
Programming Level
A.R. Hurson

Department of Computer Science
Missouri University of Science & Technology

Rolla, Missouri 65409
hurson@mst.edu

1A.R. Hurson

Module2 Background

• Programming Level
• Computer: A computer with a storage component that may

contain both data to be manipulated and instructions to
manipulate the data is called a stored program machine.
This simply implies that the user is able to change the
sequence of operations on the data.

• Program: The sequence of operations performed on the
data is called a program. More formally, it is a finite set of
instructions that specify the operands, operations, and the
sequence by which processing has to occur.

A.R. Hurson 2

Module2 Background

•Programming Level
• Instruction: An instruction is a group of bits that tells the

computer to perform a specific operation. It is composed of
two parts:
• Operation part

• Operand part

A.R. Hurson 3

Module2 Background

• Programming Level
• Operation part (operation code) is a group of bits that

defines the action to be performed.
• For each machine the set of operations is limited and defined.

• In general, a machine with n bits as op. code is capable of
supporting 2n distinct operations each having a distinct
encoding as op. code.

A.R. Hurson 4

Module2 Background

• Programming Level
• Operand part defines the element (s) needed for operation.
• Within the scope of a program, besides the op. code, one

needs four pieces of information (note majority of operations
are binary operations):
• 2 operands as sources
• 1 operand as a destination
• 1 operand to specify the location of the next instruction that

should be fetched.

A.R. Hurson 5

Module2 Background

• Programming Level
• Depending on how many of these pieces of information are

explicitly defined, instructions are grouped into 5 classes: 4,
3, 2, 1, and 0-address instructions.

A.R. Hurson 6

Module2 Background

• Programming Level
• 4 - address instruction: In which the operand part

explicitly contains four pieces of information.

• Meaning: add contents of A to B and store the result in C
and then fetch the next instruction from D.

A.R. Hurson 7

ADD A,B,C,D

Sources Destination

Address of next
instruction{

Module2 Background

• Programming Level
• 3 - address instruction: Most of the instructions in a

program are sequential in nature. Therefore, it is possible
to eliminate the address of the next instruction from the
operand part and assume that the next instruction is in the
next consecutive location in main memory. This brings the
concept of 3-address instruction.

A.R. Hurson 8

Module2 Background

• Programming Level
• In case of 3 - address instruction a register, program

counter (PC), is used as a pointer to point to the next
instruction in sequence.

i) ADD A,B,C

• Meaning: add the contents of A to B and store the result in
C. In this case the program counter (PC) contains (i + 1).

A.R. Hurson 9

Module2 Background

• Programming Level
• 2 - address instruction: If the result of the operation is

going to be stored in one of the sources then we will end up
with a so-called 2-address instruction.

i) ADD A,B
• Meaning: add contents of A to B and store it either in A or B.

In this case the PC contains (i+1).

A.R. Hurson 10

Module2 Background

• Programming Level
• 1 - address instruction: In a 2-address instruction, if one

of the operands is being implicitly defined, then only one
source is needed to be explicitly defined in the operand part.
This brings the concept of 1-address instruction. This has
been implemented by the introduction of a register,
accumulator (AC), which acts as a source as well as
destination.

i) ADD A
• Meaning: add the contents of A to the AC and store the

result in the AC, PC contains (i + 1).

A.R. Hurson 11

Module2 Background

• Programming Level
• 0 - address instruction: Both operands are implicitly

defined and hence just the op.code is explicitly defined
in the instruction. This implementation is the so-called
stack machine, where operand values are assumed to
be on top of the stack.

i) ADD
• Meaning: pop stack twice, add the contents of the two

top most elements together and push the result back
into the stack. PC contains (i + 1).

A.R. Hurson 12

Module2 Background

• Programming Level
• Calculate the length of 4, 3, 2, 1, and 0-address instructions

for a machine capable of supporting 15 instructions and a
main memory of 16K:
• 4-address instruction: 4 + 4 * 14 = 60
• 3-address instruction: 4 + 3 * 14 = 46
• 2-address instruction: 4 + 2 * 14 = 32
• 1-address instruction: 4 + 1 * 14 = 18
• 0-address instruction: 4

A.R. Hurson 13

Module2 Background

• Programming Level
• In case of 2-address instructions, the destination operand

loses its initial value. So in many cases it is advisable to save
its initial value: i.e.,

MOVE A to T (T is a temporary area)

• In case of 1-address instructions, the accumulator should be
initialized before performing operations. Two instructions,
namely LOAD and STORE are used to move data to and from
accumulator:

LOAD A,
STORE A

A.R. Hurson 14

Module2 Background

• Programming Level
• In case of 0-address instructions, stack should be loaded

first. Two instructions namely PUSH and POP are used to
move data between main memory and stack:

PUSH A

POP A

A.R. Hurson 15

Module2 Background

• Questions
• Compare and contrast 4, 3, 2, 1, and 0-address instructions

and programs against each other.

• Is it possible to write a pure 0-address program?

• What determines the length of PC?

A.R. Hurson 16

Module2 Background

• Working Problem
• Write a 4, 3, 2, 1, and 0-address program for

Y = A ** B - (C + D)

Also calculate the program size based on
the physical configuration of the system we
discussed before.

A.R. Hurson 17

Module2 Background

• Working Problem
• 4-address program
1) EXP A,B,T1,2
2) ADD C,D,T2,3
3) SUB T1,T2,Y,4
4) ...
Instruction length = 60 bits
Program size = 3 * 60 = 180 bits

A.R. Hurson 18

Module2 Background

• Working Problem
• 3 - Address Program
1) EXP A,B,T1 PC=2
2) ADD C,D,T2 PC=3
3) SUB T1,T2,Y PC=4
4) ...
Instruction length = 46 bits
Program size = 3 * 46 = 138 bits

A.R. Hurson 19

Module2 Background

• Working Problem
• 2 - Address Program

1) MOVE A, T1 PC=2
2) EXP T1, B PC=3
3) MOVE C, T2 PC=4
4) ADD T2, D PC=5
5) SUB T1, T2 PC=6
6) MOVE T1, Y PC=7
7)...
Instruction length = 32 bits
Program size = 6 * 32 = 192 bits

A.R. Hurson 20

Module2 Background

• Programming Level
• 1 - Address Program
1) LOAD A PC=2
2) EXP B PC=3
3) STORE T1 PC=4
4) LOAD C PC=5
5) ADD D PC=6
6) STORE T2 PC=7
7) LOAD T1 PC=8
8) SUB T2 PC=9
9) STORE Y PC=10
10) ...
Instruction length = 18 bits
Program size = 9 * 18 = 162 bits

A.R. Hurson 21

Module2 Background

• Programming Level
• 0 - Address Program
1) PUSH A PC=2
2) PUSH B PC=3
3) EXP PC=4
4) PUSH C PC=5
5) PUSH D PC=6
6) ADD PC=7
7) SUB PC=8
8) POP Y PC=9
9) ...

Program size = 18 * 5 + 3 * 4 = 102 bits

A.R. Hurson 22

Instruction length 0 - Address 4 bits
1 - Address 18 bits

Module2 Background

• Reading Assignment
• Chapter 2 (sections 2.1-2.9)

• Homework2
• Due September 22

A.R. Hurson 23

Module2 Background

• Programming Level
• The order of the instructions in a program should be the

same as the order of instructions in a post-fix format ─
Expression should be converted into a post-fix format.

• In-fix to post-fix conversion:
• Make fully parenthesized expression

• Move each operator to its nearest right parenthesis

• Delete all the left and right parentheses.

A.R. Hurson 24

Module2 Background

• Programming Level
• Convert the following in-fix expressions to their post-fix format:

A.R. Hurson 25

A+ B (A + B) (AB) A B +
+

≡ ≡ ≡

A/(B + C) * D ((A/(B + C)) * D) ((A(BC))D) ABC +/ D *
+/ *

≡ ≡ ≡

(A * X + B) / (C * X - D) (((A * X)+ B)/((C * X) - D))

(((AX) B) ((C X) D)) AX * B + C X * D - /
* + * -/

≡

≡≡

Module2 Background

• Addressing Mode
• The way in which operands are specified in an instruction is

called the addressing mode. The ability to specify operands
in different ways brings a greater degree of flexibility to the
computer.
• Implied Mode: In this mode operand(s) is(are) specified implicitly

in the definition of instruction.
ADD A Accumulator is in implied mode.

• Immediate Mode: In this mode operand value is defined in the
instruction.
ADD 5

A.R. Hurson 26

Module2 Background

• Addressing Mode
• Index Mode: In this mode address of the operand is

determined by two values:
• Contents of the index register
• Displacement
• Effective address - i.e., address of operand, is determined by

adding the contents of index register to the displacement. Index
mode is very effective when handling arrays, tables, …

• Register Mode: In this mode operand value is contained in
a register which is referenced to by the instruction. Usually,
such a mode is used in the system with multiple registers.

ADD R1 To R2

A.R. Hurson 27

Module2 Background

• Addressing Mode
• Direct Addressing Mode: In this mode the address of operand is

explicitly defined in the instruction.
ADD A TO B
Register mode and direct mode are conceptually the same.
• Indirect Mode: In this mode, the address of the address of operand value

is contained in the instruction. Therefore, one needs two fetches to
memory in order to retrieve the operand value.

ADD Aindirect TO B
• Multilevel of Indirections: This is an extension of indirect mode, in which

instruction contains the address of the address of the ... of operand.

A.R. Hurson 28

Module2 Background

• Addressing Mode

A.R. Hurson 29

Main Memory

ADD A A

Direct Mode:

ADD A
A B

B

Indirect Mode:

Main Memory

Module2 Background

• Addressing Mode

A.R. Hurson 30

Main Memory+

Index Registers

00
01
10

ADD 2, A

Index Mode:

Module2 Background

• Addressing Mode
• A variation of index mode is called base addressing which

allows re-locatability.

• Some systems allow a mixture of several addressing
modes, i.e., indirect-register mode.

A.R. Hurson 31

Module2 Background

• Questions
• How are different addressing modes defined in an instruction?
• How is the level of indirection defined?
• What is the application of multi-level of indirection?
• If 5 and 6 are immediate values then are
ADD 5 to 6
ADD 5 to A
valid instructions?
• What is the format and length of a 2-address instruction, where:

instruction set is of size 15
memory is of size 16K words
system supports 3 different addressing modes (immediate, direct, and indirect).

A.R. Hurson 32

Module2 Background

• Study of a Simple Machine
• The simplicity of this machine is due to the simplicity of its control unit, the limited

number of operations it supports, and the simplicity of its instruction format.
• General Configuration

• Simple machine is a binary, 2s complement, 1-address machine.
• Main memory is of size 4096 * 16
• MAR is of length 12 bits
• MBR is of length 16 bits
• PC is of length 12 bits
• AC is of length 16 bits
• AC is extended by 1 bit register called E-bit (extended bit).
• Instruction register is composed of two parts:

• OPR 3-bit register
• I 1-bit register

A.R. Hurson 33

Module2 Background

• Study of a Simple Machine
• Instructions are of length 16:

• 4-bits to represent operation part

• 12-bits to represent operand part

A.R. Hurson 34

153 40 1Mode Bit

Op. Code

Operand PartOperation Part

Module2 Background

• Study of a Simple Machine
• The simple machine supports 2 types of addressing modes:

• Direct (0)
• Indirect (1)

• Instruction Formats: Instruction set is partitioned into three
groups
• Memory reference instructions
• Register reference instructions
• Input-Output instructions

A.R. Hurson 35

Module2 Background

• Study of a Simple Machine
• Memory reference instructions: These instructions

explicitly refer to a location in memory as the operand.
• 7-instructions are in this group:

AND (000), ADD (001), LDA (010), STA (011), BUN (100)
BSA (101), ISZ (110)

A.R. Hurson 36

Addressing
Mode Bit

Operation Code Operand Part

Module2 Background

• Study of a Simple Machine

Symbol Code Description
AND 000 And
ADD 001 Add
LDA 010 Load
STA 011 Store
BUN 100 Unconditional Branch
BSA 101 Branch and save address
ISZ 110 Inc. and Skip if Zero

A.R. Hurson 37

Module2 Background

• Study of a Simple Machine
• Register reference instructions: These instructions

explicitly refer to a register as the operand.
• Bit pattern in operand part determines the register

involved and the exact nature of the operation.
• 12-instructions are in this group:

CLA (7800), CIR (7080), SNA (7008), CLE (7400), CIL (7040),

SZA (7004), CMA (7200), INC (7020), SZE (7002), CME (7100), SPA
(7010), HLT (7001)

A.R. Hurson 38

0111 Operand Part

Module2 Background

• Study of a Simple Machine

Symbol Code (Hex) Description
CLA 7800 Clear Ac
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circular shift right AC
CIL 7040 Circular shift left AC
INC 7020 Increment AC
SPA 7010 Skip if Positive AC
SNA 7008 Skip if Negative AC
SZA 7004 Skip if Zero AC
SZE 7002 Skip if Zero E
HLT 7001 HaltA.R. Hurson 39

Module2 Background

• Study of a Simple Machine

Symbol Semantic
CLA AC ← 0

CLE E ← 0

CMA AC ←

CME E ←

CIR AC ← shr AC, AC(15) ← E, E ← AC(0)

CIL AC ← shl AC, AC(0) ← E, E ← AC(15)

INC AC ← AC + 1

SPA If (AC(15) = 0) then (PC ← PC + 1)

SNA If (AC(15) = 1) then (PC ← PC + 1)

SZA If (AC = 0) then (PC ← PC + 1)

SZE If (E = 0) then (PC ← PC + 1)

HLT S ← 0 (S is a start-Stop flip flop)
A.R. Hurson 40

AC
E

Module2 Background

• Study of a Simple Machine
• Input-Output instructions: Instructions in this group are

used to carry out the I/O operations.

• Bit pattern in operand part determines the nature of I/O
operation, i.e., type of I/O operation, type of I/O device, and
testing.

A.R. Hurson 41

1111 Operand Part

Module2 Background

• Study of a Simple Machine
• In general, the instruction set of a simple machine covers

the following classes of operations:
• Arithmetic, Logic, and Shift operations.

• Memory access operations.

• Control transfer operations.

• I/O operations.

• Start/Stop operations.

A.R. Hurson 42

Module2 Background

• Study of a Simple Machine ─ Flow of Control and Data
• 1)Program and data are read in and stored in main memory.
• 2)An instruction is fetched from main memory.
• 3)Fetched instruction is decoded and investigated.
• 4)Operand(s) is(are) fetched.
• 5)Operation is performed.
• 6)Steps 2-5 are repeated up to the end of program.
• Steps 2-5 are called the instruction cycle.
• Program counter is used to fetch an instruction.
• Usually steps 2 and 3 are called instruction fetch cycle and steps 4 and 5 are called

instruction execute cycle.
• In order to execute a program, the system goes into a sequence of instruction cycles.

Within each cycle an instruction is fetched, decoded, and executed.

A.R. Hurson 43

Module2 Background

• Study of a Simple Machine ─ Flow of Control
and Data

A.R. Hurson 44

An instruction Cycle

Instruction
Fetch Cycle

Address
Generation Cycle

Instruction Execute
Cycle

Interrupt
Cycle

Module2 Background

• Study of a Simple Machine
• At each moment the system should know exactly which cycle it is in. In the simple

machine this will be accomplished by the contents of 2 Flip Flops, called F, R Flip
Flops.

F R Nmonic
0 0 C0 (Fetch cycle)
0 1 C1 (Indirect cycle)
1 0 C2 (Execute cycle)
1 1 C3 (Interrupt cycle)
• Each cycle is a collection of several µ-operations. The µ-operation in each cycle

should be executed in an orderly fashion. This order is enforced by means of a clock.
In our simple machine each cycle contains four clock pulses.

A.R. Hurson 45

Module2 Background

• Study of a Simple Machine

A.R. Hurson 46

Control
Unit

Control
Signals

C C C C0 1 2 3

2 * 4
DECODER

F RCLOCK

SC
S

2*4
DECODER

t
t

t
t

0

1

2

3

I

3*8
DECODER

OPR
q

q

0

7

Module2 Background

• Study of a Simple Machine
• Fetch Cycle

• Program counter is used to fetch an instruction from main
memory.

• Address of the next instruction is calculated.
• The fetched instruction is interpreted.

• MAR ← address of next instruction (PC)
• MBR ← (M[MAR])
• IR ← (MBR)
• PC ← (PC) + 1* (The instruction length is assumed to be the same as

the word length).

A.R. Hurson 47

Module2 Background

• Study of a Simple Machine

A.R. Hurson 48

Main
Memory

3 2
1

MAR

MBR

4

IR

Control Unit

+1
2

PC

Module2 Background

• Study of a Simple Machine
• Fetch Cycle

c0t0: MAR ← (PC)
c0t1: MBR ← (M[MAR]), PC ← (PC) + 1
c0t2: OPR ← (MBR(op)), I ← (MBR(I))
q'7Ic0t3:R ← 1
(q7+I')c0t3: F ← 1

A.R. Hurson 49

Module2 Background

• Study of a Simple Machine
• Indirect cycle

c1t0: MAR ← (MBR(ADDRESS))
c1t1: MBR ← (M[MAR])

c1t2:idle

c1t3: F ← 1, R ← 0

A.R. Hurson 50

Module2 Background

• Study of a Simple Machine ─ Execute cycle
• AND A

q0c2t0: MAR ← (MBR(address))
q0c2t1: MBR ← (M[MAR])
q0c2t2: AC ← (AC) Λ (MBR)
q0c2t3: ...

• ADD A
q1c2t0: MAR ← (MBR(address))
q1c2t1: MBR ← (M[MAR])
q1c2t2: AC ← (AC) + (MBR)
q1c2t3: ...

A.R. Hurson 51

Module2 Background

• Study of a Simple Machine ─ Execute cycle
• LDA A

q2c2t0: MAR ← (MBR(address))
q2c2t1: MBR ← (M[MAR])
q2c2t2: AC ← (MBR)
q2c2t3: ...

• STA A
q3c2t0 : MAR ← (MBR(address))
q3c2t1 : MBR ← (AC)
q3c2t1 : M[MAR] ← (MBR)
q3c2t1 : ...

A.R. Hurson 52

Module2 Background

• Study of a Simple Machine ─ Execute cycle
• BUN A

q4c2t0 : PC ← (MBR(address))
q4c2t1 : idle
q4c2t2 : idle
q4c2t3 : ...

• ISZ A
q5c2t0 : MAR ← (MBR(address))
q5c2t1 : MBR ← (M[MAR])
q5c2t2 : MBR ← (MBR) + 1
q5c2t3 : M[MAR] ← (MBR), if (MBR=0) then PC ← (PC)+1

A.R. Hurson 53

Module2 Background

• Study of a Simple Machine ─ Execute cycle
• BSA A

q6c2t0: MAR ← (MBR(address)), MBR(address) ← (PC)

q6c2t1: PC ← (MAR)

q6c2t2: M[MAR] ← MBR, PC ← (PC) + 1

q6c2t3: ...

A.R. Hurson 54

BSA A

B + 1

B

A

(B + 1)

A + 1

A
MBR

PC

Module2 Background

• Study of a Simple Machine ─ Execute cycle
• Register reference instructions: Format of execute cycle for instructions in this class is

almost uniform:
• CLA:

q7I’c2t0(MBR5): AC ← 0
q7I’c2t1(MBR5): idle
q7I’c2t2 (MBR5): idle
q7I’c2t3 (MBR5): ...

• CLE:
q7I’c2t0 (MBR6): E ← 0
q7I’c2t1 (MBR6): idle
q7I’c2t2 (MBR6): idle
q7I’c2t3 (MBR6): ...

A.R. Hurson 55

Module2 Background

• Study of a Simple Machine ─ Execute cycle
• The uniform execute cycles for instructions in this class

suggest a simplified control unit.

• Practically every register reference instruction can be
executed in one clock pulse.

A.R. Hurson 56

Module2 Background

• Study of a Simple Machine ─ I/O Operations
• A computer can serve no useful purpose unless it

communicates with the outside world. Instructions and data
are received via input devices and results are transferred to
the outside world through output devices.

• I/O devices are either mainly mechanical devices or partially
mechanical devices.

• It is known that mechanical devices are slower than
electronic devices. This suggests that I/O devices (I/O
operations) are much slower than the CPU and main
memory (central) operations.

A.R. Hurson 57

Module2 Background

• Study of a Simple Machine ─ I/O Operations
• Whenever several devices with different speeds are

cooperating and/or competing over resources two major
problems could arise:
• Data could be lost.
• Efficiency of faster units could be compromised.

• Therefore to preserve the integrity and efficiency, one has to
devise proper mechanisms to:
• Synchronize I/O operations with the operations in main frame.
• Utilize resources, i.e., CPU and main memory, efficiently.

A.R. Hurson 58

Module2 Background

• Study of a Simple Machine ─ I/O Operations
• Synchronization scheme

A.R. Hurson 59

Com pu te r

INPR OU TR

OFLAGIF LAG

Information Result

Initially: IFLAG = 0
IFLAG = 0 ⇒ New data can be

Read into INPR

IFLAG = 1 ⇒

Initially: OFLAG = 1
OFL AG = 1 ⇒

OFL AG = 0 ⇒New data cannot be
Read in

OUTR can be
Written to

New Data in
OUTR

Output UnitInput Unit

Module2 Background

• Study of a Simple Machine ─ I/O Operations
• Synchronization scheme

A.R. Hurson 60

Input device:
AA. If IFLAG =1 then goto AA.

INPR ← "data", IFLAG←1.

Computer:
BB. If IFLAG =1 then PC←PC+1,

Goto BB.
AC←INPR, IFLAG←0.

Output Device:
CC. If OFLAG =1 then goto CC.

"data" ← OUTR, OFLAG←1.

Computer:
DD. If OFLAG =1 then
PC←PC+1,

Goto DD.
OUTR←AC, OFLAG←0.

Module2 Background

• Study of a Simple Machine ─ I/O Operations
• Let us introduce an interrupt-bit (INT). At the end of each

execute cycle, the contents of INT is investigated. If INT =
0, CPU continues its normal sequence of operations. If INT
= 1, then control transfers to a specific procedure (Interrupt
Handling Program).

• In Interrupt Handling Program, the proper actions needed
to resolve the interrupt will be performed.

A.R. Hurson 61

Module2 Background

• Study of a Simple Machine ─ I/O Operations
• In simple machine at the end of each execute cycle - i.e., c2qit3

(0≤i≤7), we have:
c2qit3: If INT Λ (IFLAG V OFLAG) = 1 then R ← 1,

If [INT Λ (IFLAG V OFLAG)=0] then F ← 0

• In the interrupt cycle:
c3t0: MBR(address) ← (PC), PC ← 0
c3t1: MAR ← 0, PC ← (PC) + 1
c3t2: M[MAR] ← (MBR), INT ← 0
c3t3: F ← 0, R ← 0

A.R. Hurson 62

Module2 Background

• Study of a Simple Machine ─ Interrupt
• An interrupt mechanism is a built-in facility. It is a signal to

the processor that causes the processor, after competing its
current instruction, to fetch the next instruction from a
special location in memory.

• The occurrence of an interrupt allows the processor to finish
what it is currently doing with its program and then simply
leave that program and begin executing another one.

A.R. Hurson 63

Module2 Background

• Study of a Simple Machine ─ Interrupt
• The concept of program interrupt is used to handle a variety

of problems which arise out of the normal program
sequence.

• Program interrupt refers to the transfer of control from the
currently running program to another service program as a
result of an external or internal generated request. Control
might return to the original program after the service
program is executed.

A.R. Hurson 64

Module2 Background

• Study of a Simple Machine ─ Interrupt
• Types of Interrupt

• External Interrupt is initiated mainly by external devices,
such as I/O devices, to the main frame.

• Internal Interrupt is initiated as a result of executing an
instruction.

• Software Interrupt is initiated by executing an instruction. It
is a special instruction call that behaves like an interrupt rather
than a subroutine call. It can be initiated by the programmer
at any time in the program.

A.R. Hurson 65

Module2 Background

• Study of a Simple Machine ─ Interrupt
• Internal Interrupt (Examples):

• Arithmetic results out of range
• Parity error
• Illegal operation code
• Stack overflow/underflow
• Out of memory access

• External Interrupt (Examples):
• Input/output devices started earlier is finished
• Parity error
• Another processor needs attention
• Operator at console

A.R. Hurson 66

Module2 Background

• Questions
• What is the application of BSA?
• In the simple machine, what is the last instruction of a

subroutine?
• How does the interrupt facility improve the efficiency of I/O

operations?
• Interrupt vector?
• Interrupt within interrupt?
• Format of interrupt handling program?

A.R. Hurson 67

Module2 Background

• Programming Level
• Addressing Mode: The way operand is defined in the

instruction.
• Effective address: The address of the operand value.
• Scratch pad memory: A collection of the resisters organized

and accessed like the main memory words.
• Base addressing: This is similar to the index addressing.

The contents of a register (base register) will be added to
every addresses in a program. Before the execution of the
program the contents of the base register will be loaded.
This allows the program to be loaded anywhere in the main
memory. The contents of the base register should be
gaurded during the course of the program execution.

A.R. Hurson 68

Module2 Background

• Programming Level
• Relative addressing mode: The effective address is defined

relative to the current contents of the program counter.
• Instruction set: The collection of instruction supported by

the machine.
• Instruction cycle: The sequence of microoperations needed

to fetch and execute and instruction.
• Instruction fetch cycle: A subset of the instruction cycle to

allow to fetch the next machine instruction.
• Machine instruction: Binary representation of the assembly

instruction.

A.R. Hurson 69

Module2 Background

•Programming Level
• Instruction execute cycle: A subset of the instruction cycle

that facilitates the execution of a machine instruction.
• Address generation cycle: A subset of the instruction cycle

that calculates the effective address of the operand.
• Interrupt Handling Program: A collection of system routines

developed for handling different variation of interrupts.

A.R. Hurson 70

Module2 Background

• Programming Level
• Precise interrupt: During the course of the execution

of the program, the location of interrupt can be
determined.

• Imprecise interrupt: During the course of the
execution of the program the approximate position of
the interrupt can be determined.

• Extended opcode: A technique that allows to extend
the instruction set by using part of the operand section
of the instruction as a modifier to the op-code.

A.R. Hurson 71

Module2 Background

•Programming Level
• Basic Block: A sequence of sequential instructions, i.e., a

sequence of instructions without any branches (except
possibly the last instruction).

• Program Counter: A special purpose register that holds the
address of the next instruction in sequence.

• Stack: A form of data structure that supports last-in-first-out
policy.

A.R. Hurson 72

Module2 Background

• Questions
• Rewrite the indirect cycle to allow multilevel of indirections.

• Within the scope of the simple machine, it is possible to
increase the set of the register reference instructions?

• The length of the opcode for the simple machine is 3. So by
a simple calculation, the simple machine should have an
instruction set of size 8! However, as we have seen, the
simple machine has an instruction set of size 31! Explain.

• What is the application of BSA?

A.R. Hurson 73

Module2 Background

• Questions
• Does the simple machine support a recursive call?
• What is the application of ISZ?
• Within the scope of the simple machine, what is the last

instruction of a subroutine?
• For the simple machine, write an assembly program to

perform A - B?
• Does the synchronization scheme, discussed for the I/O

operation, improve computer utilization?
• How does the interrupt facility improve the efficiency of I/O

operation?

A.R. Hurson 74

Module2 Background

• Questions
• What is a “subroutine”?

• What is a “subroutine call”?

• What is the difference between a subroutine call and a goto
statement?

• What is a “Jump-and Link” Instruction?

A.R. Hurson 75

	Programming Level
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background
	Module2 Background

