
1

CS 5803
Introduction to High Performance Computer

Architecture: Address Accessible Memories

A.R. Hurson
323 CS Building,

Missouri S&T
hurson@mst.edu

2

Introduction to High Performance Computer Architecture

Outline
Memory System: A taxonomy
Memory Hierarchy
 Access Gap and Size Gap

 Definition
 How to reduce the access gap

 Cache memory
 Interleaved memory

 How to reduce the size gap
 Paging
 Segmentation

Introduction to High Performance Computer Architecture

Note, this unit will be covered in three
weeks. In case you finish it earlier, then you
have the following options:

1) Take the early test and start CS5803.module5
2) Study the supplement module

(supplement CS5803.module4)
3) Act as a helper to help other students in

studying CS5803.module4
Note, options 2 and 3 have extra credits as noted in course
outline.

3

Glossary of prerequisite topics

Familiar with the topics?
No Review

CS5803.module4.background
Yes

Remedial action
Yes

No
Take the Module

Take Test

Pass?

Glossary of topics

Familiar with the topics?
Yes

Pass?

Take Test

Yes

Options

Lead a group of students in
this module (extra credits)?

Study more advanced related
topics (extra credits)?

Study next module?

No

{

Extra Curricular activities

Enforcement
of background

{Current
Module

At the end: take
exam, record the
score, and impose
remedial action if

not successful

No

4

You are expected to be familiar with:
 Basic hardware requirements of a random access

memory,
 Basic functionality of a random access memory,
The sequence of basic operations (µ-operations) of a

random access memory, and
Basic definition and concept of Interleaved memory

and Cache memory
If not then you need to study

CS5803.module4.background
5

Introduction to High Performance Computer Architecture

6

Memory System
In pursuit of improving the performance and

hence to reduce the CPU time
 T = Ic * CPI * τ = Ic * (p+m*k)* τ

in this section we will talk about the memory
system.

The goal is to develop means to reduce m
and k.

Introduction to High Performance Computer Architecture

7

Memory System
Different parameters can be used in order to

classify the memory systems.
In the following we will use the access mode in

order to classify memory systems
Access mode is defined as the way the

information stored in the memory is accessed.

Introduction to High Performance Computer Architecture

8

Memory System — Access Mode
Address Accessible Memory: Where

information is accessed by its address in the
memory space.
Content Addressable Memory: Where

information is accessed by its contents (or
partial contents).

Introduction to High Performance Computer Architecture

9

Memory System — Access Mode
Within the scope of address accessible memory we can

distinguish several sub-classes;
Random Access Memory (RAM): Access time is

independent of the location of the information.
Sequential Access Memory (SAM): Access time is a

function of the location of the information.
Direct Access Memory (DAM): Access time is partially

independent of and partially dependent on the location of
the information.

Introduction to High Performance Computer Architecture

10

Memory System — Access Mode
Even within each subclass, we can distinguish

several sub subclasses.
For example within the scope of Direct Access

Memory we can recognize different groups:
Movable head disk,
Fixed head disk,
Parallel disk

Introduction to High Performance Computer Architecture

11

Memory System
Movable head disk: Each surface has just one

read/write head. To initiate a read or write, the
read/write head should be positioned on the
right track first — seek time.
Seek time is a mechanical movement and

hence, relatively, very slow and time
consuming.

Introduction to High Performance Computer Architecture

12

Memory System
Fixed head disk: Each track has its own

read/write head. This eliminates the seek time.
However, this performance improvement
comes at the expense of cost.

Introduction to High Performance Computer Architecture

13

Memory System
Parallel disk: To respond the growth in

performance and capacity of semiconductor,
secondary storage technology, introduced
RAID — Redundant Array of Inexpensive
Disks.
In short RAID is a large array of small

independent disks acting as a single high
performance logical disk.

Introduction to High Performance Computer Architecture

14

Memory System
Within the scope of Random Access Memory

we are concerned about two major issues:
Access Gap: Is the difference between the CPU

cycle time and the main memory cycle time.
Size Gap: Is the difference between the size of the

main memory and the size of the information space.

Introduction to High Performance Computer Architecture

15

Memory System
Within the scope of the memory system, the

goal is to design and build a system with low
cost per bit, high speed, and high capacity. In
other words, in the design of a memory system
we want to:
Match the rate of the information access with the

processor speed.
Attain adequate performance at a reasonable cost.

Introduction to High Performance Computer Architecture

16

Memory System
The appearance of a variety of hardware as

well as software solutions represents the fact
that in the worst cases the trade-off between
cost, speed, and capacity can be made more
attractive by combining different hardware
systems coupled with special features —
memory hierarchy.

Introduction to High Performance Computer Architecture

17

Access gap
How to reduce the access gap bottleneck:

Software Solutions:
Devise algorithmic techniques to reduce the number of

accesses to the main memory.
Hardware/Architectural Solutions:

Reduce the access gap.
• Advances in technology
• Interleaved memory
• Application of registers
• Cache memory

Introduction to High Performance Computer Architecture

 T = Ic * CPI * τ = Ic * (p+m*k)* τ

18

Access gap — Interleaved Memory
A memory is n-way interleaved if it is composed of n

independent modules, and a word at address i is in
module number i mod n.

This implies consecutive words in consecutive memory
modules.

If the n modules can be operated independently and if
the memory bus line is time shared among memory
modules then one should expect an increase in
bandwidth between the main memory and the CPU.

Introduction to High Performance Computer Architecture

19

Access gap — Interleaved Memory
Dependencies in the programs — branches and

randomness in accessing the data will degrade
the effect of memory interleaving.

Introduction to High Performance Computer Architecture

20

Access gap — Interleaved Memory
To show the effectiveness of memory interleaving,

assume a pure sequential program of m instructions.
For a conventional system in which main memory is

composed of a single module, the system has to go
through m-fetch cycles and m-execute cycles in order to
execute the program.

For a system in which main memory is composed of n
modules, the system executes the same program by
executing m/n-fetch cycles and m-execute cycles.

Introduction to High Performance Computer Architecture

21

•••

Physical address space (interleaved memory)

Introduction to High Performance Computer Architecture

Mapping of logical addresses to physical addresses

Logical address space

22

Access gap — Interleaved Memory
In general when the main memory is composed

of n different modules, the addresses in the
address space can be distributed among the
memory modules in two different fashions:
Consecutive addresses in consecutive memory

modules — Low Order Interleaving.
Consecutive addresses in the same memory module

— High Order Interleaving.

Introduction to High Performance Computer Architecture

23

Access gap — Interleaved Memory
Whether low order interleaving or high order

interleaving, a word address is composed of
two parts:
Module Address, and
Word Address.

Introduction to High Performance Computer Architecture

w# Module #Word # m#

Address format in interleaved memory organization

24

Questions
Name and discuss the factors which influence

the speed, cost, and capacity of the main
memory the most.
Compare and contrast low-order interleaving

against high-order interleaving.
Dependencies in the program degrade the

effectiveness of the memory interleaving —
justify it.

Introduction to High Performance Computer Architecture

25

Access gap — Interleaved Memory
Within the scope of interleaved memory, a memory

conflict (contention, interference) is defined if two
or more addresses are issued to the same memory
module.
In the worst case all the addresses issued are

referred to the same memory module.
In this case the system's performance will be

degraded to the level of a single module memory
organization.

Introduction to High Performance Computer Architecture

26

Access gap — Interleaved Memory
To take advantage of interleaving, CPU should

be able to perform look ahead fetches —
issuing addresses before they are really needed.
In the case of straight line programs and lack of

random-data-access such a look ahead policy
can be enforced very easily and effectively.

Introduction to High Performance Computer Architecture

27

Interleaved Memory — Effect of Branch
Assume λ is the probability of a successful branch.

Hence 1-λ is the probability of a sequential
instruction (in case of a straight line program then λ
is zero).

In the case of interleaving where memory is
composed of n modules, CPU employs a look-ahead
policy and issues n-instruction fetches to the
memory.

Naturally, memory utilization will be degraded if one
of these n instructions generate a successful branch.

Introduction to High Performance Computer Architecture

28

Interleaved Memory — Effect of Branch
P(1) = λ Prob. of the 1st instruction to

generate a successful branch.
P(2) = λ(1-λ) Prob. of the 2nd instruction to generate a

successful branch.
•
•
•

P(k) = λ(1-λ)k-1 Prob. of the kth instruction to
generate a successful branch.

•
•
•

P(n) = (1-λ)n-1 Prob. of 1st (n-1) instructions to be
sequential instructions.

Introduction to High Performance Computer Architecture

29

Interleaved Memory — Effect of Branch
Note in case of P(n), it does not matter whether

or not the last instruction is a sequential
instruction.
The average number of memory modules to be

used effectively

I Bn = k P(k) = λ + 2 λ(1- λ) + • • • + n (1- λ)n-1 = 1- (1- λ) n

λ
Σ
k=1

n

Introduction to High Performance Computer Architecture

30

Interleaved Memory — Effect of Branch
Example
For λ = 5% and n = 4 then IBn = 3.8
For λ = 5% and n = 8 then IBn = 6.8
For λ = 10% and n = 4 then IBn = 3.4
For λ = 10% and n = 8 then IBn = 5.7
Less branching, as expected, implies higher memory

utilization.
Memory utilization is not linear in the number of

memory.

Introduction to High Performance Computer Architecture

31

Interleaved Memory — Effect of Branch
IBn = λ + 2 λ(1- λ) + • • • + n (1- λ) n-1 =
= λ[1+2(1- λ) + • • • +(n-1) (1- λ) n-2] + n (1- λ) n-1 =

= λ (i+1) (1- λ) i
Σ
i=0

n-2
+n (1- λ) n-1 =

= λ d
d λ

Σ
i=0

n-2
- (1- λ) i+1

+n (1- λ) n-1

=- λ d
d λ

+n (1- λ) n-1 =Σ
i=0

n-2
(1- λ) i+1

= - λ d
dλ

(1- λ)-(1- λ) (1- λ) n-1

1-(1- λ)
 + n (1- λ) n-1

Introduction to High Performance Computer Architecture

32

Interleaved Memory — Effect of Branch

•
•
•

= 1- (1- λ) n

λ

Introduction to High Performance Computer Architecture

33

Interleaved Memory — Effect of Random Data-Access

In case of data-access, the effectiveness of the
interleaved memory will be compromised if
among the n requests made to the memory,
some are referred to the same memory module.

Introduction to High Performance Computer Architecture

34

Interleaved Memory — Effect of Random Data-Access

Access requests are queued,
A scanner will check the request in the head of

the queue:
If no conflict, the request is passed to the memory,
If conflict then the scanning is suspended as long as

the conflict is not resolved.

Introduction to High Performance Computer Architecture

35

Interleaved Memory — Effect of Random Data-Access

Generated memory request To the memory

• • •

Request Queue
Scanner

Introduction to High Performance Computer Architecture

36

Interleaved Memory — Effect of Random Data-Access

Prob. of one successful
access.

Prob. of two successful
accesses.

Prob. of k successful
accesses.

P(2) = n(n-1)
n2

 2n
•
•
•

P(k) = n(n-1) ... (n-k+1)
nk

 kn

P(1) = n
n 1n

Introduction to High Performance Computer Architecture

37

Interleaved Memory — Effect of Random Data-Access
The average number of active memory modules is:

DBn= k P(k) = k 2

n kΣ
k=1

n

Σ
k=1

n
 (n-1)(n-2) ... (n-k+1) =

= k 2(n-1)!
n k(n-k)!Σ

k=1

n
≈ πn

2
 - 1

3
 + 1

12
π

2n
 + O(n -1)

1 ≤ n ≤ 45 DBn ≈ n .56 For

 If n = 16 one can conclude that on average, just
4 modules can be kept busy under randomly
generated access requests.

Introduction to High Performance Computer Architecture

38

 Interleaved Memory — Effect of Random Data-Access

Naturally, performance of the interleaved memory
under random data-access can be improved by not
allowing an access to a busy module to stop other
accesses to the main memory.

In another words, the conflicting access is queued and
retried again.

This concept was first implemented in the design of
CDC6600 — Stunt Box.

Introduction to High Performance Computer Architecture

39

Interleaved Memory — Stunt Box
Stunt Box is designed to provide a maximum

flow of addresses to the Main memory.
Stunt Box is a piece of hardware that controls

and regulates accesses to the main memory.
Stunt Box allows access out-of-order to the

main memory.

Introduction to High Performance Computer Architecture

40

Interleaved Memory — Stunt Box
Stunt Box is composed of three parts:
Hopper
Priority Network
Tag Generator and Distributor

Introduction to High Performance Computer Architecture

41

Interleaved Memory — Stunt Box
Hopper is an assembly of four registers to

retain storage reference information until
storage conflicts are resolved.
Priority Network prioritizes the requests to

the memory generated by the central
processor and the peripheral processors.
Tag Generator is used to control read/write

conflict.

Introduction to High Performance Computer Architecture

42

Interleaved Memory — Stunt Box
Tag

Generator

Priority
Network

M 1

M 2

M 3

M 4

Address to

Main Memory

t 25

t 75

Accept Signal

t 50

t 25

t 00

t00

t 00

Address from
Central Processor

t 00Address
From PPU

3 2 1

Introduction to High Performance Computer Architecture

43

Stunt Box — Flow of Data and Control
Assuming an empty hopper, a storage address from one

of the sources is entered in register M1.
The access request in M1 is issued to the main memory.
The contents of the registers in hopper are circulated

every 75 nano seconds.
 If a request is accepted by the main memory, it will not

be re-circulated back to the M1. Otherwise, after each
300 nano seconds it will be sent back to the main
memory for a possible access.

Introduction to High Performance Computer Architecture

44

Stunt Box — Flow of Data and Control
Time events of a request:
t00 - Enter M1

t25 - Send to the central storage
t75 - M1 to M4

t150 - M4 to M3

T225 - M3 to M2

t300 - M2 to M1 (if not accepted)

Introduction to High Performance Computer Architecture

45

Stunt Box — Example
Assume a sequence of access requests is

initiated to the same memory module:
Request 1

X indicates a retry

Micro
Second.5 1 2 3 4

Request 3

Request 4

Request 2

X

X

XX

X

X

X

X

X

X

X

X X X X

Introduction to High Performance Computer Architecture

46

Stunt Box — Example
The previous chart indicated;
Access out-of-order,
A request to the memory, sooner or later, will

be granted.

Introduction to High Performance Computer Architecture

47

Memory System — Cache Memory
Principle of Locality
Analysis of a large number of typical programs has

shown that most of their execution time is spent in a
few main routines.
As a result, a number of instructions are executed

repeatedly. This maybe in the form of a single loop,
nested loops, or a few subroutines that repeatedly
call each other.

Introduction to High Performance Computer Architecture

48

Memory System — Cache Memory
Principle of Locality
It has been observed that a program spends 90% of

its execution time in only 10% of the code —
principle of locality.
The main observation is that many instructions in

each of a few localized areas of the program are
repeatedly executed, while the remainder of the
program is accessed relatively infrequently.

Introduction to High Performance Computer Architecture

49

Memory System — Cache Memory
Principle of Locality — locality can be

represented in two forms:
Temporal Locality: If an item is referenced, it will

tend to be referenced again soon.
Spatial Locality: If an item is referenced, nearby

items tend to be referenced soon.

Introduction to High Performance Computer Architecture

50

Memory System — Cache Memory
Principle of Locality
Now, if it can be arranged to have the active

segments of a program in a fast memory, then the
total execution time can be significantly reduced.
Such a fast memory is called a cache (slave, buffer)

memory.

Introduction to High Performance Computer Architecture

51

Memory System — Cache Memory
Principle of Locality
Cache is a level of memory inserted between the

main memory and the CPU.
Due to economical reasons, cache is relatively much

smaller than main memory.
To make the cache effective, it must be considerably

faster than the main memory.

Introduction to High Performance Computer Architecture

52

Memory System — Cache Memory
Principle of Locality
The main memory and the cache are partitioned into

blocks of equal sizes.
Naturally, because of the size gap between the main

memory and the cache at each moment of time a
portion of the main memory is resident in the cache.

Introduction to High Performance Computer Architecture

Memory System — Cache Memory

53

Cache

Main Memory

Introduction to High Performance Computer Architecture

54

Memory System — Cache Memory
Address Mapping
Each reference to a memory word is presented to the

cache.
The cache searches its directory:

 If the item is in the cache, then it will be accessed from the
cache.

Otherwise, a miss occurs.

Introduction to High Performance Computer Architecture

55

CPU

Cache Table

Cache

An address and
an operation

Successful
Search

Requested
information

Unsuccessful
Search

Operation
Protocol

Introduction to High Performance Computer Architecture

56

Memory System — Cache Memory
The concept of the cache was introduced in mid

1960s by Wilkes.
When a memory request is generated, it is first

presented to the cache memory, and if the cache
cannot respond, the request is then presented to
the main memory.

Introduction to High Performance Computer Architecture

57

Memory System — Cache Memory
The idea of cache is similar to virtual memory

in that some active portion of a low-speed
memory is stored in duplicate in a higher-speed
memory.
The difference between cache and virtual

memory is a matter of implementation, the two
approaches are conceptually the same because
they both rely on the correlation properties
observed in sequences of address references.

Introduction to High Performance Computer Architecture

58

Memory System — Cache Memory
Cache implementations are totally different from virtual

memory implementation because of the speed
requirements of cache. If we assume that cache
memory has an access time of one machine cycle, then
main memory typically has an access time anywhere
from 4 to 20 times longer, not 500 times larger for the
delay due to a page fault in virtual memory.

In general caches are controlled by hardware
algorithms.

Introduction to High Performance Computer Architecture

59

Memory System — Cache Memory
Cache vs. Virtual Memory

Cac h e / M ain M em o ry Mai n / Sec on d ary M em or y

Acc es s tim e r a ti os

Me mo ry Management
Syste m
Typical Block Siz e
Acc ess of Proc esso r
to Se co n d Level

≈ 1 0 / 1

Imple me n t ed in
Hard ware
Fe w Wo rd s
Dire ct Access t o Bo th
Cac h e an d Main Me mo ry

≈ 1 0 00 / 1

Main ly Im p lem en ted in
Softwar e
Hu nd red s o f Wo rd s
All Accesses via Main
Me mory

Introduction to High Performance Computer Architecture

60

Memory System — Cache Memory
Ranges of parameters for cache

Block size 4-128 Bytes
Hit time 1-4 clock cycles
Miss penalty 8-32 clock cycles
 access time 6-10 clock cycles
 Transfer time 2-22 clock cycles
Miss ratio 1%-20%
Cache size 1KB-256KB

Introduction to High Performance Computer Architecture

61

Memory System — Cache Memory
Replacement Policy
For each read operation that causes a cache miss, the

item is retrieved from the main memory and copied
into the cache. This forces some other item in cache
to be identified and removed from the cache to make
room for the new item (if cache is full).
The collection of rules which allows such activities

is referred to as the Replacement Algorithm.

Introduction to High Performance Computer Architecture

62

Memory System — Cache Memory
Replacement Policy
The cache-replacement decision is critical, a good

replacement algorithm, naturally, can yield
somewhat higher performance than can a bad
replacement algorithm.

Introduction to High Performance Computer Architecture

63

Memory System — Cache Memory
Let h be the probability of a cache hit — hit

ratio
h = # of accesses responded by cache

Total # of accesses to the memory

and tcache and tmain be the respective cycle
times of cache and main memory then:

teff = tcache + (1-h)tmain

(1-h) is the probability of a miss — miss ratio.

Introduction to High Performance Computer Architecture

64

Cache Memory — Issues of Concern
Read Policy
Load Through

Write policy (on hit)
Write through
Write back ⇒ dirty bit

Write policy (on miss)
Write allocate
No-write allocate

Placement/replacement policy
Address Mapping

Introduction to High Performance Computer Architecture

65

Cache Memory — Issues of Concern
In Case of Miss-Hit
For read operation, the block containing the

referenced address is moved to the cache.
For write operation, the information is written

directly into the main memory.

Introduction to High Performance Computer Architecture

66

Questions
Compare and contrast different write policies

against each other.
In case of miss-hit, why are read and write

operations treated differently?

Introduction to High Performance Computer Architecture

67

Cache Memory — Issues of Concern
Sources for cache misses:
Compulsory — cold start misses
Capacity
Conflict — placement/replacement policy

Introduction to High Performance Computer Architecture

68

Cache Memory — Issues of Concern
It has been shown that increasing the cache

sizes and/or degree of associativity will reduce
cache miss ratio.
Naturally, compulsory miss ratios are

independent of cache size.

Introduction to High Performance Computer Architecture

69

Memory System — Cache Memory
Mixed caches: Cache contains both instruction

and data — Unified caches.
Instruction-only and Data-only caches:

Dedicated caches for instructions and data.

Introduction to High Performance Computer Architecture

70

Memory System — Cache Memory
In general, miss ratios for instruction caches are

lower that miss ratios for data caches.
For smaller cache sizes, unified caches offer

higher miss ratios than dedicated caches.
However, as the cache size increases, miss ratio
for unified caches relative to the dedicated
caches reduces.

Introduction to High Performance Computer Architecture

71

CPU

Cache Table

Cache

An address and
an operation

Successful
Search

Requested
information

Unsuccessful
Search

Operation
Protocol

Introduction to High Performance Computer Architecture

72

Memory System — Cache Memory
Address Mapping
Direct Mapping
Associative Mapping
Set Associative Mapping

Introduction to High Performance Computer Architecture

73

Cache Memory — Address Mapping
In the following discussion assume:
B = block size (2b)
C = number of blocks in cache (2c)
M = number of blocks in main memory (2m)
S = number of sets in cache (2s)

Introduction to High Performance Computer Architecture

74

Cache Memory — Address Mapping
Direct Mapping
Block K of main memory maps into block (K

modulo C) of the cache.
Since more than one main memory block is mapped

into a given cache block, contention may arise even
when the cache in not full.

Introduction to High Performance Computer Architecture

75

Cache Memory — Address Mapping
Direct Mapping
Address mapping can be implemented very easily.
Replacement policy is very simple and trivial.
In general, cache utilization is low.

Introduction to High Performance Computer Architecture

76

Cache Memory — Address Mapping
Direct Mapping
Main memory address is of the following form:

TAG Block Word

m-c b c

A Tag-register of length m-c is dedicated to each
cache block

Introduction to High Performance Computer Architecture

77

Cache Memory — Address Mapping
Direct Mapping
Content of (tag-register)c is compared against the tag

portion of the address:

c
Block Word

b
If match then hit; and access information at

address from the cache.

Block
cm-c

TAG

If no-match, then miss-hit; bring block
from main memory into
block c of cache

Introduction to High Performance Computer Architecture

78

Cache Memory — Address Mapping
Direct Mapping

Block 0

Block 1

Block 127

•
•
•

Main Memory

TAG
5

TAG

TAG

TAG Block Word

5 7 4

Cache

Block 0

Block 1

•
•
•

Block 127

Block 128

Block 129

•
•
•

Block 4095

Introduction to High Performance Computer Architecture

79

Cache Memory — Address Mapping
Associative Mapping
A block of main memory can potentially reside in

any cache block. This flexibility can be achieved by
utilizing a wider Tag-Register.
Address mapping requires hardware facility to allow

simultaneous search of tag-registers.
A reasonable replacement policy can be adopted

(least recently used).
Cache can be used very effectively.

Introduction to High Performance Computer Architecture

80

Cache Memory — Address Mapping
Associative Mapping

TAG Word

bm

Main memory address is of the following form:

A tag-register of length m is dedicated to each
cache block.

Introduction to High Performance Computer Architecture

81

Cache Memory — Address Mapping
Associative Mapping
Contents of Tag portion of the address is searched

(in parallel) against the contents of the Tag-
registers:

Cache Block Word

c b

If match, then hit; access information at address
from the cache.

If no-match, then miss-hit; bring block from
memory into the proper cache block.

Introduction to High Performance Computer Architecture

82

Cache Memory — Address Mapping
Associative Mapping

Block 0

Block 1

•
•
•

Block 127

Block 0

Block 1

Block i

Block 4095

•
•
•

•
•
•

TAG

12

TAG

TAG

Cache
Main Memory

TAG Word

12 4

Introduction to High Performance Computer Architecture

83

Cache Memory — Address Mapping
Set Associative Mapping
Is a compromise between Direct-Mapping and

Associative Mapping.
Blocks of cache are grouped into sets (S), and the

mapping allows a block of main memory (K) to
reside in any block of the set (K modulo S).
Address mapping can be implemented easily at a

more reasonable hardware cost relative to the
associative mapping.

Introduction to High Performance Computer Architecture

84

Cache Memory — Address Mapping
Set Associative Mapping
This scheme allows one to employ a reasonable

replacement policy within the blocks of a set and
hence offers better cache utilization than the direct-
mapping scheme.

Introduction to High Performance Computer Architecture

85

Cache Memory — Address Mapping
Set Associative Mapping
Main memory address is of the following form:

TAG SET Word

m-s s b

A tag-register of length m-s is dedicated to each
block in the cache.

Introduction to High Performance Computer Architecture

86

Cache Memory — Address Mapping
Set Associative Mapping
Contents of Tag-registerss are compared

simultaneously against the tag portion of the
address:

SET Word
s b

Designated
block in the set.

If match, then hit; access information at address
from the cache.

Introduction to High Performance Computer Architecture

87

Cache Memory — Address Mapping
Set Associative Mapping

SET

s

TAG

m-s
If no-match, then miss-hit; bring block

from the main memory into
the proper block of set s of
the cache.

Introduction to High Performance Computer Architecture

88

Cache Memory — Address Mapping
Set Associative Mapping

Block 0

Block 1

Block 63

Block 65

Block 127

Block 64

Block 128

Block 4095

Block 129

•
•
•

•
•
•

•
•
•

Main Memory

Block 0

Block 1

Block 2

Block 3

Block 127

Block 126

•
•
•

Cache

TAG

6

TAG

TAG

Set 63

Set 1

Set 0

TAG SET Word

6 6 4

Introduction to High Performance Computer Architecture

89

Questions
Compare and contrast unified cache against

dedicated caches.
Compare and contrast Direct Mapping,

Associative Mapping, and Set Associative
Mapping against each other.

Introduction to High Performance Computer Architecture

90

Cache Memory — IBM 360/85
Main Memory (4-way interleaved)
Size 512-4096 k bytes
Cycle Time 1.04 µsec
Block Size 1 k bytes

Introduction to High Performance Computer Architecture

91

Cache Memory — IBM 360/85
Cache

Size 16 k bytes
Access Time 80 ηsec
Block Size1 k bytes
Address Mapping — Associative Mapping
Replacement Policy — Least Recently Used
Read Policy — Read-Through
Write Policy — Write-Back, write access to the main memory

does not cause any cache reassignment.

Introduction to High Performance Computer Architecture

92

Cache Memory — IBM 360/85
Hardware Configuration
An associative memory of 16 words, each 14 bits

long, represents the collection of the tag-registers.
Each block is a collection of 16 units each of length

64 bytes.
Each block has a validity register of length 16.

Introduction to High Performance Computer Architecture

93

Cache Memory — IBM 360/85
Hardware Configuration
A validity bit represents the availability of a unit

within a block in the cache.
A unit is the smallest granule of information which

is transferred between the main memory and the
cache.
The units in a block are brought in on a demand

basis.

Introduction to High Performance Computer Architecture

94

Cache Memory — IBM 360/85
Main memory address format:

TAG Unit Byte

Module

14 4 2 4

Introduction to High Performance Computer Architecture

95

Cache Memory — IBM 360/85
Flow of Operations

Designated block
in cache?

yes

Designated unit
in cache?

yes

Access information

CPU

Read
Operation

Write into the
Main Memory

No

yes
Fetch a unit at:

Tag, unit, (module) mod4
Tag, unit, (module +1) mod 4
Tag, unit, (module +2) mod 4
Tag, unit, (module +3) mod 4

from main memory into the
"proper" block in cache

No

No

Introduction to High Performance Computer Architecture

96

Cache Memory — IBM 370/155
Main Memory (4-way interleaved)
Size 256 - 2048 k bytes
Cycle time 2.100 µsec
Block size 32 bytes

Introduction to High Performance Computer Architecture

97

Cache Memory — IBM 370/155
Cache
Size 8 k bytes
Cycle time 230 ηsec
Block size 32 bytes

Address Mapping
Set associative mapping
Set-size – 2

Introduction to High Performance Computer Architecture

98

Cache Memory — IBM 370/155
Hardware
Configuration

 Main Memory
256-2048 k bytes

I/O: 16 bytes
per cycle

Cache
8 k bytes

index
array

CPU

• 4-byte path
• 16 bytes per
 cycle

Introduction to High Performance Computer Architecture

99

Cache Memory — IBM 370/155
Main memory address format:

Row Column H
B

Byte0

4173 1 8

Column Byte

Block
in a set

1 7 5

Cache address format:

Introduction to High Performance Computer Architecture

100

Cache Memory — IBM 370/155
Memory Organization and View

0 1 127
0
1

2

255

• • •

•
•
•

Main Memory
256x128x32
bytes

0

1
Cache
2x128x32
bytes

Index
directory

Activity list

a block

Introduction to High Performance Computer Architecture

101

Cache Memory — IBM 370/155

0 Row H
B Byte

Column
H
B

Byte

Gate

Match

No Match
Match
Circuit3

• • • • • •

0 1 127

Index
Directory

4

4

2
1

Column

2

3

Introduction to High Performance Computer Architecture

102

Cache Memory — 68040
Two dedicated caches on processor chip
Instruction cache
Data cache

Each cache is of size 4K bytes with 4-way set
associative organization.
Each cache is a collection of 64 sets of 4 blocks

each.

Introduction to High Performance Computer Architecture

103

Cache Memory — 68040
Each block is a collection of 4 long words — a

long word is 4 bytes long.
Each cache block has a valid bit and a dirty bit.
Either write back or write through policy can

be employed.
It uses a randomly selected block in each set as

a replacement policy.

Introduction to High Performance Computer Architecture

104

Cache Memory — 68040
Main Memory Address Format:

22 bits 6 bits 4 bits

Tag Set# Byte#

Introduction to High Performance Computer Architecture

105

Cache Memory — Pentium III
Has two cache Levels:

Level1
Has dedicated caches for instructions and data.
Each cache is 16K bytes.
Data cache is 4-way set associative organization.
 Instruction cache is 2-way set associative organization.
Both write back and write through policies can be adopted.

Introduction to High Performance Computer Architecture

106

Cache Memory — Pentium III
Level2

 It is a unified cache, either external to the processor chip
(Pentium III — Katmai) or internal to the processor chip
(Pentium III — Coppermine).

 If internal, it is of size 256 Kbytes SRAM, 4-way set
associative organization.

 If external, it is of size 512 Kbytes, 8-way set associative
organization.

Either write back or write through policy can be employed.

Introduction to High Performance Computer Architecture

107

Cache Memory
How to make cache faster?
Make the cache faster — Better technology,
Make the cache larger,
Sub block cache blocks — A portion of a block is

the granule of information transferred between the
main memory and cache,
Use a write buffer — Care should be taken for

write-read order.

Introduction to High Performance Computer Architecture

108

Cache Memory
How to make cache faster?
Early restart — Allow the CPU to continue as soon

as the requested data is in cache (read through),
Out-of-order fetch — Attempt to fetch the

requested information first should be used in
conjunction with read through.
Multi-level cache memory organization.

Introduction to High Performance Computer Architecture

109

Cache Memory
Two-Level Cache Organization
As the name suggests, the cache is a hierarchy of

two levels:
Level 1
Level 2

Average memory-access time:
Hit time

L1
+ Miss ratio

L1 *
(Hit time

L2
+ Miss ratio

L2 *
Miss penalty

L2
)

Introduction to High Performance Computer Architecture

110

Cache Memory — Two-Level Cache Organization

Parameters for Level 2 Cache memory

Block size 32-256 Bytes
Hit time 4-10 clock cycles
Miss penalty 30-80 clock cycles
 access time 14-18 clock cycles
 transfer time 16-62 clock cycles
Local miss ratio 15%-30%
Cache size 256KB-4MB

Introduction to High Performance Computer Architecture

111

Cache Memory — Cache Coherency

Cache coherency problem refers to the status where
multiple copies of the same information block contain
different data values.

Cache coherency occurs when the same information is
shared among different resources that can perform
Read/Write operations on them — I/O devices and the
CPU, Multiprocessor systems with private caches.

Introduction to High Performance Computer Architecture

112

Cache Memory — Cache Coherency

I/O Operations
In Case of Output operation, write through policy

for cache resolves the possibility of cache coherency
— Always the same information is maintained in
cache and main memory.

Introduction to High Performance Computer Architecture

113

Cache Memory — Cache Coherency
I/O Operations
In Case of input operation, we should guarantee that

no blocks of the I/O buffer designated for input are
the cache resident — non-cacheable blocks.
Flush the buffer address for the cache before initiating any

input operation — This will be done by the operating
system (software solution).

 Invalidate cache entries with the same I/O addresses —
Hardware solution.

Introduction to High Performance Computer Architecture

114

Cache Memory — Cache Coherency

Multiprocessor Systems
The coherency problem arises for a processor with

exclusive write access to an information that might
have several copies in other private caches.

Introduction to High Performance Computer Architecture

115

Cache Memory — Cache Coherency

Multiprocessor Systems
In case of write, the coherency protocol should

locate all the caches that have a copy of the
information and either:
 Invalidate all other copies, or
Broadcast the write to the shared information.

In case of read miss, the coherency protocol must
transfer the most up-to-date copy in.

Introduction to High Performance Computer Architecture

116

Cache Memory — Cache Coherency
Multiprocessor Systems
Directory Based System — The information about

blocks of main memory resident in caches is kept in
just one location (an entry for each physical block).
Snoopy System — Every cache that has a copy of a

physical block also has a copy of the information
about it (coherency information is proportional to
the number of blocks in cache).

Introduction to High Performance Computer Architecture

117

Cache Memory — Cache Coherency

Snoopy Systems
In case of read miss, all caches check to see if they

have a copy of the requested block and supply a
copy to the requesting cache.

Introduction to High Performance Computer Architecture

118

Cache Memory — Cache Coherency

Snoopy Systems
In case of write, all caches check to see if they have

a copy of the block involved, then either:
Write invalidate, shared copies are invalidated and local

copy is updated.
Write broadcast, writing processor broadcasts the new data

and all copies are updated with the new value.

Introduction to High Performance Computer Architecture

119

Memory System — Virtual Memory
Recall from our earlier discussion that

within the scope of memory organization
we are concern about two issues:
Access gap, and
Size gap.

Access gap issue was discussed in detail.
In this section we will concentrate on the
size gap issue.

Introduction to High Performance Computer Architecture

120

Memory System — Virtual Memory
Since the earliest days of the computer, it

was recognized that due to many factors,
memories must be organized in a
hierarchical fashion.
Because of such an organization, the memory

allocation issue becomes important.
Memory allocation is the ability to distribute

information among the levels of the memory
system.

Introduction to High Performance Computer Architecture

121

Memory System — Virtual Memory
The memory allocation issue even became more

important after the introduction of high level
Programming Languages (say why?).

Along with the introduction of high level
programming languages, two approaches were
proposed for the memory allocation issue:
Static
Dynamic.

Introduction to High Performance Computer Architecture

122

Memory System — Virtual Memory
Both static and dynamic memory

allocations differ on their assumptions
about the prediction of:
availability of memory resources, and
creation of the program's reference string

(execution thread).

Introduction to High Performance Computer Architecture

123

Memory System — Virtual Memory
Static approach assumes that memory

resources are given or can be pre-
specified and reference string can be
determined during the compilation time.
Dynamic approach assumes that memory

resources can not be pre-specified and
reference string can only be determined
during the execution time.

Introduction to High Performance Computer Architecture

124

Memory System — Virtual Memory
Concepts such as machine independence,

modularity, and list processing revealed
that the static approach is not a suitable
solution.

Introduction to High Performance Computer Architecture

125

Memory System — Virtual Memory
Dynamic Allocation Objectives:
The ability to store program into a space of

arbitrary size.
The ability to run a partially loaded program.
The ability to relocate a program.
The ability to change system resources without

having to reprogram or recompile.
The ability to vary the amount of space in use

by a given program.

Introduction to High Performance Computer Architecture

126

Memory System — Virtual Memory
Even in the arena of dynamic allocation,

there were two ideas about who should
handle the memory allocation:
Programmer,
Automatic storage allocation, influenced by

multiprogramming and time-sharing concepts.

Introduction to High Performance Computer Architecture

127

Memory System — Virtual Memory
Concept of the virtual memory grew out of

the automatic storage allocation policy,
where programmer has the illusion of
having a very large main memory.

Introduction to High Performance Computer Architecture

128

Memory System — Virtual Memory
However, this new concept created some

problems:
Execution time overhead,
Space overhead,
Severe cost overhead in time sharing system,
Thrashing in multiprogramming system.

Introduction to High Performance Computer Architecture

129

Memory System — Virtual Memory
Within the concept of the virtual memory one

should distinguished between the physical space
and logical space.

Memory allocation is a mapping from logical space
to physical space.

This mapping function is called the address
translation which translates programmer
addresses to physical addresses.

Introduction to High Performance Computer Architecture

130

Memory System — Virtual Memory

Logical
 Space

Physical
 Space

•

•

•

•
•
•

Introduction to High Performance Computer Architecture

131

Memory System — Virtual Memory
Implementation of the translation function

implies the existence of a table which holds
the virtual (logical) and memory (physical)
addresses.
Due to the sheer size of the mapping table, it

would be impractical if virtual memory has to
map each word.
A practical solution is to group information into

blocks and have just one entry for each block
in the mapping table.

Introduction to High Performance Computer Architecture

132

Memory System — Virtual Memory

Processor

Translation-Table

a

Logical
Address

Physical
Address

MAR
 Main
Memory

Introduction to High Performance Computer Architecture

133

Memory System — Virtual Memory
Ranges of parameters for virtual memory

Block(page) size 512-8192 Bytes
Hit time 1-10 clock cycles
Miss penalty 105-6*105 clock cycles
 access time 105-5*105 clock cycles
 transfer time 104-105 clock cycles
Miss ratio 10-5%-10-3%
Main memory size 4MB-2048MB

Introduction to High Performance Computer Architecture

134

Virtual Memory
The literature has addressed two

approaches for handling virtual memory:
Segmentation
Paging

Introduction to High Performance Computer Architecture

135

Virtual Memory — Segmentation
Logical space is grouped into blocks of

varying sizes (e.g., segments).
Segmentation is in response to the

requirements of some applications which
need to group information based on the
contents.

Introduction to High Performance Computer Architecture

136

Virtual Memory — Segmentation
Each entry in the segment table has two

parts:
The beginning address of the segment (A), and
Its length (b).

If a segment is not in the physical space,
its corresponding entry in the segment
table is empty.

Introduction to High Performance Computer Architecture

137

Virtual Memory — Segmentation
Each logical address has also two parts:
A segment number (S), and
A relative location to the beginning of the

segment (W).

Introduction to High Performance Computer Architecture

138

Virtual Memory — Segmentation
Address Translation
For each logical address (S, W):

 If the Sth entry of the segment table is empty,
then a segment fault.

 If W > b then overflow fault.

(A + W) is loaded into MAR.

Introduction to High Performance Computer Architecture

139

Virtual Memory — Segmentation
Segment Table

S W

A bs

•
•
•

If W < b then
 (W+A)

MAR

Introduction to High Performance Computer Architecture

140

Virtual Memory — Paging
Logical and physical space are organized into

equal size blocks (e.g., pages).
Each entry in the page table has one entry (P’) —

the beginning address of the page in the physical
address.

If a page is not in the main memory its
corresponding entry in the page table is empty.

Each logical address is also one entry (a).

Introduction to High Performance Computer Architecture

141

Virtual Memory — Paging
Address Translation
For each logical address (a) - assume Z is the

page size:
 If the Pth entry (P =a/z) of page table empty then a

page fault.

(P’+ a - PZ) is loaded into MAR.

Introduction to High Performance Computer Architecture

142

Virtual Memory — Paging
Page Table

a

•
•
•

MAR

a/Z P ' (P '+a- a/z *Z)

Introduction to High Performance Computer Architecture

143

Virtual Memory
Inability to assign physical spaces to

logical addresses is called Fragmentation.
Both segmentation and paging suffer from

storage as well as execution time overhead.
Both segmentation and paging suffer from

Table Fragmentation.
Segmentation suffers from External

Fragmentation.
Paging suffers from Internal Fragmentation.

Introduction to High Performance Computer Architecture

144

Virtual Memory
Issues of Concern:
Replacement Policy — Locality of reference
Write policy — Write back with dirty bit
Optimum Page Size (small vs. large),
Reducing the Overheads,

Introduction to High Performance Computer Architecture

145

Virtual Memory
Segment or page table can be treated as a

segment or a page, respectively.
Concept of paging and segmentation can

be combined in order to get advantages of
both approaches.
Associative memory can be used to speed

up the address translation step.

Introduction to High Performance Computer Architecture

146

Virtual Memory — Segmentation & Paging
(S, W) is loaded into segment and word

registers
If Sth entry in the segment table is empty then

segment fault.
If W > b then overflow fault.
If Pth entry (P=W/Z) of the associated page

table empty then page fault.
(P’+W-P*Z) is loaded into MAR.

Introduction to High Performance Computer Architecture

147

Virtual Memory
Segment Table Page Table

Beginning address of the
Associated Page Table

A b

S
PS

W

Seg. Reg.

Word Reg.

P '

Introduction to High Performance Computer Architecture

148

Questions
What is an optimum page size?
What is the address translation procedure if the

segment table is treated as a segment?
Within the scope of virtual memory: given the

choice between lower miss ratio and a simple
placement/replacement policy, which one would
you choose?

Compare and contrast smaller and larger page
sizes against each other.

Introduction to High Performance Computer Architecture

	CS 5803 �Introduction to High Performance Computer Architecture: Address Accessible Memories
	Introduction to High Performance Computer Architecture
	Introduction to High Performance Computer Architecture
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Slide Number 148

