
A.R. Hurson
323 CS Building
hurson@mst.edu

CS5300
Database Systems

Transaction Processing

Database Systems

Note, this unit will be covered in six
lectures. In case you finish it earlier, then
you have the following options:

1) Take the early test and start CS5300.module7
2) Study the supplement module

(supplement CS5300.module6)
3) Act as a helper to help other students in

studying CS5300.module6
Note, options 2 and 3 have extra credits as noted in course
outline. 2

Database Systems
Glossary of prerequisite topics

Familiar with the topics?
No Review

CS5300.module6.background

Yes

Remedial action
Yes

No
Take the Module

Take Test

Pass?

Glossary of topics

Familiar with the topics?
Yes

Pass?

Take Test

Yes

Options

Lead a group of students in
this module (extra credits)?

Study more advanced related
topics (extra credits)?

Study next module?

No

{

Extra Curricular activities

Enforcement
of background

{Current
Module

At the end: take
exam, record the

score, impose
remedial action if not

successful

No

3

Database Systems

You are expected to be familiar with:
Relational database model,
SQL
Query processing and query optimization

If not, you need to study
CS5300.module6.background

4

Database Systems

 Previous module concentrated on query processing and query
optimization. This module will concentrate on transaction
processing. Note that we will distinguish transaction from
query.

 A query does not change the data in base sources (e.g.,
relations), however, a transaction my do so. As a result, queries,
initiated by several users, do not have conflicts with each other
and can be executed in any order (including simultaneously).
However, this is not true for transactions, since they may be in
conflict with each other and hence needs to be executed in a
proper sequence.

5

Database Systems

Database Systems

In this module, we will talk about:
Transaction processing and management
Formal definition of transactions
ACID property
Serializability
Concurrency control
Concurrency control protocols
Transaction processing

6

Database Systems

Two potential problems:
Two requests attempt to update the same data item,

simultaneously, and
system fails during the execution of a request.

In case of retrieve only request (e.g., query
processing):
The 1st issue has no consequences, and
The 2nd issue is resolved by restarting the request.

7

Database Systems

In the following few slides, we will define
several terms that should motivate:
Issues of concern in transaction processing,
Capability of the database system in transaction

processing, and
Characteristics of a transaction.

8

Database Systems

9

In a query processing there is no notion of
consistent execution or reliable execution.
These issues are becoming a part of transaction
processing.

A transaction is a basic unit of consistent and
reliable computing.

We distinguish a difference between database
consistency and transaction consistency.

Database Systems

10

A database is in consistent state if it obeys all integrity
constraints defined over it.

State of a database changes due to the update
operations ─ modifications, insertions, and deletions.

Database can be temporarily inconsistent during the
execution of a transaction. The important point is that
the database should be in consistent state when the
transaction terminates.

Transaction consistency refers to the actions of
concurrent transactions ─ we would like database
remain in a consistent state even if there are a number
of concurrent users’ transactions.

Database Systems

11

A transaction is a sequence of operations
that transfers database from one consistent
state to another consistent state.

Start of transaction

Database in
Consistent state

End of transaction

Database in
Consistent state

Execution of transaction
Database might be temporarily
in inconsistent state.

Database Systems

12

Several issues hinder transaction
consistency:
Concurrent execution of transactions,
Replicated data, and
Failure.

A replicated database is in a mutually
consistent state if copies of every data item
in it have identical values ─ one copy
equivalence.

Database Systems

13

Reliability refers to resiliency of a system
to various types of failures and its ability to
recover from it.
A resilient system tolerates system failure and

continues to provide services,
A recoverable system is the one that can get to

a consistent state under failure.

Database Systems

14

Transaction management ─ Example

Assume the following database (air line
reservation system):

Flight relation

FNO DATE SRC DEST STSOLD CAP

Flight no Source

Destination

Seats sold

Capacity

Database Systems

15

Transaction management ─ Example

Customer relation

CNAME ADDR BAL

Customer name Account Balance

Customer Address

FC relation

FNO DATE CNAME SPECIAL

Flight no
Customer name

Special request

Database Systems

16

Transaction management ─ Example
Begin_transaction Reservation
Begin

input (flight-no, date, customer-name)
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = flight-no
AND DATE = date

EXEC SQL INSERT
INTO FC(FNO,DATE,CNAME,SPECIAL)
VALUES (flight-no,date,customer-name,null);

output (“reservation completed”)
end

Database Systems

17

Transaction management ─ Example
The previous example assumed that there will always

be a free seat available. However, transaction might
fail because the plane is full. A transaction must
always terminate even if there is a failure.

If a transaction completes its task successfully, then the
transaction must commit ─ its results will be available
to other transactions.

If a transaction stops without completing its task then it
must be aborted ─ all its already performed operations
must be undone.

Database Systems

18

Transaction management ─ Example
Begin_transaction Reservation
Begin

input (flight-no, date, customer-name)
EXEC SQL SELECT STSOLD,CAP

INTO temp1,temp2
FROM FLIGHT
WHERE FNO = flight-no
AND DATE = date;

if temp1 = temp2 then
begin

output (“no available seats”);
Abort
end
else begin

EXEC SQL UPDATE FLIGHT
SET STSOLD = STSOLD + 1
WHERE FNO = flight-no
AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO,DATE,CNAME,SPECIAL)

VALUES (flight-no,date,customer-name,null);
Commit;

output (“reservation completed”)
end

end-if
end

Database Systems

Let us define a set of notations that allows
us to formally represent a transaction:

19

Database Systems

20

The data items read by a transaction is
called read set (RS).
The data item that a transaction writes are

called write set (WS).
The base set for a transaction is defined as:

BS = RS ∪ WS

Database Systems

In our previous example:
RS = {STSOLD, CAP}
WS = {STSOLD, FNO, DATE, CNAME, SPECIAL}
BS = {STSOLD, CAP, FNO, DATE, CNAME,

SPECIAL}

21

Database Systems

22

For a transaction Ti:
Oij (x) ∈ Ti (operation Oj of transaction Ti operating on

data item x)
Oij (x) ∈ {read, write} (operations are atomic)
OSi = ∪j Oij
Ni ∈ {abort, commit} (Ni the termination condition)
Ti = {Σi, i}
Σi = OSi ∪ {Ni}
 is a binary operator representing the execution order
Oij, Oik ∈ OSi, if Oij = {R(x) or W(x)} and Oik = W(x) for
any data item x, then either Oij i Oik or Oik i Oij
∀ Oij ∈ OSi, Oij i Ni

Database Systems

23

Consider the following transaction, its
formal definition, and its graphical
representation (T):

Read (x)
Read (y)
x ← x + y
Write (x)
Commit

Σ = { R(x), R(y), W(x), C}
 = { (R(x), W(x)), (R(y), W(x)),

(W(x), C), (R(x), C), (R(y), C)}
Where (Oi, Oj) as an element indicates that Oi Oj

R(x)

R(y)
W(x) C

Database Systems

24

As another example, recall our earlier
reservation transaction. Also remember
that the reservation transaction had two
terminating conditions.
First part can be formally defined as:

Σ = { R(STSOLD), R(CAP), A}
 = { (O1, A), (O2, A)}

Database Systems

25

The second part can be represented as:
Σ = { R(STSOLD), R(CAP), W(STSOLD), W(FNO),

W(DATE), W(CNAME), W(SPECIAL), C}
 = { (O1, O3), (O2, O3), (O1, O4), (O1, O5), (O1, O6), (O1, O7),

(O2, O4), (O2, O5), (O2, O6), (O2, O7), (O1, C),
(O2, C), (O3, C), (O4, C), (O5, C), (O6, C), (O7, C)}

Where O1 = R(STSOLD), O2 = R(CAP), O3 = W(STSOLD),
O4 = W(FNO), O5 = W(DATE), O6 = W(CNAME),
and O7 = W(SPECIAL)

Database Systems

Last lecture
Distinction between transaction and query
Issues of concern
Concurrent execution of transactions
Failure

Some terms
Consistent execution
Reliable execution

Formal definition of transaction

Database Systems

27

In general, in a database system, one needs
to ensure Atomicity, Consistency, Isolation,
and Durability properties of transactions:

Database Systems

28

 Atomicity (all or nothing): either all operations of the
transaction are reflected in database, or none are.

 Consistency (no violation of integrity rules): Execution of
transaction in isolation preserves the consistency of the
database.

 Isolation (Concurrent changes invisible and serializable): Even
though multiple transactions may execute concurrently, each
transaction assumes it is executed in isolation (it is unaware of
other transactions executing concurrently in the system).

 Durability (Committed updates persist): After a transaction
completes successfully, its results are becoming persistence.

Database Systems

29

Atomicity
The database should always reflect a real state of the

world.
A transaction must transfer the database from one

consistent state to another.
If during the course of a transaction a failure occurs,

then the database is in inconsistent state and it does not
reflect a real world state. Therefore, the partial results
must be undone.

Database Systems

30

Atomicity
The activity of preserving the transaction’s

atomicity in the presence of aborts due to input
data errors, system overheads, or deadlock is
called transaction recovery.
The activity of ensuring atomicity in the

presence of system crashes is called crash
recovery.

Database Systems

31

Consistency
If the database is consistent before execution of

a transaction, the database remains consistent
after the execution of the transaction.
Transactions are correct programs that do not

violate database integrity constraints.

Database Systems

32

Consistency
From consistency point of view four levels of

consistency can be recognized:
Degree 3: a transaction sees degree 3 consistency if:

– T does not overwrite dirty data of other transactions (preventing
lost update),

– T does not commit any writes until it completes all its operations
─ until the end of transaction,

– T does not read dirty data from other transactions,
– Other transactions do not dirty any data read by T before T

completes.

Database Systems

33

Consistency
Degree 2: a transaction sees degree 2

consistency if:
T does not overwrite dirty data of other transactions,
T does not commit any writes until it completes all its

operations ─ until the end of transaction,
T does not read dirty data from other transactions.

Database Systems

34

Consistency
Degree 1: a transaction sees degree 1 consistency

if:
 T does not overwrite dirty data of other transactions,
 T does not commit any writes until it completes all its operations ─

until the end of transaction.

Degree 0: a transaction sees degree 0 consistency
if:
 T does not overwrite dirty data of other transactions.

Dirty read: Data item whose value is modified by an un-
committed transaction

Database Systems

35

Isolation
To improve performance, we need to interleave

operations of transactions running concurrently.
Even if consistency and atomicity properties are

ensured, undesirable interleaving of operations
results in an inconsistent state.
Isolation property, guarantees that concurrent

transactions are interleaved correctly.

Database Systems

36

Isolation
Serializability: If several transactions are executed

concurrently, the result must be the same as if they
were executed serially in an orderly fashion.

Incomplete results: Result of an incomplete
transactions is not available to other transactions before
it is committed.

Cascading aborts: In execution of concurrent
transactions, attempts must be made to avoid cascading
aborts. Cascading aborts happens if a transaction
allows other transactions to see its incomplete result
before committing and later on deciding to abort.

Database Systems

37

Isolation
Consider the following two transactions and

their possible scheduling orders:

T1:
Read (x)
x ← x + 1
Write (x)
Commit

T2:
Read (x)
x ← x + 1
Write (x)
Commit

Database Systems

38

Isolation
T1: Read (x)
T1: x ← x + 1
T1: Write (x)
T1: Commit
T2: Read (x)
T2: x ← x + 1
T2: Write (x)
T2: Commit

Correct execution
order

T1: Read (x)
T1: x ← x + 1
T2: Read (x)
T1: Write (x)
T2: x ← x + 1
T2: Write (x)
T1: Commit
T2: Commit

Incorrect execution
order

Database Systems

39

Durability
After successful termination of a transaction, no

system failure should result in a loss of data.
The durability properly guarantees that, once a

transaction completes successfully, all the
updates that it carried out on the database
persist.

Database Systems

40

Classification
Based on different parameters, transactions can be

classified:
Structure: flat transaction vs. nested transactions.
Timing (duration): short life (on-line) transactions vs. long

life (batch) transactions, conversational transactions.
Application areas: centralized transactions vs. distributed

transactions.
Organization of read and write actions.

Database Systems

41

Classification
Flat Transaction: It is a sequence of primitive

operations (read, write, commit).

Nested transaction: The operations of the
transaction may themselves be transactions.

Database Systems

42

Flat Transaction
Begin_transaction Reservation
•
•
•
end

Database Systems

43

Nested transaction
Begin_transaction Reservation
•
•
•

Begin_transaction Airline
•
•
•
end (airline)
Begin_transaction Hotel
•
•
•
end (hotel)

end (Reservation)

Database Systems

44

Classification
Closed nesting
Sub-transactions begin after their parents and finish

before the parents. Commitment of a sub-
transaction is conditional upon the commitment of
the parent.

Open nesting
Sub-transactions can execute and commit

independently. In case of open nesting we may be
needing compensating transaction.

Database Systems

45

Classification
Two-step transaction: All read actions are performed

before write actions.
Restricted: A data item has to be read before being

updated.
Restricted two-step: A transaction that is both two-step

and restricted.
Action Model: A restricted model with additional

restriction that each <read, write> pair be executed
atomically.

Database Systems

46

Classification
General Transaction

T = { R(x), R(y), W(y), R(z), W(x), W(z), W(w), C}
Two-step Transaction

T = { R(x), R(y), R(z), W(x), W(z), W(y), W(w), C}
Restricted Transaction

T = { R(x), R(y), W(y), R(z), W(x), W(z), R(w), W(w), C}
Restricted Two-step Transaction

T = { R(x), R(y), R(z), R(w), W(x), W(z), W(y), W(w), C}
Action Transaction

T = { [R(x), W(x)], [R(y), W(y)], [R(z), W(z)], [R(w), W(w)], C}

Database Systems

47

Classification

General Model

Restricted Model

Restricted Two-step
Model

Two-step Model

Action Model

Database Systems

Transaction states
In the absence of failures, we are expecting that a

transaction completes successfully.
A transaction that completes its execution successfully

is said to be committed.
A committed transaction, that has updated the database,

has transferred database from one consistent state to a
new consistent state which must be persisted, even if
the system fails (database recovery).

48

Database Systems

49

Transaction states
Note, if a transaction is committed, we cannot undo its

effect by aborting it ─ We need a compensating
transaction to undo its effect.

If a transaction does not complete its execution
successfully, to ensure atomicity, it must be aborted ─
and any change to database must be undone.

In case of failure, the transaction must be rolled back.

Database Systems

50

Transaction states
In general, a transaction is in one of the following

states:
Active: the transaction stays in this state while executing,
Partially committed: the final statement of transaction has

been executed,
Failed: it is discovered that normal execution can no

longer proceed,
Aborted: the transaction has been rolled back and state of

database has been restored.
Committed: successful completion of transaction.

Database Systems

51

 Transaction states

Active

Partially
committed Committed

Failed AbortedFailed

Database Systems

52

 It is much easier if internally consistent transactions
are run serially ─ each transaction is executed alone,
one after the another. However, there are two good
motivations to allow concurrent execution of
transactions:
 Improved throughput and resource utilization
 Improved average response time.

 Concurrent execution of transactions means that they
should be scheduled in order to ensure consistency.

Database Systems

53

The concurrency control mechanism attempts
to find a suitable trade-off between maintaining
the consistency of the database and maintaining
a high level of concurrency.

Note concurrency control deals with the
isolation and consistency properties of
transactions.

Database Systems

54

Two operations (within a transaction or
two transactions) are in conflict if their
order of execution is important:
Read-write,
Write-read,
Write-write.

Database Systems

55

A schedule (history) over a set of
transactions T = {T1, T2, …, Tn} is an
interleaved order of execution of these
transactions.
A schedule is a complete schedule, if it

defines the execution order of all operations
in its domain.

Database Systems

56

Formally a complete schedule over a set of transactions
T = {T1, T2, …, Tn} is a partial order where:

SC

T

},{ TT
C
TS Σ=

n

i iT 1= ΣΣ =

n

i iT 1=⊇

For any two conflicting operations Oij, Okl ∈ ΣT either Oij T Okl
or Okl T Oij.

1st rule shows that the schedule must contain all operations in
participating transactions.
2nd rule shows that the ordering relation on T is a superset of
ordering relations of individual transactions.
3rd rule shows the execution order among conflicting operations.

Database Systems

57

Consider the following two transactions:

T1:
Read (x)
x ← x + 1
Write (x)
Commit

T2:
Read (x)
x ← x + 1
Write (x)
Commit

},{∑=
T T

C
TS

Database Systems

58

Σ1 = { R1(x), W1(x), C1}
Σ2 = { R2(x), W2(x), C2}
ΣT = { R1(x), W1(x), C1, R2(x), W2(x), C2}
T = {(R1, R2), (R1, W1), (R1, C1), (R1, W2), (R1, C2),

(R2, W1), (R2, C1), (R2, W2), (R2, C2), (W1, C1),
(W1, W2), (W1, C2), (C1, W2), (W2, C2), (C1, C2)}

Transitive relationships are omitted for the sake of clarity.

R1(x)

W1(x)

R2(x)

C1

W2(x)

C2

Database Systems

59

Question
Consider the following transactions:

Define its complete schedule and its
corresponding DAG.
What is an action model transaction?

T1:
Read (x)
Write (x)
Commit

T2:
Write (x)
Write (y)
Read (z)
Commit

T3:
Read (x)
Read (y)
Read (z)
Commit

Database Systems

60

Consider the following transactions:

T1: Read (A);
A := A – 50;
Write (A);
Read (B);
B := B + 50;
Write (B);

T2: Read (A);
temp := A * 0.1;
A := A – temp;
Write (A);
Read (B);
B := B + temp;
Write (B);

Database Systems

61

The following is the serial execution schedule
of T1 followed by T2: Read (A);

A := A – 50;
Write (A);
Read (B);
B := B + 50;
Write (B);

Read (A);
temp := A * 0.1;
A := A – temp;
Write (A);
Read (B);
B := B + temp;
Write (B);

Database Systems

62

A schedule for a set of transactions must
consists all instructions in those transactions.
A serial schedule consists of a sequence

of instructions in transactions, where
instructions of one single transaction
appear together in that schedule.

Database Systems

63

For the following transactions:

S = {W2(x), W2(y), R2(z), C2, R1(x), W1(x), C1,
R3(x), R3(y), R3(z), C3}

Is a serial schedule since T2 is executed before T1
and T1 is executed before T3:

T2 S T1 S T3 T2 → T1 → T3

T1:
Read (x)
Write (x)
Commit

T2:
Write (x)
Write (y)
Read (z)
Commit

T3:
Read (x)
Read (y)
Read (z)
Commit

Database Systems

64

When interleaving instructions from different
transactions, one can come up with a number of
execution sequence (schedule).

In this case, we can ensure consistency if the
concurrent schedule has the same effect as a
serial schedule of transactions ─ Concurrent
schedule is equivalent to a serial schedule.

Database Systems

65

Read (A);
A := A – 50;
Write (A);

Read (B);
B := B + temp;
Write (B);

Read (A);
temp := A * 0.1;
A := A – temp;
Write (A);

Read (B);
B := B + 50;
Write (B);

Database Systems

66

Conflict Serializability
In two operations of two transactions refer to

two different data items, they can be executed
in any order. We might have problem if these
operations refer to the same data item.

Database Systems

67

Conflict Serializability
Assume Two transactions Ti and Tj and two instruction

Ii ∈ Ti and Ij∈ Tj:
 If Ii = Read(Q) and Ij = Read(Q), the order of Ii and Ij does not

matter.
 If Ii = Read(Q) and Ij = Write(Q), the order of Ii and Ij

matters.
 If Ii = Write(Q) and Ij = Read(Q), the order of Ii and Ij

matters.
 If Ii = Write(Q) and Ij = Write(Q), the order of Ii and Ij

matters.
Ii and Ij conflicts if they are operations of two different

transactions on the same data item and at least one of
them is a write operation.

Database Systems

68

Conflict Serializability
A simplified version of previous transactions.

Read (A);
Write (A);

Read (B);
Write (B);

Read (A);
Write (A);

Read (B);
Write (B);

Database Systems

69

Conflict Serializability
Two schedules S and S’ are conflict equivalent

if S’ is generated by a series of swaps of non
conflicting instructions in S.

Read (A);
Write (A);

Read (B);

Write (B);

Read (A);

Write (A);

Read (B);
Write (B);

Read (A);
Write (A);

Read (B);
Write (B);

Read (A);
Write (A);

Read (B);
Write (B);

Database Systems

70

Conflict Serializability
Formally, two schedules S and S’ over a set of

transactions are conflict equivalent if for each
pair of conflicting operations Oij, Okl (i ≠ k),
whenever Oij S Okl, then Oij S’ Okl.

Database Systems

71

Conflict Serializability
 Consider the following transactions:

The schedule S’ = {W2(x), R1(x), W1(x), C1, R3(x),
W2(y), R3(y), R2(z), C2, R3(z), C3}

Is conflict equivalence to schedule
S = {W2(x), W2(y), R2(z), C2, R1(x), W1(x),

C1, R3(x), R3(y), R3(z), C3}

T1:
Read (x)
Write (x)
Commit

T2:
Write (x)
Write (y)
Read (z)
Commit

T3:
Read (x)
Read (y)
Read (z)
Commit

Database Systems

72

Conflict Serializability
Concept of conflict equivalent leads to the

concept of conflict serailizability.
A schedule S is conflict serializable if it is

conflict equivalent to a serial schedule.
Note that serializability is roughly equivalent to

degree 3 consistency discussed before.

Database Systems

Uncommitted Data (Dirty read (WR conflict))

73

Read (A);
Write (A);

Read (B);
Write (B);
Commit

Read (A);
Write (A);
Read (B);
Write (B);
Commit

T2T1

Assume T1 transfers 100 from A to B, and
T2 increments both A and B by 6%.

The sequence of operations as scheduled
does not generate the same data in A and B
as the serial execution of T1 and T2,
regardless of the order.

Database Systems

Assume initially A=500 and B=100 and T1 is executed
first. Serial schedule of T1 and T2 results in A=424
and B=212. However:

Read (A);
Write (A);

Read (B);
Write (B);
Commit

Read (A);
Write (A);
Read (B);
Write (B);
Commit

T2T1 A B

400

424

106

206
74

Database Systems

Unrepeatable reads (WR conflict)

75

Read (A);

Read (A);

Read (A);
Write (A);

T2T1

T1 reads two different values for A.

Database Systems

Lost Update (WR conflict)

76

Read (A);

Write (A)
Read (A);

Write (A);

T2T1

Assume T1 increments A and
T2 decrements A

The sequence of operations as scheduled
does not generate the same data in A as the
serial execution of T1 and T2, regardless of
the order.

Database Systems

Overwriting Uncommitted data (WW conflict (blind
write))

77

Read (A);
Write (A);

Read (B);
Write (B);

Read (B);
Write (B);

Read (A);
Write (A);

T1T2
Assume T1 and T2 are intended to
Keep the same values in A and B.
Say T1 sets A and B to 2000 and T2
sets A and B to 1000.
The sequence of operations as scheduled
does not generate the same data in A and B
as the serial execution of T1 and T2,
regardless of the order.

Database Systems

Consider the following schedule:

Assume we allow T2 to commit after read(A). Therefore T2
commits before T1 does. Now suppose T1 fails before it
commits. Since T2 has read the value of data item (A) written
by T1, we must abort T2. However, T2 has committed and
cannot be aborted. Such a schedule is non-recoverable
schedule.

Read (A);
Write (A);

Read (B);
Read (A);

T2T1

78

Database Systems

Definition: A recoverable schedule is a
schedule that for each pair of transactions Ti
and Tj such that Tj reads a data item previously
written by Ti, Ti commits before Tj commits.

79

Database Systems

Consider the following schedule:
T2T1 T3

Read (A);
Read (B);
Write (A);

abort

Read (A);
Write (A);

Read (A);

Since T1 failed, it needs
to be rolled back, but T2
is dependent on T1 and T3
is dependent on T2, so
they need to be rolled back, and
hence cascading aborts.

80

Database Systems

Definition: A schedule is a cascadeless
schedule where each pair of transactions Ti and
Tj such that Tj reads a data item previously
written by Ti, the commit operation of Ti
appears before read operation of Tj.

81

Database Systems

Definition: A schedule is a strict schedule in
which transactions cannot read or write an item
X until the last transaction that wrote X is
committed (or aborted).

Database Systems

Scheduling Involving Aborted Transactions

83

Read (A);
Write (A);

Abort

Read (A);
Write (A);
Read (B);
Write (B);
Commit

T2T1
In this case, all actions of T1 are to be undone.
However, T2 is already committed.
If T2 was not committed by cascading aborts
we were able to resolve the situation.
Such a schedule is called
unrecoverable schedule.

Database Systems

Serializable schedule

84

A serializable schedule over a set of T transactions is a
schedule whose effect on any consistent database
instance is guaranteed to be identical to that of some
complete serial schedule over the set of committed
transactions in T.

Database Systems

85

Testing for Serializability
The concept of precedence graph can be used to

test serializability.
A precedence graph for a schedule S is a

directed graph G = (V, E), where V is the set of
vertices each representing a transaction and E is
the set of directed edges between the vertices.

Database Systems

86

Testing for Serializability
Assume Ti and Tj∈ V, then there is an edge between

Ti → Tj if one of the following conditions holds:
If Ti executes Read(Q) before Tj executes Write(Q),
If Ti executes Write(Q) before Tj executes Read(Q),
If Ti executes Write(Q) before Tj executes Write(Q),

Database Systems

87

Testing for Serializability
If the precedence graph for a schedule

contains a cycle, then this schedule is not
conflict serializable, otherwise it is.

Database Systems

88

A schedule and its precedence graph
Read (A);
A := A – 50;
Write (A);
Read (B);
B := B + 50;
Write (B);

Read (A);
temp := A * 0.1;
A := A – temp;
Write (A);
Read (B);
B := B + temp;
Write (B);

T1 T2

Database Systems

89

A schedule and its precedence graph
Read (A);
A := A – 50;

Write (A);
Read (B);
B := B + 50;
Write (B);

Read (A);
temp := A * 0.1;
A := A – temp;
Write (A);
Read (B);

B := B + temp;
Write (B);

T1 T2

Database Systems

90

The primary function of concurrency
controller is to generate a serializable
schedule for execution of a sequence of
transactions ─ to devise algorithms that guarantee the
generation of serializable schedules.

Database Systems

91

Concurrency control algorithms’ taxonomy
Pessimistic algorithms ─ Synchronizes The

concurrent execution early.
Optimistic algorithms ─ delays synchronization

until termination.

Database Systems

Concurrency control algorithms’ taxonomy

92

Concurrency Control
Algorithms

Timestamp OrderingLocking

OptimisticPessimistic

Distributed

Primary Copy
Centralized

Timestamp
Ordering

LockingHybrid

Basic
Multi-version

Conservative

Database Systems

93

Lock-Based Protocol
One way to ensure serializability is to require

data items to be accessed in a mutual exclusive
fashion ─ while a transaction is accessing the
data item, no other transaction can access that
data item, i.e., being Locked.

Database Systems

94

Lock-Based Protocol
There are various type of locks:
Shared: if a transaction Ti has obtained a shared-

mode lock (lock-s(Q)) on item Q, then Ti can read
Q, but cannot write Q.
Exclusive: if a transaction Ti has obtained an

exclusive-mode lock (lock-x(Q)) on item Q, then Ti
can read and write Q.

Database Systems

95

Lock-Based Protocol
The following matrix shows the compatibility

between different lock modes:

S X

S true false

X false false

Database Systems

96

Lock-Based Protocol
To access a data item, transaction Ti must first

request for a lock on that data item. If the data
item is already locked by another transaction in
an incompatible mode, the concurrency control
manager will not grant the lock until all
incompatible locks held by other transactions
are released.

Database Systems

97

Lock-X (B);
Read (B);
B := B – 50;
Write (B);
Unlock (B);
Lock-X (A);
Read (A);
A := A + 50;
Write (A);
Unlock (A);

Lock-S (A);
Read (A);
Unlock (A);
Lock-S (B);
Read (B);
Unlock (B);
Display (A+B);

Lock-Based Protocol
Assume the following two transactions:

Database Systems

98

Lock-Based Protocol
Lock-X (B);

Read (B);
B := B – 50;
Write (B);
Unlock (B);

Lock-X (A);

Read (A);
A := A + 50;
Write (A);
Unlock (A);

Lock-S (A);

Read (A);
Unlock (A);
Lock-S (B);

Read (B);
Unlock (B);
Display (A+B);

Grant-X (B, T1);

Grant-S (A, T2);

Grant-S (B, T2);

Grant-X (A, T1);

Incorrect Schedule, why?

Database Systems

99

Lock-Based Protocol
Now assume the following similar transactions

to the previous ones:
Lock-X (B);
Read (B);
B := B – 50;
Write (B);
Lock-X (A);
Read (A);
A := A + 50;
Write (A);
Unlock (B);
Unlock (A) ;

Lock-S (A);
Read (A);
Lock-S (B);
Read (B);
Display (A+B);
Unlock (A);
Unlock (B);

Scheduling these two will
not result in a wrong
sequence of operations.

Database Systems

100

Lock-Based Protocol
Unfortunately, locking can lead to deadlock,

consider the partial schedule of previous
transactions.

Lock-X (B);
Read (B);
B := B – 50;
Write (B);

Lock-X (A);

Lock-S (A);
Read (A);
Lock-S (B);

Database Systems

101

Lock-Based Protocol
We will define a set of rules, called locking

protocol, to indicate when a transaction may
lock and unlock a data item.

Database Systems

102

Lock-Based Protocol
Let {T0, T1, …, Tn} be a set of transactions in a

schedule S. Ti proceeds Tj in S, written Ti → Tj, if there
exist a common data item Q such that Ti has held a lock
mode A on Q, and Tj has held a lock mode B on Q later,
and comp (A,B) = false. Then in any equivalent serial
schedule Ti must appear before Tj.

In another words, the precedence rule, implies data
dependence between the two transactions. Conflicts
between instructions implies incompatibility of lock
modes.

Database Systems

103

Lock-Based Protocol
Within the scope of locking protocol, one has to be concern about

starvation. Starvation can be avoided by the concurrency control
manager.

Assume Ti request a lock on a data item Q in a particular mode
M, the lock is granted if:
 There is no other transaction holding a lock on Q in a mode that

conflicts with M.
 There is no other transaction waiting for a lock on Q and made its lock

request before Ti.
 In short, a lock request will never get blocked by a lock request

that is made later.

Database Systems

104

Implementation
A lock manager can be implemented as a process

that receives/sends messages from/to transactions.
Lock-request messages are responded with lock-

grant messages, or messages requesting rollback (in
case of deadlock).
Un-lock messages will be acknowledged in

respond, but may results in a lock-grant message.

Database Systems

105

Implementation
Lock manager maintains the lock table.
Lock table is a hash table that maintains a linked

list of records, one for each request, in the order the
requests arrive.
Each record of the linked list for a data item

contains:
The transaction identifier,
The type of the requested lock mode, and
The indicator of whether or not the request is granted.

Database Systems

106

17 123

14

1912

144

T23

T23

T23

T2T8T1

T8

T1

Database Systems

In the previous example:
Lock table contains locks for five data items

(14, 17, 123, 144, and 1912).
Granted locks are represented as red squares

and waiting locks are represented as grey
squares.
T23 has been granted lock on 1912 and 17, and

waiting on 14.

Database Systems

108

Implementation
When a lock request arrives, a record will be added

to the end of the linked list, if it exists, for the data
item. Otherwise, a linked list is created.
The 1st lock request for a data item is always

granted. However, if the data item is already
locked, the compatibility between the lock requests
is checked by the lock manager. If they are
compatible, the request is granted, otherwise it has
to wait.

Database Systems

109

Implementation
When the lock manager receives an unlock

message, the record corresponding to that
transaction is deleted. Then the lock manager
checks to see whether or not the next request can be
granted. If so, the request is granted and the next
record, if any, is checked for compatibility, and so
on.

Database Systems

110

Implementation
If a transaction is aborted, the lock manager deletes

any waiting requests made by the transaction.
Once the database system took appropriate actions
to undo the transaction, all locks held by the
aborted transaction is released.

Database Systems

111

Two-phase Locking Protocol
This protocol ensures serializability, however, it

requires that each transaction issue lock and unlock
requests in two phases:
Growing Phase: A transaction may obtain locks, but may

not release any lock.
Shrinking phase: A transaction may release locks, but

may not obtain any new locks.
Initially, a transaction is in the growing phase. It

acquires locks as needed. Once it releases a lock, it
enters the shrinking phase, and can issue no more
lock requests.

Database Systems

112

Two-phase Locking Protocol

EndBegin

N
um

be
r o

f l
oc

ks

Transaction
duration

Lock point

Growing
phase Shrinking

phase

Database Systems

113

Two-phase Locking Protocol
The following two transactions are not 2-phase:

Lock-X (B);
Read (B);
B := B – 50;
Write (B);
Unlock (B);
Lock-X (A);
Read (A);
A := A + 50;
Write (A);
Unlock (A);

Lock-S (A);
Read (A);
Unlock (A);
Lock-S (B);
Read (B);
Unlock (B);
Display (A+B);

Database Systems

Two-phase Locking Protocol
The following two transactions are 2-phase:

114

Lock-X (B);
Read (B);
B := B – 50;
Write (B);
Lock-X (A);
Read (A);
A := A + 50;
Write (A);
Unlock (B);
Unlock (A) ;

Lock-S (A);
Read (A);
Lock-S (B);
Read (B);
Display (A+B);
Unlock (A);
Unlock (B);

Database Systems

115

Two-phase Locking Protocol
For a 2-phase transaction, the point where the

transaction obtains its last lock is called the lock
point of the transaction.
In a two phase locking protocol, transactions

can be scheduled (ordered) based on their lock
points.

Database Systems

116

Two-phase Locking Protocol
Two phase locking protocol does not ensure

freedom from deadlock.
Lock-X (B);
Read (B);
B := B – 50;
Write (B);

Lock-X (A);

Lock-S (A);
Read (A);
Lock-S (B);

These two transactions are 2-phase,
but in this schedule they are
deadlocked.

Database Systems

117

Two-phase Locking Protocol
A “good” schedule should also be cascadeless.

Cascading rollback may occur under two phase
locking protocol.
Look at the following schedule and the reason

why rollback cascading must be enforced.

Database Systems

118

Two-phase Locking Protocol
Lock-X (A);
Read (A);
Lock-S (B);
Read (B);
Write (A);
Unlock (A);

•••

Lock-X (A);
Read (A);
Write (A);
Unlock (A);

Lock-S (A);
Read (A);

If the first transaction fails
after this point

Then the other two
Transactions have to be
rolled back.

Database Systems

119

Two-phase Locking Protocol
Two-phase locking protocol can be modified to

avoid cascading rollback:
Strict two-phase locking protocol,
Rigorous two-phase locking protocol.

Database Systems

120

Strict two-phase locking protocol
Within a two-phase locking protocol, this protocol

requires all exclusive-locks be held until transaction
commits.

Any data written by an uncommitted transaction are
locked and unaccessible to any other transactions to
read it.

Database Systems

121

Strict two-phase locking protocol

EndBegin

N
um

be
r o

f l
oc

ks

Transaction
durationData items

are used

Growing
phase Shrinking

phase

Database Systems

122

Rigorous two-phase locking protocol
Within a two-phase locking protocol, this protocol

requires all locks be held until transaction commits.
Transactions can be serialized in the order in which

they commit.

Database Systems

123

Lock conversions
The basic two-phase locking can be extended to

allow a better performance.
Consider the following two transactions:

Read (a1);
Read (a2);
•
•
•
Read (an);
Write (a1);

Read (a1);
Read (a2);
Display (a1+a2);

Database Systems

124

Lock conversions
In a normal two-phase locking protocol, first

transaction locks a1 in exclusive mode, as a result the
second transaction must be scheduled after execution of
the first one (serial schedule).

However, first transaction needs exclusive lock on a1
towards the end of its operations.

If we allow a1 to be locked in the shared mode initially,
then the second transaction can be scheduled
concurrent with the first one.

Database Systems

125

Lock conversions
The two-phase locking protocol can be extended by

allowing the lock conversion.
We will allow to upgrade a lock to exclusive mode and

downgrade a lock from the exclusive mode.
We also impose the following restriction, upgrading

can be done during the growing phase and
downgrading can be done during the shrinking phase.

Database Systems

126

Distributed Databases

Lock conversions Lock-S (a1);

Lock-S (a2);

Lock-S (a3);
Lock-S (a4);
•
•
•
Lock-S (an);
Upgrade (a1);

Lock-S (a1);

Lock-S (a2); •
•
•

Unlock (a1);
Unlock (a2);

 Note a transaction attempting to upgrade a lock on a data item
may be forced to wait if the data item is currently locked by
another transaction in shared mode.

Database Systems

127

Lock conversions
A two-phase locking protocol enhanced by lock

conversion generates only conflict serializable
schedules (transactions can be serialized based on their
lock points).

Database Systems

128

Two-phase Locking Protocol
For a set of transactions, there may be conflict

serializable schedules that cannot be obtained
through the two-phase locking protocol.

Database Systems

129

Two-phase Locking Protocol
A simple automated scheme can be used to generate

lock and unlock instructions for an arbitrary
transaction:
When a transaction issues a read (Q), the system issues a

lock-s (Q) instruction followed by the read (Q) instruction.
When a transaction issues a write (Q), the system check to see

whether the same transaction holds a shared lock on Q. If it
does, then an upgrade (Q) instruction followed by the write
(Q) instruction is issued. Otherwise, a lock-x (Q) followed by
write (Q) is issued.
All locks obtained by the transaction are unlocked after the

transaction commit or aborts.

Database Systems

130

Timestamp-based Protocol
To each transaction Ti a unique fixed timestamp TS(Ti)

is associated. Timestamp could be:
The system clock,
A logical counter that is incremented each time a timestamp

is associated to a transaction.
The timestamps of transactions determine the

serializability order ─ if TS(Ti) < TS(Tj) then the
system must ensure that the generated schedule is
equivalent to a serial schedule in which transaction Ti
appears before Tj.

Database Systems

131

Timestamp-based Protocol
To implement timestamp-based protocol, two

timestamp values are associated with each data item:
W-timestamp(Q) denotes the largest timestamp of any

transaction that executed Write(Q) successfully.
R-timestamp(Q) denotes the largest timestamp of any

transaction that executed Read(Q) successfully.

These values are updated whenever a new Read(Q) or
Write(Q) is executed.

Database Systems

132

Timestamp-based Protocol
In case Ti issues a read(Q):
If TS(Ti) < W-timestamp(Q), Ti should have read

the old value of Q that has been modified. Hence,
read operation is rejected and Ti is rolled back.
If TS(Ti) ≥ W-timestamp(Q), the read operation is

executed and R-timestamp(Q) is set to the
maximum of R-timestamp(Q) and TS(Ti).

Database Systems

133

Timestamp-based Protocol
In case Ti issues a write(Q):
If TS(Ti) < R-timestamp(Q), the value of Q

generated by Ti is relatively old, write is rejected
and Ti is rolled back.
If TS(Ti) < W-timestamp(Q), then Ti is trying to

write an outdated value to Q, write is rejected and Ti
is rolled back.
Otherwise, write is executed and W-timestamp(Q) is

set to TS(Ti).

Database Systems

134

Timestamp-based Protocol
Consider the following transactions:

Read (B);
B := B – 50;
Write (B);
Read (A);
A := A + 50;
Write (A);
Display (A+B);

Read (B);
Read (A);
Display (A+B);

 Note the timestamp of the green transaction is
less than the timestamp of the red transaction.

Database Systems

135

Timestamp-based Protocol

Read (B);
B := B – 50;
Write (B);

Read (A);

A := A + 50;
Write (A);
Display (A+B);

Read (B);

Read (A);

Display (A+B);

Database Systems

136

Timestamp-based Protocol
Note there are schedules that are possible under

two-phase locking that are not possible under
timestamp protocol and vice versa.
Timestamp protocol ensures conflict

serializability and freedom from deadlock, but it
may cause starvation of long transactions by
conflicting short transactions.

Database Systems

137

Timestamp-based Protocol
Timestamp-ordering does not cause deadlock, since

transactions never wait while they have access rights to
data items.

The penalty of deadlock free comes at the expense of
potential restart of a transaction again and again.

Operations from the scheduler is sent to the database
processor one at a time. As long as an operation is not
terminated a new one will not be passed on to the
processor.

Database Systems

138

Centralized Transaction Execution

User application User application

Transaction Manager

Scheduler

Recovery Manager Operations

Result

Scheduled
operations

Database Systems

139

Centralized Transaction Execution
Transaction Manager is responsible for

coordinating the execution of the database
operations on behalf of an application.
Scheduler is responsible for the implementation

of a specific concurrency control algorithm.
Recovery manager is responsible to implement

procedures that transform database into a
consistent state after a failure.

Database Systems

 A schedule is a strict schedule in which transactions cannot
read or write an item X until the last transaction that wrote X is
committed (or aborted).

 Is S1: r1(x); r2(z); r1(z); r3(x); r3(y); w1(x); c1; w3(y); c3; r2(y);
w2(z); w2(y); c2; strict?
 No, T3 reads x before T1 commits.

 Is S2: r1(x); r2(z); r1(z); r3(x); r3(y); w1(x); w3(y); r2(y); w2(z);
w2(y); c1; c2; c3; strict?
 No, T3 reads x before T1 commits.

 Is S3: r1(x); r2(z); r3(x); r1(z); r2(y); r3(y); w1(x); c1; w2(z);
w3(y); w2(y); c3; c2; strict?
 No, T3 reads x before T1 commits.

140

Database Systems

 A schedule is a cascadeless schedule where each pair of
transactions Ti and Tj such that Tj reads a data item written by
Ti, the commit operation of Ti appears before read operation of
Tj.

 Is S1: r1(x); r2(z); r1(z); r3(x); r3(y); w1(x); c1; w3(y); c3; r2(y);
w2(z); w2(y); c2; cascadeless?
 No, T3 reads x before T1 commits.

 Is S2: r1(x); r2(z); r1(z); r3(x); r3(y); w1(x); w3(y); r2(y); w2(z);
w2(y); c1; c2; c3; cascadeless?
 No, T3 reads x before T1 commits.

 Is S3: r1(x); r2(z); r3(x); r1(z); r2(y); r3(y); w1(x); c1; w2(z);
w3(y); w2(y); c3; c2; cascadeless?
 No, T3 reads x before T1 commits, or T2 reads y before T3 commits. 141

Database Systems

 A recoverable schedule is a schedule that for each pair of transactions Ti and
Tj such that Tj reads a data item previously written by Ti, Ti commits before
Tj commits.

 Is S1: r1(x); r2(z); r1(z); r3(x); r3(y); w1(x); c1; w3(y); c3; r2(y);
w2(z); w2(y); c2; recoverable?
 If T1 aborts in highlighted area, then S1 is recoverable

 S1: r1(x); r2(z); r1(z); r3(x); r3(y); w1(x); c1; w3(y); c3; r2(y);
w2(z); w2(y); c2;
 If T3 aborts in highlighted area, then S1 is recoverable

 S1: r1(x); r2(z); r1(z); r3(x); r3(y); w1(x); c1; w3(y); c3; r2(y);
w2(z); w2(y); c2;
 If T2 aborts in highlighted area, then S1 is recoverable

142

Database Systems

 Is S2: r1(x); r2(z); r1(z); r3(x); r3(y); w1(x); w3(y); r2(y); w2(z);
w2(y); c1; c2; c3; recoverable?
 If T1 aborts in highlighted area, then S2 is recoverable

 Is S2: r1(x); r2(z); r1(z); r3(x); r3(y); w1(x); w3(y); r2(y); w2(z);
w2(y); c1; c2; c3; recoverable?
 If T2 aborts in highlighted area, then S2 is recoverable

 Is S2: r1(x); r2(z); r1(z); r3(x); r3(y); w1(x); w3(y); r2(y); w2(z);
w2(y); c1; c2; c3; recoverable?
 If T3 aborts after highlighted area, then S2 is not recoverable

143

Database Systems

 Is S3: r1(x); r2(z); r3(x); r1(z); r2(y); r3(y); w1(x); c1; w2(z);
w3(y); w2(y); c3; c2; recoverable?
 If T1 aborts in highlighted area, then S3 is recoverable

 Is S3: r1(x); r2(z); r3(x); r1(z); r2(y); r3(y); w1(x); c1; w2(z);
w3(y); w2(y); c3; c2; recoverable?
 If T3 aborts in highlighted area, then S3 is recoverable.

 Is S3: r1(x); r2(z); r3(x); r1(z); r2(y); r3(y); w1(x); c1; w2(z);
w3(y); w2(y); c3; c2; recoverable?
 If T2 aborts after highlighted area, then S3 is not recoverable since T2

modifies y to the value before T3’s modification.

144

	CS5300�Database Systems��Transaction Processing
	Slide Number 2
	Slide Number 3
	Slide Number 4
	 Database Systems
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Distributed Databases
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144

