CS 5803
 Introduction to High Performance Computer Architecture: Arithmetic Logic Unit

A.R. Hurson
323 CS Building,
Missouri S\&T
hurson@mst.edu

Introduction to High Performance Computer Architecture

> Outline

Motivation

* Design of a simple ALU
* How to design an ALU
* Fast ALU design
- Fast Adder
- Fast Multiplier
- Fast Divider

Note, this unit will be covered in almost three weeks. In case you finish it earlier, then you have the following options:

1) Take the early test and start CS5803.module4
2) Study the supplement module (supplement CS5803.module3)
3) Act as a helper to help other students in studying CS5803.module3
Note, options 2 and 3 have extra credits as noted in course outline.

Extra Curricular activities

Introduction to High Performance Computer Architecture

You are expected to be familiar with:

* Representation of numbers,
* Basic arithmetic operations in digital systems, including: addition, multiplication, and division,
* Concept of serial, parallel, and modular ALU
\checkmark If not then you need to study
CS5803.module3.background

Introduction to High Performance Computer Architecture

Arithmetic and Logic Unit (ALU)

* In an attempt to improve the performance, this section will talk about the Arithmetic Logic Unit.
* In regard to our earlier CPU time, we are looking at techniques to reduce p.

$$
\mathrm{T}=\mathrm{I}_{\mathrm{C}}{ }^{*} \mathrm{CPI}{ }^{*} \tau=\mathrm{I}_{\mathrm{C}} *\left(\mathrm{p}+\mathrm{m}^{*} \mathrm{k}\right)^{*} \tau
$$

Introduction to High Performance Computer Architecture

- Arithmetic and Logic Unit (ALU)
*. It is a functional box designed to perform basic arithmetic, logic, and shift operations on the data.
*. Implementation of the basic operations such as logic, program control, and data transfer operations are easier than arithmetic and I/O operations. Therefore, in this section we concentrate on arithmetic operations.

Introduction to High Performance Computer Architecture

Arithmetic and Logic Unit (ALU)

* An ALU can be of three types:

OSerial
OParallel (see module3.background for definitions and more discussion about serial and parallel ALU)

OFunctional (Modular)

Introduction to High Performance Computer Architecture

Arithmetic and Logic Unit (ALU)

* As discussed before a parallel ALU offers a higher speed relative to a serial ALU.
* How can one improve the performance (speed) of ALU further?
* Is it possible to build (design) an ALU faster than a parallel ALU?

Introduction to High Performance Computer Architecture

Arithmetic and Logic Unit (ALU)

*Functional (modular) ALU

- ALU is a collection of independent units each tailored for a specific operation. As a result, independent operations can be overlapped.
- This approach allows an additional degree of concurrency relative to a parallel ALU, since it allows several operations to be performed on data simultaneously.
- This speed improvement comes at the expense of extra overhead needed to detect data independent operations.

Introduction to High Performance Computer Architecture

Arithmetic and Logic Unit (ALU)

* Functional (modular) ALU

Introduction to High Performance Computer Architecture

Arithmetic and Logic Unit (ALU)

* Is it possible to improve the performance of an ALU further?
*. Naturally, we can improve the performance (physical speed) by taking advantage of the advances in technology.
*How can we improve the logical speed of the ALU further?

Introduction to High Performance Computer Architecture

Arithmetic and Logic Unit (ALU)

* In a functional ALU, is it possible to devise algorithms which allow one to improve the performance of the basic operations?
* If this is a valid direction, then the question of how to design a fast ALU will change to "how to design a fast adder, a fast multiplier, ...?"

Introduction to High Performance Computer Architecture

Question

* As a computer architect, how do you design an ALU? In another words, in an attempt to design an ALU, what issues do you need to take into consideration?

Introduction to High Performance Computer Architecture

>Fast Adder

* How to design an adder faster than a parallel adder?
* What is the major bottle-neck in a parallel adder?
* Is the carry generation and propagation the major bottleneck?
*. Is it possible to eliminate, moderate, or reduce the delay of carry generation and propagation?

Introduction to High Performance Computer Architecture

Arithmetic and Logic Unit (ALU)

* Carry Lookahead

OScheme 1
OScheme 2

* Carry Select
* Carry Lookahead plus Carry Select

Introduction to High Performance Computer Architecture

-Fast Adder

* Carry Lookahead - Generate and propagate carries ahead of time, relative to a parallel adder.

Introduction to High Performance Computer Architecture
$>$ Fast Adder

* Basic Building Block - A 4-Bit Adder

Introduction to High Performance Computer Architecture

>Fast Adder

* Basic Building Block - A 4-Bit Adder (Timing)

$$
\begin{array}{ll}
\mathrm{F}_{1}=4 \Delta \mathrm{t} & \mathrm{C}_{2}=4 \Delta \mathrm{t} \\
\mathrm{~F}_{2}=6 \Delta \mathrm{t} & \mathrm{C}_{3}=6 \Delta \mathrm{t} \\
\mathrm{~F}_{3}=8 \Delta \mathrm{t} & \mathrm{C}_{4}=8 \Delta \mathrm{t} \\
\mathrm{~F}_{4}=10 \Delta \mathrm{t} & \mathrm{C}_{5}=10 \Delta \mathrm{t}
\end{array}
$$

Introduction to High Performance Computer Architecture

>Fast Adder

* Carry Lookahead (Scheme 1)

$$
\mathrm{C}_{\mathrm{i}+1}=\mathrm{A}_{\mathrm{i}} \mathrm{~B}_{\mathrm{i}}+\left(\mathrm{A}_{\mathrm{i}} \oplus \mathrm{~B}_{\mathrm{i}}\right) \mathrm{C}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \mathrm{~B}_{\mathrm{i}}+\left(\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}\right) \mathrm{C}_{\mathrm{i}}
$$

Introduction to High Performance Computer Architecture

-Fast Adder

* Carry Lookahead (Scheme 1)

OIn a 4-bit full adder

$$
\begin{aligned}
& \mathrm{C}_{1}=0 \\
& \mathrm{C}_{2}=\mathrm{g}_{1}+\mathrm{P}_{1} \mathrm{C}_{1} \\
& \mathrm{C}_{3}=\mathrm{g}_{2}+\mathrm{P}_{2} \mathrm{C}_{2}=g_{2}+\mathrm{P}_{2} g_{1}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{C}_{1} \\
& \mathrm{C}_{4}=\mathrm{g}_{3}+\mathrm{P}_{3} \mathrm{C}_{3}=\mathrm{g}_{3}+\mathrm{P}_{3} \mathrm{~g}_{2}+\mathrm{P}_{3} \mathrm{P}_{2} g_{1}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{C}_{1} \\
& \mathrm{C}_{5}=\ldots
\end{aligned}
$$

Introduction to High Performance Computer Architecture
$>$ Fast Adder — Carry Lookahead (Scheme 1)

* Extended 4-Bit Full Adder

Carry Lookahead (Scheme 1)

Introduction to High Performance Computer Architecture

$>$ Fast Adder — Carry Lookahead (Scheme 1)

* Extended 4-Bit Full Adder — Timing $\mathrm{d} \cong 2 \Delta t$ p^{s} and g^{s} are generated in d
C^{5} are generated after another d
F^{5} are generated after another d

Introduction to High Performance Computer Architecture

Fast Adder — Carry Lookahead (Scheme 1)

Introduction to High Performance Computer Architecture

$>$ Fast Adder — Carry Lookahead (Scheme 2)

Timing

CLA $=5 \Delta t$
Cascades of CLAs overlap 1Δ t operation

Introduction to High Performance Computer Architecture

>Fast Adder

* Carry Select
-Carry-in to a 4-bit full adder is either 0 or 1.
- Duplicate each stage - e.g., 4-bit full adder.

OInitiate each unit in a stage with carry-in of 0 and 1.

- Use a multiplexer to select the correct answer.

Introduction to High Performance Computer Architecture

PFast Adder — Carry Select

Questions

* Calculate the execution time of a 16-bit adder using carry lookahead scheme 1.
*Formulate the execution time of an n-bit adder using carry lookahead scheme 1 (n is a multiple of 4).
* Calculate the execution time of a 16-bit adder using carry lookahead Scheme 2.
*Formulate the execution time of an n-bit adder using carry lookahead scheme 2 (n is a multiple of 4).

Introduction to High Performance Computer Architecture

Questions

* Calculate the execution time of a 16-bit adder using carry select scheme.
* Formulate the execution time of an n-bit adder using carry select scheme.
* Is it possible to combine carry lookahead and carry select concepts to design a faster adder?

Introduction to High Performance Computer Architecture

Multiplication

* Multiplication can be performed as a sequence of repeated additions.
* A * B is interpreted as add A, B times. However, such a scheme is very inefficient with a time complexity of $\mathrm{O}(\mathrm{m})$ where m is the magnitude of B.
* A better approach to multiplication, add-and-shift, produces a time complexity of $\mathrm{O}(\mathrm{n})$ where n is the length of the B.

Introduction to High Performance Computer Architecture
\checkmark Add-and-shift - hardware configuration * Multiplier and multiplicand are two n-bit unsigned numbers,
*Result is a 2n-bit number stored in an accumulator and multiplier registers.

Introduction to High Performance Computer Architecture

- Add-and-shift — Algorithm
* In each iteration the least-significant bit of multiplier is checked;
Oif one, then multiplicand is added to the accumulator and the contents of accumulator and multiplier is shifted right one position.
Oif zero, just shift accumulator and multiplier to the right.
OSee module3.background for additional discussion about Add-and-shift algorithm.

Introduction to High Performance Computer Architecture

$>$ Multiplication — Booth's Algorithm

* Booth's algorithm is an extension to the add-and-shift approach.
** In each iteration two bits of multiplier are being investigated and proper action(s) will be taken according to the following coding table:

00 no action shift right once
01 add multiplicand shift right once
10 sub multiplicand shift right once
11 no action shift right once
See module3.background for more discussion about Booth's algorithm.
>Multiplication — Modified Booth's Algorithm

* Check 3 bits of multiplier at a time and take proper steps as follows:

000 no action
001 add multiplicand
010 add multiplicand
011 add 2*multiplicand
100 sub 2*multiplicand
101 sub multiplicand
110 sub multiplicand
111 no action
shift right twice shift right twice

Introduction to High Performance Computer Architecture

Multiplication — Booth's Algorithm
*Any version of Booth's algorithm allows a sequence of consecutive $1^{\text {s }}$ to be bypassed.
*Modified Booth's Algorithm is faster than Booth's Algorithm.
*Booth's Algorithm can be further extended by looking at 4 bits, (5 bits, ...) at a time and taking proper actions according to the proper encoding table.

Introduction to High Performance Computer Architecture

>Multiplication — Modified Booth's Algorithm

Introduction to High Performance Computer Architecture

>Summary
*How to design an ALU?
*Fast adder
-Carry Lookahead
-Carry Select

* Multiplication
- Add-and-shift

OBooth's algorithm and its extension

Introduction to High Performance Computer Architecture

Multiplication

* The add-and-shift algorithm can be used to multiply numbers (say A and B) in $2^{\text {s }}$ complement, if the result is adjusted properly. Three cases can be recognized.
OCase 1: A positive; B negative
OCase 2: A negative; B positive
OCase 3: A negative; B negative

Introduction to High Performance Computer Architecture

Multiplication — Case 1: A positive B negative

* Proof

$$
\begin{aligned}
& A * \widetilde{B}=A *\left(2^{n}-B\right)=2^{n} A-A * B \\
& A * B=2^{n} A-A * \widetilde{B} \\
& 2^{2 n}-A * B=2^{2 n}-2^{n} A+A * \widetilde{B} \\
& \widetilde{A B}=2^{n}\left(2^{n}-A\right)+A * \widetilde{B}=2^{n} \widetilde{A}+A * \widetilde{B}
\end{aligned}
$$

Multiply A and B using add-and-shift algorithm and adjust the result by $2^{\mathrm{n}} \cdot \widetilde{\mathrm{A}}$

Introduction to High Performance Computer Architecture

Questions

* Justify case 2 and case 3.
* Is it possible to use the same technique for $1^{\text {s }}$ complement numbers?

Introduction to High Performance Computer Architecture

$>$ Multiplication — Example
*Perform 00101 * 11010 using add-and-shift algorithm, numbers are in $2^{\text {s }}$ complement format:

Introduction to High Performance Computer Architecture

E	AC	A	$\begin{aligned} & A_{n}=0, \text { shift right EACA } \\ & A_{n}=1, \text { add } B \end{aligned}$
0	00000	11010	
0	00000	01101	
	00101		
0	00101	01101	Shift right EACA
0	00010	10110	$\begin{aligned} & A_{n}=0, \text { shift right EACA } \\ & A_{n}=1 \text {, add } B \end{aligned}$
0	00001	01011	
	00101		
0	00110	01011	Shift right EACA$\mathrm{A}_{\mathrm{n}}=1 \text {, add } \mathrm{B}$
0	00011	00101	
	00101		
0	01000	00101	Shift right EACA Adjust the result
0	00100	00010	
	11011		
	11111	00010	- Answer

Introduction to High Performance Computer Architecture

-Fast Multiplication
*Reduction of Summands
OGenerate matrix of summands (partial products).
oGo over several reduction stages using 2-2 and 3-2 adders.

OIn final stage (2 rows) use a fast adder to generate the result.

Introduction to High Performance Computer Architecture
>Fast Multiplication — Reduction of Summands

Introduction to High Performance Computer Architecture

PFast Multiplication — Reduction of Summands

	0	1	1	1	0	0	0	1	1
0	0	0	0	0	1			0	
0	0	1	1	0	0	0	0	1	1
0	0	0	1		1			0	
0	1	0	0	0	1	0	0	1	1

Introduction to High Performance Computer Architecture

- Summary
* Multiplication
- Add-and-shift

OBooth's algorithm and its extension
*Reduction of Summands

Introduction to High Performance Computer Architecture

>Fast Multiplication — Reduction of Summands

* It is suitable for unsigned numbers.
* Number of reduction stages depends on the length of the multiplier.
* Execution time:

Introduction to High Performance Computer Architecture

- Fast Multiplication
*. Iterative Method
-Multiplication of 2 n-bit numbers can be converted into four multiplications of $\mathrm{n} / 2$-bit numbers and two additions.
OThis scheme can be iteratively applied to all multiplication terms

Introduction to High Performance Computer Architecture

PFast Multiplication — Iterative Method

$$
\begin{aligned}
& X=2^{n / 2} a+b, Y=2^{\mathrm{N}} 2 \mathrm{c}+\mathrm{d} \\
& X^{*} Y=\left(2^{\mathrm{N} / 2} a+b\right)^{\star}\left(2^{\mathrm{N} / 2} c+d\right)=2^{n}(a c)+2^{\mathrm{N} / 2}(a d+b c)+b d
\end{aligned}
$$

Introduction to High Performance Computer Architecture

Fast Multiplication — Iterative Method

$$
\mathrm{X} * \mathrm{Y} \Rightarrow
$$

bc

Introduction to High Performance Computer Architecture

-Fast Multiplication
**) Iterative Method - An Example

```
\[
\mathrm{x}=\mathrm{a}_{3} \mathrm{a}_{2} \mathrm{a}_{1} \mathrm{a}_{0}
\]
\[
\mathrm{y}=\mathrm{b}_{3} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}
\]
```

$$
x^{\star} y=2^{4}\left(a_{3} a_{2}\right)\left(b_{3} b_{2}\right)+2^{2}\left[\left(a_{3} a_{2}\right)\left(b_{1} b_{0}\right)+\left(a_{1} a_{0}\right)\left(b_{3} b_{2}\right)\right]+
$$

$$
\left(a_{1} a_{0}\right)\left(b_{1} b_{0}\right)
$$

Introduction to High Performance Computer Architecture

>Fast Multiplication
*. Iterative Method - An Example

$$
\begin{aligned}
& x=1010 \\
& y=1100
\end{aligned}
$$

Introduction to High Performance Computer Architecture

								$\begin{aligned} & \mathrm{a}_{7} \\ & \mathrm{~b}_{7} \end{aligned}$	a_{6} b_{6}	$\begin{array}{r} \mathrm{a}_{5} \\ \mathrm{~b}_{5} \end{array}$	a_{4} b_{4}	$\begin{aligned} & \mathrm{a}_{3} \\ & \mathrm{~b}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{a}_{2} \\ & \mathrm{~b}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{a}_{1} \\ & \mathrm{~b}_{1} \end{aligned}$	a_{0} b_{0}
								$\mathrm{a}_{7} \mathrm{~b}_{0}$	$\mathrm{a}_{6} \mathrm{~b}_{0}$	$\mathrm{a}_{5} \mathrm{~b}_{0}$	$\mathrm{a}_{4} \mathrm{~b}_{0}$	$\mathrm{a}_{3} \mathrm{~b}_{0}$	$a_{2} b_{0}$	$\mathrm{a}_{1} \mathrm{~b}_{0}$	$\mathrm{a}_{0} \mathrm{~b}_{0}$
							$\mathrm{a}_{7} \mathrm{~b}_{1}$	$a_{6} b_{1}$	$\mathrm{a}_{5} \mathrm{~b}_{1}$	$\mathrm{a}_{4} \mathrm{~b}_{1}$	$a_{3} b_{1}$	$\mathrm{a}_{2} \mathrm{~b}_{1}$	$a_{1} b_{1}$	$a_{0} b_{1}$	
						$\mathrm{a}_{7} \mathrm{~b}_{2}$	$a_{6} b_{2}$	$\mathrm{a}_{5} \mathrm{~b}_{2}$	$\mathrm{a}_{4} \mathrm{~b}_{2}$	$a_{3} b_{2}$	$a_{2} b_{2}$	$a_{1} b_{2}$	$a_{0} b_{2}$		
					$\mathrm{a}_{7} \mathrm{~b}_{3}$	$a_{6} b_{3}$	$a_{5} b_{3}$	$\mathrm{a}_{4} \mathrm{~b}_{3}$	$a_{3} b_{3}$	$\mathrm{a}_{2} \mathrm{~b}_{3}$	$\mathrm{a}_{1} \mathrm{~b}_{3}$	$a_{0} b_{3}$			
				$\mathrm{a}_{7} \mathrm{~b}_{4}$	$\mathrm{a}_{6} \mathrm{~b}_{4}$		$\mathrm{a}_{4} \mathrm{~b}_{4}$				$\mathrm{a}_{0} \mathrm{~b}_{4}$				
			$\mathrm{a}_{7} \mathrm{~b}_{5}$	$a_{6} b_{5}$	$a_{5} b_{5}$	$\mathrm{a}_{4} \mathrm{~b}_{5}$	$a_{3} b_{5}$	$a_{2} \mathrm{~b}_{5}$	$a_{1} b_{5}$	$a_{0} b_{5}$					
		$\mathrm{a}_{7} \mathrm{~b}_{6}$	$\mathrm{a}_{6} \mathrm{~b}_{6}$	$\mathrm{a}_{5} \mathrm{~b}_{6}$	$a_{4} b_{6}$	$a_{3} b_{6}$	$\mathrm{a}_{2} \mathrm{~b}_{6}$	$a_{1} b_{6}$	$\mathrm{a}_{0} \mathrm{~b}_{6}$						
	$\mathrm{a}_{7} \mathrm{~b}_{7}$	$\mathrm{a}_{6} \mathrm{~b}_{7}$	$\mathrm{a}_{5} \mathrm{~b}_{7}$	$\mathrm{a}_{4} \mathrm{~b}_{7}$	$\mathrm{a}_{3} \mathrm{~b}_{7}$	$\mathrm{a}_{2} \mathrm{~b}_{7}$	$\mathrm{a}_{1} \mathrm{~b}_{7}$	$\mathrm{a}_{0} \mathrm{~b}_{7}$							
2^{15}	2^{14}	2^{13}	2^{12}	2^{11}	2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

Introduction to High Performance Computer Architecture

>Fast Multiplication
*. Hurson's Scheme - Observations
OIn a parallel multiplier unit first an n*n matrix of partial products (M) is generated and then elements in each column are added.

$$
\mathrm{m}_{\mathrm{ij}} \varepsilon \mathrm{M} \begin{cases}1 & \text { if } \mathrm{B}_{\mathrm{i}}=\mathrm{Q}_{\mathrm{j}}=1 \quad 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n} \\ 0 & \text { otherwise }\end{cases}
$$

Introduction to High Performance Computer Architecture

FFast Multiplication

* Hurson's Scheme - Observations
- An element m_{ij} in M is the result of an AND operation between the $i^{\text {th }}$ bit of multiplicand and $j^{\text {th }}$ bit of multiplier.
- In each column, zero elements do not affect the summation in that column and carry to the next column.
- Each pair of 1^{s} in a column contributes a carry to the next column.
- The result of summation for each column is either zero (even number of 1^{s}) or one (odd number of 1^{s}).

Introduction to High Performance Computer Architecture

FFast Multiplication — Hurson's Scheme

* Generate only non-zero elements in each column.
*For each pair of $1^{\text {s }}$ in a column generate a carry to the next column.
* Count the number of $1^{\text {s }}$ in each column.

Introduction to High Performance Computer Architecture

$>$ Fast Multiplication

* Hurson's Scheme - Example

Introduction to High Performance Computer Architecture

Fast Multiplication

* Full Adder Tree
-Generate matrix of summands.
OUse a binary tree of full-adders to calculate the result in a pipeline fashion

Introduction to High Performance Computer Architecture

$>$ Fast Multiplication — Full Adder Tree

Introduction to High Performance Computer Architecture

Questions

*For an n * n multiplication, calculate the execution time of the operation using full adder tree scheme.

* Show the "snap shots" of the events to perform: 1101 * 1011 using full adder tree scheme.

Introduction to High Performance Computer Architecture

Fast Multiplication — Column Compression

* Assume that a population counter is available that can count the number of 1^{s} in an n-bit word, producing a $1+\left\lfloor\log _{2} n\right\rfloor$ bit result.
*Similar to the reduction of summands technique one can go through several reduction stages to compress the number of bits in each column.

Introduction to High Performance Computer Architecture

Fast Multiplication — Column Compression

* Generate matrix of summands.
* Go over several stages using population counters.
* In final stage (2 elements in each column) use a fast adder to generate the result.

Introduction to High Performance Computer Architecture

$>$ Fast Multiplication — Column Compression

Introduction to High Performance Computer Architecture

Fast Multiplication — Column Compression

Introduction to High Performance Computer Architecture

-Question
*Formulate the execution time of an n * n multiplier unit using column compression scheme.

Introduction to High Performance Computer Architecture

>Division

* Similar to multiplication, one can develop a routine to perform division as a sequence of subtractions.
*However, such an algorithm is very inefficient and slow.
* Instead one can develop an algorithm which performs division as a sequence of Compare, Shift and Subtract operations.

Introduction to High Performance Computer Architecture

>Division
*) One should note that division in a binary system is much simpler than the division in decimal system, since the quotient digits are either 0 or 1 .
*To minimize the hardware requirements, we should remember that:

- Comparison can be performed via arithmetic operation (s).
- Subtraction can be performed via complement-addition.
*. In other words; division requires almost the same hardware modules as multiplication does.

Introduction to High Performance Computer Architecture

Δ Division

* Division can be carried out as a sequence of n iterations.
* Dividend is a double register.
* One bit of the quotient is generated in each iteration.
* At the end of the operation, the quotient is in the 1st half part of the double register (low-order part), and remainder is in the 2nd half part.
* Sign of the quotient is the $\mathrm{X}-\mathrm{OR}$ of the signs of dividend and divisor.
* Sign of the remainder is the same as the sign of the dividend.

Introduction to High Performance Computer Architecture

- Division
* Methods of Division
-There are several different algorithms for division:
- Restoring Method
- Non-Restoring Method
- Direct Comparison

Introduction to High Performance Computer Architecture

>Fast Division — SRT Method

* Faster direct division can be developed on normalized numbers by observing sequences of more than one bit of the dividend or partial remainder - i.e., sequences of $0^{\text {s }}$ and $1^{\text {s }}$ can be skipped.
* This method was proposed to improve binary floating-point arithmetic.

Introduction to High Performance Computer Architecture

>Fast Division — SRT Method

* Assumptions

OThe dividend and divisor are binary fractions.
OThe divisor (B) is an n -bit normalized number i.e., $B=.1 \mathrm{~b}_{\mathrm{n}-2} \ldots \mathrm{~b}_{1} \mathrm{~b}_{0}, .5 \leq \mathrm{B}<1$.

OThe dividend-quotient (AQ) combination is a 2 n -bit register - i.e.,

Introduction to High Performance Computer Architecture

Fast Division - SRT Method

* Assumptions

OThe dividend is normalized during the division operation.
-Divide overflow condition will be detected and steps are taken in order for it to be overcome.

Introduction to High Performance Computer Architecture

>Fast Division — SRT Method

* The divisor is normalized and the dividendquotient combination is adjusted by shifting it left the same number of positions that the divisor was shifted during normalization.
*This step allows that the relative magnitudes of divisor and dividend remain the same.

Introduction to High Performance Computer Architecture

Fast Division — SRT Method

* AQ is normalized - i.e., for each shift left a 0 is inserted for q_{0} - Skipping over zeros.

$$
A Q=.1 \quad a_{n-2} \quad \ldots \quad a_{1} a_{0} q_{n-1} \ldots q_{k} \begin{array}{lll}
\text { K Zeros } \\
00 & \ldots & 0
\end{array}
$$

*. After this step, repeat the following sequence of steps:

Introduction to High Performance Computer Architecture

FFast Division - SRT Method
*Subtract divisor from the dividend:
OIf positive result, a 1 is inserted for q_{0} and left shift AQ register.

Introduction to High Performance Computer Architecture

Fast Division — SRT Method
OIf negative result - i.e.,

- Insert 0 for q_{0} and shift left AQ register
\square Shift over 1^{s}, and insert 1^{s} until

- Add B to A and shift AQ to left

Introduction to High Performance Computer Architecture
>Fast Division — SRT Method

* Perform the following operation

A	Q
AQ	$=.0000010111$
B	$=.00101$
Normalized B	$=.10100$
Normalized B	$=1.01100$

Introduction to High Performance Computer Architecture

Fast Division - SRT Method

Introduction to High Performance Computer Architecture
>Fast Division — SRT Method

$$
\begin{array}{rll}
\mathrm{A} & \mathrm{Q} & \\
\mathrm{AQ}= & .00001 & 10111 \\
\mathrm{~B} & =.01010 & \left(55 * 2^{-10}\right) \\
& \left(10 * 2^{-5}\right)
\end{array}
$$

Normalized B = . 10100
Normalized B $=1.01100$

Introduction to High Performance Computer Architecture

FFast Division — SRT Method

	.00001	10111
Adjust AQ	.00011	0111^{*}
Shift over 0^{s}	.11011	$1^{*} 000$
Subtract B	$\underline{1.01100}$	
Positive Result:	0.00111	$1^{*} 000$
Shift AQ left, $\mathrm{q}_{0} \leftarrow 1$.01111	$* 0001$
Shift over 0s	$.1111^{*}$	00010
Subtract B	$\underline{1.01100}$	
Positive Result:	0.0101^{*}	00010
Shift AQ left, $\mathrm{q}_{0} \leftarrow 1$	$.101^{*} 0$	00101

Introduction to High Performance Computer Architecture
>Fast Division — SRT Method

	A
Q	
AQ	$=.00101 \quad 00100$
B	$=.01111$
Normalized B	$=.11110$
Normalized B	$=1.00010$

Introduction to High Performance Computer Architecture
>Fast Division - SRT Method

	.00101	00100
Adjust AQ	.01010	0100^{*}
Shift over 0s	.10100	$100^{*} 0$
Subtract B	$\underline{1.00010}$	
Negative Result:	1.10110	$100^{*} 0$
Shift AQ left, $\mathrm{q}_{0} \leftarrow 0$	1.01101	$00^{*} 00$
Add B	$\underline{.11110}$	
Positive Result:	0.01011	$00^{* 00}$
Shift AQ left, q	$\leftarrow 1$.10110
$0 * 001$		
Subtract B	$\underline{1.00010}$	
Negative Result:	1.11000	$0 * 001$

Introduction to High Performance Computer Architecture
>Fast Division - SRT Method

Negative Result:	1.11000	$0 * 001$
Shift AQ left, q $⿱ 艹$	$\leftarrow 0$	1.10000
$* 0010$		
Shift over 1s	1.0000^{*}	00101
Add B	.11110	
Negative Result:	1.1111^{*}	00101
Shift AQ left, q $\leftarrow 0$	$1.111^{*} 0$	01010
Correct remainder by	1.1111^{*}	
shifting A and adding B	$\underline{.11110}$	quotient
	0.1110^{*}	

Introduction to High Performance Computer Architecture

Fast Division — Divisor Reciprocation
*This method generates the reciprocal of the divisor using an iterative process, and then obtains the quotient by multiplying the dividend by the divisor reciprocal

$$
\mathrm{A} / \mathrm{B}=\mathrm{A} *(1 / \mathrm{B})
$$

Introduction to High Performance Computer Architecture

Fast Division — Divisor Reciprocation
*The divisor (B) is assumed to be a positive and normalized number,

$1 / 2 \leq \mathrm{B}<1 \Rightarrow 1<1 / \mathrm{B} \leq 2$

* An initial value $X_{0} \approx 1 / B$ is determined using a ROM table or a combinational logic circuit,

$$
B=.1 \mathrm{~b}_{2} \mathrm{~b}_{3} \ldots \mathrm{~b}_{\mathrm{n}} \Rightarrow \mathrm{X}_{0}=1 . \mathrm{d}_{1} \mathrm{~d}_{2} \ldots \mathrm{~d}_{\mathrm{n}}
$$

Introduction to High Performance Computer Architecture

Fast Division - Divisor Reciprocation
*Then the following iterative cycles will be performed to determine the inverse value with reasonable accuracy

$$
a_{0}=B x_{0}\left\{\begin{array}{l}
x_{1}=x_{0}\left(2-a_{0}\right) \\
a_{1}=a_{0}\left(2-a_{0}\right)
\end{array},\left(\begin{array}{l}
x_{2}=x_{1}\left(2-a_{1}\right) \\
a_{2}=a_{1}\left(2-a_{1}\right)
\end{array},\left\{\begin{array}{l}
x_{n}=x_{n-1}\left(2-a_{n-1}\right) \\
a_{n}=a_{n-1}\left(2-a_{n-1}\right)
\end{array}\right.\right.\right.
$$

* The number of iterations (n) will be chosen to satisfy the following relation:

$$
\left|1-\mathrm{B} \mathrm{x}_{\mathrm{n}}\right| \leq \varepsilon
$$

Introduction to High Performance Computer Architecture

Fast Division — Divisor Reciprocation

* Assume B = . $75 \Rightarrow 1 / \mathrm{B}=1.3333$...
*Take $\mathrm{X}_{0}=1$, naturally X_{0} is not the exact inverse of B and the error is $\delta=.333333$...

$$
\begin{gathered}
\mathrm{X}_{1}=\mathrm{X}_{0}\left(2-\mathrm{BX}_{0}\right)=1(2-.75)=1.25 \quad \delta=.08333 \ldots \\
\mathrm{X}_{2}=\mathrm{X}_{1}\left(2-\mathrm{BX}_{1}\right)=1.25(2-.75 * 1.25)=1.328125 \\
\delta=.005208333 \ldots \\
\mathrm{X}_{3}=\mathrm{X}_{2}\left(2-\mathrm{BX}_{2}\right)=1.328125(2-.75 * 1.32815) \\
=1.333313 \quad \delta=.000020333 \ldots
\end{gathered}
$$

Introduction to High Performance Computer Architecture

>Fast Division — Multiplicative Division
*. The operation of division is replaced by that of finding a factor F such that:
B * $\mathrm{F}=1$ and $\mathrm{A} * \mathrm{~F}=\mathrm{Q}$

* An iterative method can be used to determine F.

Introduction to High Performance Computer Architecture

Fast Division — Multiplicative Division

* In each iteration a constant factor (multiplying factor) $\mathrm{F}_{\mathrm{i}}(1 \leq \mathrm{i} \leq \mathrm{n})$ is calculated to converge the denominator (Divisor) rapidly toward 1.

$$
Q=\frac{A^{*} F_{0} * F_{1} * \ldots F_{n}}{B^{*} F_{0}^{*} F_{1} * \ldots * F_{n}}
$$

Introduction to High Performance Computer Architecture

FFast Division — Multiplicative Division
*. The numerator (dividend) and the denominator (divisor) are both positive fractions.

* The divisor is a normalized number and the dividend is shifted accordingly.

$$
1 / 2 \leq \mathrm{B}<1, \quad \mathrm{~B}=1-\delta \Rightarrow 0<\delta \leq 1 / 2
$$

Introduction to High Performance Computer Architecture

FFast Division — Multiplicative Division
${ }^{*} \mathrm{~F}_{\mathrm{i}}^{\mathrm{s}}(0 \leq \mathrm{i} \leq \mathrm{n})$ are chosen such that $\mathrm{B}_{\mathrm{i}-1}<\mathrm{B}_{\mathrm{i}}$, Where

$$
\begin{aligned}
& B_{0}=B^{*} F_{0} \\
& B_{1}=B^{*} F_{0} * F_{1} \\
& \vdots \\
& B_{i-1}=B^{*} F_{0}{ }^{*} F_{1}{ }^{*} \ldots * F_{i-1} \\
& B_{i}=B{ }^{*} F_{0} * F_{1} * \ldots * F_{i-1} * F_{i} \\
& \vdots \\
& B_{n}=B_{n-1} * F_{n}
\end{aligned}
$$

Fast Division — Multiplicative Division
酸 $=1-\delta \Rightarrow \mathrm{F}_{0}=1+\delta$, hence:

$$
B_{0}=(1-\delta)(1+\delta)=1-\delta^{2} \Rightarrow B_{0} \text { is closer to } 1 \text { than } B
$$

* $\mathrm{F}_{1}=1+\delta^{2}$ hence:

$$
\mathrm{B}_{1}=\mathrm{B}_{0} * \mathrm{~F}_{1}=\left(1-\delta^{2}\right)\left(1+\delta^{2}\right)=\left(1-\delta^{4}\right)
$$

$F_{i}=1+\delta^{21}$

Introduction to High Performance Computer Architecture

Fast Division — Multiplicative Division
*Note: The initial multiplying factor $\left(\mathrm{F}_{0}\right)$ can be obtained by a table look up.

* Note: Since we are dealing with binary numbers

$$
F_{i}=1+\delta^{2^{i}}=2-\left(1-\quad \delta^{2 i}\right)=2-\quad B_{i-1}=\widetilde{B_{i-1}}
$$

Introduction to High Performance Computer Architecture

FFast Division — Multiplicative Division
*For each iteration two multiplications are required:
OOne to process the next denominator from which the next multiplying factor is obtained, and
oOne that produces the next numerator.

Introduction to High Performance Computer Architecture

FFast Division — Multiplicative Division

$$
\begin{array}{lll}
\mathrm{F}_{0} \text { Obtain } & \mathrm{B}_{0}=\mathrm{B} * \mathrm{~F}_{0} \quad \mathrm{~A}_{0}=\mathrm{A} * \mathrm{~F}_{0} \\
\mathrm{~F}_{1}=\widetilde{\mathrm{B}}_{0} & \mathrm{~B}_{1}=\mathrm{B}_{0} * \mathrm{~F}_{1} \quad \mathrm{~A}_{1}=\mathrm{A}_{0} * \mathrm{~F}_{1} \\
& \text { If } \mathrm{B}_{1}=1 \text { then } \mathrm{A}_{1}=\mathrm{Q}, \text { Terminate } \\
\mathrm{F}_{2}=\widetilde{\mathrm{B}}_{1} & \mathrm{~B}_{2}=\mathrm{B}_{1} * \mathrm{~F}_{2} \quad \mathrm{~A}_{2}=\mathrm{A}_{1} * \mathrm{~F}_{2} \\
& \text { If } \mathrm{B}_{2}=1 \text { then } \mathrm{A}_{2}=\mathrm{Q}, \text { Terminate }
\end{array}
$$

Introduction to High Performance Computer Architecture

<Residue Arithmetic

* Concept
* Advantages
* Disadvantages

