pname | Pnumber Plocation | Dnum Pno | Hours

Dependent_name Relationship

Database Systems

® Data Definition Language
CREATE SCHEMA: The general format is as follows:

schema-name ‘hame’

SEINENEINE authorization identifier

Schema Is identified by a name, and includes an
authorization indicating the owner and descriptors
for each element in the schema.

Schema elements are: tables, constraints, views,

domains, ...
10

Database Sys

€ Running Example
CREATE SCHEMA cOMPANY AUTHORIZATION *“Jsmith’

11

Database Sys

€ Data Definition Language

1 CREATE TABLE: The general format is as follows:

CREATE TABLE base-table

(column-definition [, column-definition] ...

[, primary-key-definition]

[, foreign-key-definition [, foreign-key-definition] ...]);
where a “column-definition” is in the form of

column data-type [NOT NULL]

7*Note that the specification of primary-key is
optional.

12

Database Sys

CREATE TABLE s

(S# CHAR(5) NOT NULL,
SNAME CHAR(20) NOT NULL,
STATUS INTEGER NOT NULL,
CITY CHAR(15) NOT NULL,
PRIMARY KEY (S#)):

#This will create an empty table. The data values
now can be entered using INSERT command.

Result: ¢ S# SNAME STATUS CITY

13

Database Sys

€ Running Example
CREATE TABLE COMPANY.EMPLOYEE

Or
CREATE TABLE EMPLOYEE
(Fname VARCHAR(15) NOT NULL,
Minit CHAR,
Lname VARCHAR(15) NOT NULL,
Ssn CHAR(9) NOT NULL,
Bdate Date,
Address VARCHAR(30),
Sex CHAR,
Salary DECIMAL(10,2),
Super_ssn CHAR(9),
Dno INT NOT NULL,

PRIMARY KEY (Ssn),
FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE (Ssn),
FOREIGN KEY (Dn0) REFERENCES DEPARTMENT (Dnumber)) ; 14

Database Sys

€ Data Definition Language

It 1S possible to specify the data type of each
attribute directly, or one can define a domain.

CREATE DOMAIN domain_name AS CHAR(N);

defined name

15

Database Sys

Data Definition Language

It Is possible to define a default value for an
attribute by appending the clause

<value> to an attribute definition.

The default value iIs included in any new tuple if an
explicit value is not provided for that attribute.

16

Database Sys

€ Running Example

CREATE TABLE EMPLOYEE

(Fname VARCHAR(15) NOT NULL,
Minit CHAR,
Lname VARCHAR(15) NOT NULL,
Ssn CHAR(9) NOT NULL,
Bdate Date,
Address VARCHAR(30),
Sex CHAR,
Salary DECIMAL(10,2),
Super_ssn CHAR(9),
Dno INT NOT NULL DEFAULT 1,

PRIMARY KEY (Ssn),
FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE (Ssn),
FOREIGN KEY (Dn0) REFERENCES DEPARTMENT (Dnumber)) ;

17

Database Sys

€ Data Definition Language

CHECK clause (The keyword CHECK along

with a conditional expression) can be used to

restrict (enforce a constraint over) attribute or
domain value.

attribute name domain (conditional expression on
attribute name)

18

Database Sys

Constraints over a single tabl
CREATE TABLE Students

(Sid CHAR(20),
name CHAR(30),
login CHAR(20),
age INTEGER,
gpa REAL ,

UNIQUE (name, age),
CONSTRAINT Studentskey
PRIMARY KEY (Sid)

CHECK (age >= 16 AND age <=30))

€ When a new tuple is inserted into the table or an existing tuple
IS modified, the conditional statement is checked. If the result

Is false, the command is rejected.
19

Database Sys

€ Running Example

Dnumber INT NOT NULL CHECK (Dnumber > 0 and Dnumber < 21);

CREATE DOMAIN D _NUM AS INTEGER CHECK (D_NUM >0
AND D_NUM <21);

20

Database Sys

@ Integrity Constraints

As noted before, constraints can be defined
either as the table constraints (over a single
table) or assertions.

21

Database Sys

@ Constraints over a single t

#*Primary Key/Candidate Key
CREATE TABLE Student (sid CHAR(20),

Studentskey is called the
constraint name - It will
be returned If the
constraint is violated.

name CHAR(30),

login CHAR(20),

age INTEGER,

gpa REAL ,

UNIQUE (name, age),
CONSTRAINT Studentskey
PRIMARY KEY (Sid))

22

Database Sys

@ Constraints over a single t

¥ Foreign Key

wKey words FOREIGN KEY and REFERENCE are
used to specify this constraint:
CREATE TABLE Enroll (Sid CHAR(20),
Cid CHAR(20),
grade CHAR(10),
PRIMARY KEY (Sid, Cid),

FOREIGN KEY (Sid)
REFERENCES Students)
Referenced relation

23

Database Sys

@® L ast lecture

Evolution of database computation platform
@ Centralized
@ Client/server
WPeer to peer
@ Distributed
m7?
SQL
“Data Definition Language

24

Database Systems

@ Integrity Constraints

As we discussed iIn introduction section, a referential
Integrity constraint can be violated when tuples are inserted
or deleted, or when a foreign key or primary key Is
modified. The default action taken by SQL is to reject the
update operation that causes a violation. Alternatively, one
can use a referential triggered action clause to any foreign
key.
, , on
or actions will do the job.

25

Database Sys

€ Running Example

CREATE TABLE EMPLOYEE

(Fname VARCHAR(15) NOT NULL,

Minit CHAR,

Lname VARCHAR(15) NOT NULL,

Ssn CHAR(9) NOT NULL,

Bdate Date, . i

R R -0 o o
If tuple for supervising employee is ~°* CHAR, employee referencing this person
deleted then Super_ssn for all Salary DECIMAL(10,2), will be updated
employee referencing this person Super ssn CHAR(9),
will be set to NULL Dno INT NOTNULL DEFAULY 1,

PRIMARY KEY (Ssn),
FORELGN KEY (Super_ssn) REFERENCES EMPLOYEZ (Ssn)

ON DELETE SETNULL ON UPDATE CASCADE,
FOREIGN KEY (Dn0) REFERENCES DEPARTMENT (Dnumber)

ON DELETE SET DEFAULT ON UPDATE CASCADE) :

26

Database Sys

Data Definition Language

INSERT command can be used to insert a single

tuple to a relation.

S (S#, SNAME, STATUS, CITY)
(‘S1’, ‘SMITH’, 10, ‘LONDON”);

or

S
(‘S1’, ‘SMITH’, 10, ‘LONDON”);

S# SNAME STATUS CITY

N=CIVIMEEN S| SMITH 10 LONDON

27

Database Sys

€ Running Example

INSERT INTO EMPLOYEE

VALUES (“Richard’, ‘K’, ‘Marini’, ‘653298653, ‘1962-
12-30°, ‘98 Oak Forest, Katy, TX’, ‘M’, 37000,
‘087654321°, 4);

INSERT INTO EMPLOYEE (FNAME, LNAME, DNO, SSN)
VALUES (*Richard’, “Marini’, 4, ©653298653’),

28

@ Data Definition Language

It 1S possible to insert multiple tuples Into a
relation by a single INSERT command. In this
case, the attribute values forming a tuple are
enclosed in parentheses separated by commas.

29

Database Systems

Data Definition Language

ALTER: Allows to change the definition of a base-
table or any named schema element (i.e., add (drop)
a new attribute (column) to (from) an existing
base-table, add (drop) table constraints, changing a
column definition).

Its general format is as follows:

30

Database Systems

® Data Definition Language

base-table column data-type
base-table column

To drop a column we must use either CASCADE
or RESTRICT. In case of CASCADE, all
constraints and views that reference the column are
dropped. In case of RESTRICT, the command Is
successful If the column Is not referenced by other
entities In the schema.

31

Database Sys

S DISCO

N=10/N)

#* Discount column is added (at the right) to the table S. All
existing tuples are (conceptually) expanded, and the value of

the new column is null in every record unless a default value is
defined).

#* Update command is used to define values for “DISCOUNT” in
every tuples in S.

#* Specification of NOT NULL is not allowed in ALTER
TABLE).

32

Database Sys

€ Running Example

ALTER TABLE COMPANY.EMPLOYEE ADD JOB VARCHAR(12);

ALTER TABLE COMPANY.EMPLOYEE DROP ADDRESS CASCADE;

71t 1s also possible to ALTER column definition:

ALTER TABLE COMPANY.DEPARTMENT ALTER MGRSSN
DEFAULT;

ALTER TABLE COMPANY.DEPARTMENT ALTER MGRSSN
DEFAULT “123456789";

33

Database Sys

@ Data Definition Languag
#DROP TABLE: Allows to destroy an existing
base-table.

DROP TABLE base-table:

34

Database Sys

€ Example

2+ As discussed before command CREATE can be used
to define a domain:

CREATE DOMAIN Qtyvalue INTEGER DEFAULT 1
CHECK (VALUE >= 1 AND VALUE <=1000)

“*Here INTEGER 1iIs the base type for domain
Qtyvalue, however its contents Is restricted by the
CHECK statement.

35

Database Systems

€ Example

Once a domain iIs defined, 1t can be used to limit
contents of a column in a table.

The DEFAULT keyword assigns a default value to a
domain — this value will be automatically assumed
In an attempt to iInsert a tuple into the relation
without an initial value for an attribute defined over
Qtyvalue.

36

Database Systems

@ Constraints over a single table

Assume the following tables:
Sailors(sid:integer, sname:string, rating:integer, age:real)
Boats(bid:integer, bname:string, color:string)
Reserves(sid:integer, bid:integer, day:date)

Define a constraint that “Interlake” boat cannot be
reserved.

37

Database Sys

Constraints over a single tabl
CREATE TABLE Reserves

(Sid INTEGER,

bid INTEGER,

day DATE,

PRIMARY KEY (Sid, bid),

FOREIGN KEY (Sid) REFERENCES Sailors)
FOREIGN KEY (bid) REFERENCES Boats)

CONSTRAINT nolnterlakeRes.
CHECK (“Interlake” <>
(SELECT B.bname
FROM Boats B
WHERE B.bid = Reserve.bid)))

38

Database Sys

€ Data Manipulation Langua

7 SQL provides four DML statements:
M SELECT,
® UPDATE,
W DELETE, and
o INSERT.

39

Database Sys

€ Data Manipulation Language (
SELECT AL A, ... A,
FROM [, Mo oeny Iy
WHERE p

[TA, A, ... A(CR(FHX T X Lo X 1))

SELECT specifies field (s) RO a specific table
(s) WHERE specific condition (S) Is true.

40

Database Sys;

Database Systems

@® The select Clause

SQL allows duplicates. In cases where we
want to eliminate duplicate, we must use the
keyword DISTINCT.

The select clause allows arithmetic operations
Involving +. -, *, and / operations on constant or
attributes of tuples:

42

Database Sys

¥ The where Clause

SQL uses the logical connectors and, or, and
not. The operands of logical connectors can be
expressions involving <, <=, >, >+, =, and < >,
SQL allows between (not between) comparison
operator:

between and

43

Database Systems

& The following strategy is used to evaluate

an SQL expression:
Compute the cross-product of relation-list,

Discard resulting tuples if they fall
qualifications (restrict),

Delete attributes that are not In target-list
(project).

If DISTINCT is specified, then duplicate tuples
are eliminated.

44

Database Systems

The following tables are assumed for the rest of
this section:

Sname Status City
S1 Smith 20 London
S, Jones 10 Paris

Supplier
Relation

S; Blake 30 Paris
S, Clark 20 London
Sc Adams 30 Athens

45

Database Systems

Part Pname Color Weight City
Relation Nut Red 12 London
Bolt Green 17 Paris

Screw Blue 17 Rome
Screw Red 14 London
Cam Blue 12 Paris
Cog Red 19 London

46

Relation

Database Systems

a7

Database Systems

E

S# Sname Status City
S; Smith 20 L_ondon
S, Jones 10 Paris

Simple Queries

S; Blake 30 Paris
S, Clark 20 London
S Adams 30 Athens

RESULT

S# Status
S, 10

S 30

48

Database Systems

Simple Retrieval

RESULT

49

Database Systems

RESULT

50

Database Sys

€ Running Example

SELECT BDATE, ADDRESS
FROM EMPLOYEE
WHERE FNAME=‘John” AND MINIT="B” AND LNAME=‘Smith’;

7 In relational algebra

1_IBDATE, ADDRESS(GFNAI\/IE:‘JOhn’ AND MINIT="B® AND

 nave=smity (EMPLOYEE))

51

Database Sys

€ Running Example

SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME=‘Research’” AND DNUMBER=DNO;

“In relational algebra

HFNAME, LNAME, ADDRESS(GDNAI\/IE:‘ResearCh’ AND DNUMBER=DNO

(EMPLOYEE x DEPARTMENT))

52

Database Sys

#* Retrieval of Computed Values:
‘Part relation’ Is in Pound:

eight In

Result

P#| Pname Color Weight City
P, Nut Red 12 London
P, Bolt Green 17 Paris

Weight in Grams =

P; Screw Blue 17 Rome Weight in Grams =

P, Screw Red 14 London
Cam Blue 12 Paris
Cog Red 19 London

Weight in Grams =
Weight in Grams =
Weight in Grams =
Weight in Grams =

Database Systems

Naming Fields in the resultant relation
and — are two ways to name fields in result;

S# Sname Status City
S: Smith 20 London

Result S, Jones 10 Paris

S; Blake 30 Paris
S, Clark 20 London

Supplier name Status
Ss Adams 30 Athens

Jones 10
Blake 30

54

Database Systems

o —

AS
S# Sname Status City
S; Smith 20 London
S, Jones 10 Paris
S; Blake 30 Paris
Result S, Clark 20 London

. Ss Adams 30 Athens
Supplier name Status

Jones 10
Blake 30

55

Database Sys

€ Running Example

7*What is the meaning of the following query?
SELECT E.Fname, E.Lname, S.Fname, S.Lnhame
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.Super_ssn=S.5sn;

56

Database Sys

IS the keyword t
matching (pattern matching) operation;

ring

AS

LIKE

Note that * ’ stands for any one character (don’t
care), and ‘%’ stands for O or more arbitrary
characters (repeated don’t care).

57

Database Sys

Result

S# Sname Status City . .
S; Smith 20 London Supplier name City

S, Jones 10 Paris Jones Paris

S; Blake 30 Paris Blake Paris

S, Clark 20 London
S Adams 30 Athens Adams Athens

58

Database Systems

Get all parts whose names begin with the letter C.

LIKE

Result

P# | Pname Color Weight City
P, Nut Red 12 Londonj P# Pname Color Weight City

P Bolt Green 17 Paris :
P; Screw Blue 17 Rome P5 Cam Blue 12 Paris

P, Screw Red 14 London

P6 Cog Red 19 London

P Cam Blue 12 Paris
P Cog Red 19 London

59

Database Sys

s Similarly, NOT LIKE can

WHERE clause;
SELECT P.*
FROM P

WHERE P.City NOT LIKE ‘%E%’;

In this case, the condition is evaluated to “true” if City does
not contain an ‘E’.

60

Database Systems

S# Sname Status City
S; Smith 20 London
S, Jones 10 Paris

S; Blake 30 Paris
S, Clark 20 L_ondon
S Adams 30 Athens

61

Database Sys

Retrieval Involving NULL

Assume for the sake of the example that
supplier S; has a status value of null.

Get supplier numbers for supplier with status
greater than 25;

62

Database Systems

S# | Sname Status City

S; Smith 20 London Result
S, Jones 10 Paris

: S#
S; Blake 30 Paris S,
S, Clark 20 London

S Adams 1 Athens

Unlike previous case S: does not qualify.

63

Database Systems

Get full detall of all suppliers

Sname Status City
S1 Smith 20 London
S>, Jones 10 Paris

Ss3 Blake 30 Paris
Ss Clark 20 London
Ss Adams 30 Athens

This is equivalent to:

64

Database Sys

S# Snhame Status City
RESULT Sy Smith 20 London
S, Jones 10 Paris

S; Blake 30 Paris
S, Clark 20 _ondon
S Adams 30 Athens

65

Database Systems

Qualified Retrieval: Get supplier numbers for
suppliers in “Paris’ with STATUS > 20

RESULT [BSs:
S3

S# Sname Status City
S; Smith 20 London
S, Jones 10 Paris

S; Blake 30 Paris
S, Clark 20 London
S Adams 30 Athens

66

Database Sys

Retrieval with Ordering: y be
ordered based on the contents of one or several
fields:

column [order] [, column [order]] ...

where ‘order’ 1s either ASC or DESC, and ASC
as the default.

67

Database Systems

|

|
Get supplier numbers and Status for suppliers
In “‘Paris’ In descending order of status.

SNRa o oStatus
ORDER BY DESC S, 30

S, 10

S# Sname Status City
S; Smith 20 London
S, Jones 10 Paris

S; Blake 30 Paris
S, Clark 20 London
S Adams 30 Athens

68

Database Sys

€ Join Queries
7= Simple equi-join
SELECT S.*, P.*

FROM S, P
WHERE S.CITY =P.CITY;

¥ Note that the field referenced in the WHERE clause
here must be qualified by the table names.

69

Database Systems

& Conceptually, you may generate the
Cartesian product of the tables listed In
the FROM clause. Then eliminate all the
tuples that do not satisfy the join condition
defined in WHERE clause.

70

SH
S1
S2

S3
Sy
Ss

Shame Status

Smith
Jones
Blake
Clark
Adams

City

20 London P

10 Paris EZ

30 Paris P3
4

20 London

30 Athens

Database Systems

Nut Red
Bolt Green
Screw Blue
Screw Red
Cam Blue
Cog Red

P# Pname Color Weight

12
17
17
14
12
19

City
L.ondon
Paris
Rome
L_.ondon
Paris
LLondon

71

Database Sys

RESULT

Sname Status S.City P# Pname Color Weight P.City
London Nut Red London
London Screw Red London
London Cog Red London
Paris Bolt Green Paris

Paris Cam Blue Paris

Paris Bolt Green Paris

Paris Cam Blue Paris
LLondon Nut Red London
London Screw Red London
London Cog Red London

72

Database Sys

7= Greater-than join: Get a S of
supplier and part information such that the
supplier city follows the part city in alphabetical
order;

SELECT S.*, P.*
FROM S, P
WHERE S.CITY >P.CITY;

73

Database Systems

S# Sname Status City P# Pname Color Weight City
S:; Smith 20 | ondonll P: Nut Red 12 London

- P, Bolt Green 17 Paris
S delilse L Pl P; Screw Blue 17 Rome

P, Screw Red 14 London

S; Blake 30 Paris
Sy Clark 20 London Cam Blue 12 Paris
S; Adams 30 Athens Cogy Red 19 London

74

RESULT

S# Sname Status S.City P# Pname Color Weight P.City
Jones 10 Paris P, Nut Red 12 London
Jones 10 Paris P, Screw Red 14 London

Jones 10 Paris Ps Cog Red 19 London
Blake 30 Paris P, Nut Red 12 LLondon
Blake 30 Paris P, Screw Red 14 LLondon
Blake 30 Paris Pg Cog Red 19 LLondon

75

Database Sys

Get all combinations of s ation
and part information where the supplier and part
concerned are co-located, but omitting supplier
with status 20;

SELECT S.*,P.*

FROM S, P

WHERE S.CITY =P.CITY

AND STATUS <> 20;

76

Database Systems

S# Sname Status City P# Pname Color Weight City
S:; Smith 20 | ondonll P: Nut Red 12 London

- P, Bolt Green 17 Paris
S delilse L Pl P; Screw Blue 17 Rome

P, Screw Red 14 London

S; Blake 30 Paris
Sy Clark 20 London Cam Blue 12 Paris
S; Adams 30 Athens Cogy Red 19 London

77

Database Sys

RESULT

S# Sname Status S.City P# Pname Color Weight P.City
Jones 10 Paris P, Bolt Green 17 Paris

Jones 10 Paris P; Cam Blue 12 Paris
Blake 30 Paris P, Bolt Green 17 Paris
Blake 30 Paris P; Cam Blue 12 Paris

78

Database Sys

€ Aggregate Functions

Aggregate functions are used to enhance the
retrieval power of SQL. These are:

COUNT number of values in the column

SUM sum of the values in the column
AVG average of the values in the column
MAX largest value in the column

MIN smallest value in the column

79

Database Sys

7+ Aggregate Functions

“For SUM and AVG, column must be numeric
values.

wKey word DISTINCT can be used to eliminate the
duplicate values.

@For COUNT, DISTINCT must be specified.

80

Database Systems

Get the total number of suppliers
RESULT

S# | Sname Status City
S; Smith 20 London
S, Jones 10 Paris

S; Blake 30 Paris
S, Clark 20 London
S Adams 30 Athens

Note that the result is a table with a single
value.

81

Database Sys

Get the total number of
supplying part;

urrently

RESULT

Database Sys

Get the number of shipment

RESULT

83

Database Sys

Get the total quantity of part

RESULT

1,000

Database Systems

& So far we have applied aggregate operators to
all (qualifying) tuples. Sometimes, It IS
desirable to apply them to each of several
groups of tuples. Assume the following

relation:

@ Further assume we have the following query:
Find the age of the youngest sailor for each rating level;

85

Database Systems

In general, we do not know how many rating
levels exist, and also we do not know what the
rating values for these levels are!

To simplify the situation, suppose we know that
rating values go from 1 to 10;

86

Database Sys

#*We can write 10 queries suc
SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = 1; 1<1<10

#Not a good solution!

87

Database Sys

€ The GROUP BY and HA
can be used to solve the issue.
SELECT [IDISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

88

Database Systems

The target-list consist of:
a list of attribute names,

a list of terms having the form aggregate (attribute-
name) AS new-name.

Attribute (s) that appeared In attribute names
must appear in the grouping-list.

The expression appearing In the group-
qualification must have a single value per

group.

89

Database Sys

Order of Operations:
W Cartesian product of relation-list is performed.

WRestrictions specified In the qualification are
applied.

@Projection is enforced to eliminate unnecessary
attributes.

“The resultant relation is sorted according to
grouping-list.

@The group-qualification in the HAVING clause Is
enforced.

90

Database Systems

& Use of GROUP BY

The GROUP BY operator conceptually
(logically) rearranges the table represented In
FROM clause Into partitions, such that within
any one group all rows have the same value for

the GROUP BY field.

91

Database Systems|

For each part supplied, get the part number and
the total shipment quantity.

P# Total

600
RESULT 1,000

400

500
500

100

Database Sys

@ Use of HAVING

Get part numbers for all parts supplied by more

than one supplier; QTY

300

200

400

200

100

100

P# 300

400

RESULT El 200

P, 200

300
Ps 400

Database Systems

@ Nested Queries

A nested query Is a query that has another
query embedded within it; the embedded query
IS called a sub-query. A sub-query typically
appears in the WHERE clause. The sub-query
may appear in FROM clause or HAVING
clause, as well.

94

Database Sys

7= Get supplier names of suppli
‘P21;
SELECT Sname
FROM S

WHERE S# IN

(SELECT S#
FROM SP
WHERE P# = ‘P,’);

7 The overall query Is evaluated by evaluating the
nested part first.

95

Database Systems

S# Sname Status City RESULT
Sy Smith 20 London
S, Jones 10 Paris
S; Blake 30 Paris
S, Clark 20 London
Sg Adams 30 Athens

96

Database Sys

7+ This query Is equivalent to:
SELECT Sname
FROM S
WHERE S# IN(‘S,’, ‘S,’, ‘S.’, ‘S,”) ;
7 This can also be expressed as a join query
SELECT Sname
FROM S, SP
WHERE S.S# = SP.S#
AND SP.P#=‘P,’;

97

Database Sys

€ Multiple levels of nesting

7= Got supplier names for suppliers who supply at
least one ‘red’ part;

SELECT Sname
FROM S
WHERE S# IN
(SELECT S#
FROM SP
WHERE P# IN
(SELECT S#
FROM P

WHERE COLOR = ‘Red’));

98

Database Systems

S# | Sname Status City
Sy Smith 20 London

S, Jones 10 Paris RESULT
S; Blake 30 Paris

S, Clark 20 London
Ss Adams 30 Athens

P# Pname Color Weight City
P, Nut Red 12 London
P, Bolt Green 17 Paris

P Screw Blue 17 Rome
P, Screw Red 14 London
P: Cam Blue 12 Paris
Pe Cog Red 19 London

99

Database Sys

@ Aggregate function in a su

Get supplier numbers for supplies with status
value less than the current maximum status
value in the S table;

SELECT S#

FROM S

WHERE STATUS <

(SELECT MAX (STATUS)
FROM S):

100

Database Sys

: RESULT
S# Sname Status City SU

S1 Smith 20 London
S, Jones 10 Paris

S; Blake 30 Paris
S, Clark 20 London
S: Adams 30 Athens

101

Database Sys

@ Query Using EXISTS

#EXISTS 1s one of the most fundamental and
general constructs in SQL language.

102

Database Sys

7 Get supplier names for su
part °P,’;
SELECT Sname
FROM S
WHERE EXISTS

(SELECT *
FROM SP
WHERE S#=S.S#
AND P#=‘P,’));

103

Database Systems|

S# | Sname Status City
S; Smith 20 London
S, Jones 10 Paris

RESULT

S; Blake 30 Paris
S, Clark 20 London
S Adams 30 Athens

To see how the example works,
consider each Sname In turn and
see whether it causes the
existence test to evaluate to True.

104

Database Sys

7 Get supplier names for su ot
supply part ‘P,” (inverse of the previous
example);

SELECT Sname
FROM S
WHERE NOT EXISTS

(SELECT *
FROM SP
WHERE S#=S.S#
AND P#=‘P,’));

105

Database Systems

—

S# Sname Status City RESULT
S; Smith 20 London
S, Jones 10 Paris
S; Blake 30 Paris
S, Clark 20 London
Sg Adams 30 Athens

Adams

106

Database Sys

#tLast query can also be re
negated form of IN;
SELECT Sname

FROM S
WHERE S# NOT IN
(SELECT S#
FROM SP

WHERE P#='P,");

107

Database Sys

7 Get supplier names for supp

parts;
SELECT Sname
FROM S
WHERE NOT EXISTS
(SELECT *
FROM P
WHERE NOT EXISTS
(SELECT *
FROM SP

WHERE S#=S.S#

AND P#=P.P#));

108

Database Sys

€ The previous query can be S:

Select supplier names for suppliers such that
there does not exist a part that they do not

supply.

109

Database Systems

S# | Sname Status City
S; Smith 20 London
S, Jones 10 Paris

RESULT

Sname
Smith

S; Blake 30 Paris
S, Clark 20 London
Sg; Adams 30 Athens

P# Pname Color Weight City
P, Nut Red 12 London
P, Bolt Green 17 Paris

P Screw Blue 17 Rome
P, Screw Red 14 London
Ps Cam Blue 12 Paris
Ps Cog Red 19 London

110

Database Sys

al union

€ Query Using Union: Unio

operator borrowed from set theory.

Get supplier numbers for parts that either
weight more than 16 Pounds or are supplied by
supplier ‘S,’.

111

Database Sys

SELECT P#

FROM P

WHERE WEIGHT > 16
UNION

SELECT P#

FROM SP

WHERE S#="‘S,’;

7*Note redundant duplicate rows are always eliminated.
However, we can use UNION ALL operator to include
the duplicates.

112

Database Sys

P# Pname Color Weight City
P, Nut Red 12 London
P, Bolt Green 17 Paris

P; Screw Blue 17 Rome
P, Screw Red 14 London
Ps Cam Blue 12 Paris
P Cog Red 19 London

113

Database Sys

7+ Previous query can also be
SELECT DISTINCT P#
FROM P, SP
WHERE P.P# = SP.P#
AND P.WEIGHT > 16
OR SP.S#=S,’;

114

Database Sys

Re?lt T
Project (P#) Project (P#)

Restrict (SP.S# = ‘S,” OR PWEIGHT > 16) ‘ Join (P.P# = SP.P#)

Join (P.P# = SP.P#) Restrict (PWEIGHT >16)) Restrict (SP.S# = ‘S,’)
P SP P SP

115

Database Sys

®Query Using INTERS rly
INTERSECT operator has also been borrowed from

traditional set theory:
SELECT P#
FROM P
WHERE WEIGHT > 16
INTERSECT
SELECT P#
FROM SP
WHERE S#=‘S,’;

116

P#| Pname Color Weight City
P, Nut Red 12 London
P, Bolt Green 17 Paris

P; Screw Blue 17 Rome

P, Screw Red 14 London
Cam Blue 12 Paris
Cog Red 19 London

117

Database Sys

“*Previous query can also be s

SELECT P#
FROM P, SP

WHERE P.P# = SP.P#
AND P.WEIGHT > 16
AND SP.S#='S));

118

Database Sys

€ Modification Operations

The SQL DML supports three modification
operations:

WUPDATE
WDELETE
WINSERT

Note these operations change the contents of
the database, hence they may violate the
Integrity constraints.

119

Database Sys

#UPDATE: The general f

operation Is;
UPDATE table
SET field = scalar-expression
[, field = scalar-expression] ...
[WHERE condition] ;

= All records In table satisfying condition are
modified In accordance with the assignments.

120

Database Sys

#Change the color of par W,

Increase Its weight by 5, and set its city to
unknown (null);

UPDATE P

SET COLOR = “Yellow’
WEIGHT = WEIGHT + 5,
CITY = NULL

WHERE P#="P,’;

121

Database Sys

7+ Double the status of all supp

UPDATE S
SET STATUS = STATUS * 2
WHERE CITY =‘London’ ;

122

Database Sys

7+ Set the shipment quantit
supplies in ‘London’;

UPDATE SP
SET QTY =0
WHERE ‘London’ =
(SELECT CITY
FROM S

WHERE S.S#=SP.5#) ;

123

Database Sys

7+ Update Multiple Tables:

UPDATE S
SET St =Sy’
WHERE St ="S,’
UPDATE SP

SET St =Sy’
WHERE St ="S,’

 The first UPDATE will force the database to become
Inconsistent, since now in shipment table there is a supplier ‘S’
that does not exist. The database remains In inconsistent state

until after the second UPDATE is executed. 124

Database Sys

®DELETE: This command

general format;

DELETE
FROM table

[WHERE condition];

7= All records in table satisfying condition are deleted.

125

Database Sys

7 Delete all shipments with quan
DELETE
FROM SP

WHERE QTY > 300;

7 Delete supplier ‘S¢’;
DELETE
FROM S

WHERE S#=‘S.”;

126

Database Sys

7 Delete all shipments;

DELETE
FROM SP ;

7*Note that now SP Is an empty table.

7 Delete all shipments for suppliers in ‘London’;

DELETE
FROM SP

WHERE ‘London’ =
(SELECT CITY
FROM S
WHERE S.S#=SP.S#);

127

Database Sys

€ INSERT: Insert comes in two

INSERT
INTO table [(field [, field] ...)]
VALUE (literal [, literal] ...) ;

#+1n this case a record with the contents defined
In VALUE clause i1s added to the table.

128

Database Sys

INSERT
INTO table [(field [, field] ...)]
sub-query ;

In this case, the result of the sub-query (may be
multiple rows) is added to the table.

In both cases, omitting the list of fields means all
fields in the table, in left to right order.

129

Database Sys

7+ Add part ‘P;’ (city ‘Athens’
and color unknown to the P relation:;

INSERT
INTO P (P#, CITY, WEIGHT)
VALUE (‘P;’, ‘Athens’, 24);

7+ Note we assumed that COLOR and Pname are not defined
as ‘NOT NULL”.

130

Database Sys

7+ Add part ‘Pg” (name ‘Sprocke
‘Nice’, weight 14) to the P relation;

INSERT
INTO P
VALUE (‘Pg’, “‘Sprocket’, ‘Pink’, 14, ‘Nice’) ;

7 Add a new shipment with supplier number ‘S,’,

part number ‘P,,’ and quantity 1000.

INSERT
INTO SP (S#, P#, QTY)
VALUE (“S,y’, “Pyy’, 1000) ;

131

Database Systems

@ Join Types and Conditions

Each of the variant of the join operations iIn
SQL consists of a join type and a join condition.

Join condition defines which tuples in the two
relations match and what attributes are present
In the join result.

Join type defines how tuples In each relation
that do not match any tuple in the other relation
are treated.

132

Database Systems

@ Join Types and Conditions

Inner join Natural

Left outer join On <predicate>
Right outer join Using (A, A, ..., A))
Full outer join
#* Use of a join condition Is mandatory for outer join and

optional for inner join.

#* Keyword natural appears before join type, whereas on
and using conditions appear at the end of join
expression.

133

Database Systems

@ Join Types and Conditions
The ordering of the attributes in the result of a
natural join is as follows:

Join attributes appears first in the same order as they
are in the left hand side relation,

Nonjoin attributes of left hand side relation,
Nonjoin attributes of right hand side relation.

134

Database Sys

® Join Types and Conditions

The right outer join Is symmetric to the left
outer join.

Tuples from the right hand side relation that do
not match any tuples in the left hand side
relation are padded with nulls and added to the
result relation.

135

Database Systems

€ Join Types and Conditions
The join condition using (A, A,, ..., A) IS
similar to natural join condition, except that the
join attributes are A, A,, ..., A, rather than all
common attributes. In addition, join attributes
A, A, ..., A, appear just once In the join
result.

136

Database Systems

€ Example
Assume the following relations

loan

Downtown

Redwood

Perryridge

borrower

137

Database Systems

€ Example

loan borrower |0oan.loan-number =
borrower.loan-number

Downtown 3000 Jones
Redwood 4000 Smith

loan borrower loan.loan-
number = borrower.loan-number

Downtown 3000 Jones

Redwood 4000 Smith
Perryridge 1700 Null

Database Systems

€ Example
loan borrower

Downtown 3000

Redwood 4000
null null

loan borrower (loan-number)

Downtown
Redwood

Perryridge
null 139

Database Sys

& \What is the result of the fo

INSERT
INTO account
SELECT *
From account

140

Database Sys

7= For each part supplied, get t and
the total quantity supplied supported for that
part and save the result in the database;

CREATE TABLE TEMP
(P# CHAR (6) NOT NULL,
TOTQTY INTEGER NOT NULL,

PRIMARY KEY (P#)):

141

Database Sys

INSERT
INTO TEMP (P#, TOTQTY)

SELECT (P# SUM (QTY)

FROM P#
GROUP BY P#;

7 SELECT is executed and result is copied in Temp
relation. User, now, can do whatever he/she wants
to do with Temp relation. Eventually,

DROP TABLE TEMP;

will eliminate Temp relation from the database.

142

Database Systems

@ Questions: Using the following relations;

Sname Status City
S: Smith 20 London
S, Jones 10 Paris
S; Blake 30 Paris
S, Clark 20 London
Ss Adams 30 Athens

Pname Color Weight City
Nut Red 12 London
Bolt Green 17 Paris

Screw Blue 17 Rome
Screw Red 14 London
Cam Blue 12 Paris
Cog Red 19 London

143

Database Systems

@ Get supplier names for suppliers who supply part P,.

@ Get supplier names for suppliers who supply at least one red
part.

@ Get supplier names for suppliers who supplies all parts.

@ Get supplier numbers for suppliers who supply at least all those
parts supplied by supplier S..

@ Get supplier names for suppliers who do not supply part P,.

@ Get all pairs of supplier numbers such that the two suppliers
concerned are co-located

144

	CS5300�Database Systems��SQL
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Slide Number 29
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Slide Number 75
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems
	Database Systems

