
Computation Gap
Instruction Level Parallelism

A.R. Hurson
Computer Science Department

Missouri Science & Technology
hurson@mst.edu

Computation Gap

Computation gap is defined as the differe
between computational power demanded
the application environments
computational capability of the exis
computers.

Today, one can find many applications wh
require orders of magnitude m
computations than the capability of the
called super-computers and super-systems.

Computation Gap

Some Applications
It is estimated that the so called Prob
Solving and Inference Systems require
environment with the computational powe
the order of 100 MLIPS to 1 GLIPS (1 LIP
100-1000 instructions).

Computation Gap

Some Applications
Experiences in Fluid Dynamics have sho
that the conventional super-computers
calculate steady 2-dimensional flow in minu

However, conventional super-compu
require up to 20 hours to handle time depend
2-dimensional flow or steady 3-dimensio
flows on simple objects.

Computation Gap

Some Applications
Numerical Aerodynamics Simulator require
environment with a sustained speed of 1 bil
FLOPS.

Strategic Defense Initiative requires
distributed, fault tolerant compu
environment with a processing rate of
MOPS.

Computation Gap

Some Applications
U.S. Patent Office and Trademark has a databas
size 25 terabytes subject to search and update.

An angiogram department of a mid-size hos
generates more than 64 * 1011 bits of data a year.

NASA's Earth Observing System will generate m
than 11,000 terabytes of data during the 15-year t
period of the project.

Computation Gap

Performance
CDC STAR-100 25-100 MFLOP
DAP 100 MFLOP
ILLIAC IV 160 MFLOP
HEP 160 MFLOP
CRAY-1 25-80 MFLOP
CRAY X-MP(1) 210 MFLOP
CRAY X-MP(4) 840 MFLOP
CRAY-2 250 MFLOP
CDC CYBER

200
400 MFLOP

Hitachi S-810(10) 315 MFLOP
Hitachi S-810(20) 630 MFLOP
Fujitsu FACOM

VP-50
140 MFLOP

Fujitsu FACOM
VP-100

285 MFLOP

Fujistu FACOM
VP-200

570 MFLOP

Fujistu FACOM
VP-400

1,140 MFLOP

Computation Gap

Performance

NEC SX-1 570 MFLOPS
NEC SX-2 1,300 MFLOPS
IBM RP3 1,000 MFLOPS
MPP 8-bit integer 1,545-6,553 MIPS
MPP 12-bit integer 795-4,428 MIPS
MPP 16-bit integer 484-3,343 MIPS
MPP 32-bit FL 165-470 MIPS
MPP 40-bit FL 126-383 MIPS

Computation Gap

Performance
NEC (Earth System) 35 tera FLOPS
IBM Blue Gene 70 tera FLOPS

Computation Gap

Some New Applications
A recent estimate puts the amount of new inform
generated in 2002 to be 5 exabytes (1 exabyte= 1018

which is approximately equal to all words spoken by hu
beings) and 92% of this information is in hard disk. Wh
good fraction of this information is of transient int
useful information of archival value will continu
accumulate.
The TREC database holds around 800 million static p
having 6 trillion bytes of plain text equal to the size
million books.
The Google system routinely accumulates millions of p
of new text information every week.

Computation Gap

1970 1980 1990 2000

Text

Image

Multimedia

Sensors

Binary

Computation Gap
Problem

Suppose a machine capable of handling
characters per second is in hand. How l
does it take to search 25 terabytes of data?

25 * 10 12

10 6
 = 25 * 10 6 sec. 4 * 10 5 min. 7 * 10 3 Hours 290 da

Even if the performance is improved by a
factor of 1000, it takes about 8 hours to
exhaustively search this database!

Computation Gap

Problem
NOT PRACTICAL!
WHAT ARE THE SOLUTIONS?

Computation Gap

Reduce the amount of needed computati
(advances in software technology
algorithms).
Improve the speed of the computers:

Physical Speed (Advances in hardw
technology).
Logical Speed (Advances in comp
architecture/organization).

Computation Gap

Architectural Advances of the U
processor Organization

Organization of the conventional uni-proce
systems can be modified in order to remove
existing bottlenecks. For example, Access
is one of the problems in the von Neum
organization.

Computation Gap

Access Gap
Access gap is defined as the time differe
between the CPU cycle time and the m
memory cycle time.

Access gap problem was created by
advances in technology.

Computation Gap

Access Gap
In early computers such IBM 704, CPU and m
memory cycle time were identical — i.e., 12 sec.

IBM 360/195 had the logic delay of 5 sec per s
the CPU cycle time of 54 sec and the main mem
cycle time of .756 sec and CDC 7600 had the
and main memory cycle time of 27.5 sec and

sec, respectively.

Computation Gap

System Architecture/Organization
To overcome the technological limitati
computer designers have long been attracte
techniques that are classified under the term
"Concurrency".

Computation Gap

Concurrency
Concurrency is a generic term which def
the ability of the computer hardware
simultaneously execute many actions at
instant.
Within this general term are several w
recognized techniques such as Parallel
Pipelining, and Multiprocessing.

Computation Gap

Concurrency
Although these techniques have the same or
and are often hard to distinguish, in prac
they are different in their general approach.

Computation Gap

Concurrency
Parallelism achieves concurrency
replicating/duplicating the hardware struc
many times,

Pipelining takes the approach of splitting
function to be performed into smaller pie
allocating separate hardware to each piece,
overlapping operations of each piece.

Computation Gap

Concurrent Systems
Classification

• Feng's Classification
• Flynn's Classification
• Handler's Classification

Computation Gap

Concurrent Systems
Feng's Classification

• In this classification, the concurrent spac
identified as a two dimensional space based on
bit and word multiplicities.

Computation Gap
Concurrent Systems

Feng's Classification
MPP

(1,16384)

Staran
(1,256)

C(1,N) D(M,N)

Cmmp
(16,16)

(1,1)A
IBM360

(32,1)
(1,1)

1 16 32 Bit Multiplicity

W
or

d
M

ul
tip

lic
ity

16

B

Computation Gap

Concurrent Systems
Feng's Classification

• Point A represents a pure sequential machine - i
uni-processor with serial ALU.

• Point B represents a uni-processor with par
ALU.

• Point C represents a parallel bit slice organizatio
• Point D represents a parallel word organ

organization.

Computation Gap

Concurrent Systems
Flynn's Classification

• Flynn has classified the concurrent space accor
to the multiplicity of instruction and data stream

I= { Single Instruction Stream (SI), Multiple Instruction Stream (M

Single Data Stream (SD), Multiple Data Stream (MD) }D={

Computation Gap

Concurrent Systems
Flynn's Classification

• The Cartesian product of these two sets will de
four different classes:
− SISD
− SIMD
− MISD
− MIMD

Computation Gap

Concurrent Systems
Flynn's Classification — Revisited

• The MIMD class can be further divided based on
− Memory structure — global or distributed
− Communication/synchronism mechanism — s

variable or message passing.

Computation Gap

Concurrent Systems
Flynn's Classification — Revisited

• As a result we have four additional classe
computers:
− GMSV — Shared memory multiprocessors
− GMMP — ?
− DMSV — Distributed shared memory
− DMMP — Distributed memory (multi-computers)

Computation Gap

Concurrent Systems
Handler’s Classification

• Handler has extended Feng's concurrent space
third dimension, namely, the number of co
units.

• Handler's space is defined as T=(k,d,w):
− k number of control units,
− d number of ALUs controlled by a control unit,
− w number of bits handled by an ALU.

Computation Gap

Concurrent Systems
Handler’s Classification

Number of CUs

Cmmp
(16,1,16)

16

4

1

1
16

64
IBM 360/91

(1,3,64)

TI ASC
(1,4,64)

ILLIAC IV*
(4,64,64)

3

4

64

d
Number of

ALUs

k

Word Length

Computation Gap

Concurrent Systems
Handler’s Classification

• Point (1,1,1) represents von Neumann machine
serial ALU.

• Point (1,1,M) represents von Neumann mac
with parallel ALU.

Computation Gap

Concurrent Systems
Handler’s Classification

• To represent pipelining at different levels -
macro pipeline, instruction pipeline and arithm
pipeline - diversity, sequentiality,
flexibility/adaptability, the original Hand
scheme has been extended by three varia
(k΄,d΄,w΄) and three operators (+, *, v).

Computation Gap

Concurrent Systems
Handler’s Classification

• k΄ represents macro pipeline
• d΄ represents instruction pipeline
• w΄ represents arithmetic pipeline
• + represents diversity (parallelism)
• * represents sequentiality (pipelining)
• v represents flexibility/adaptability

Computation Gap

Concurrent Systems
Handler’s Classification

• According to the extended Handler's scheme:

ILLIAC IV: (1*1, 1*1, 48*1) * (1*1, 64*1, 64*1)

Front-end (B 6700) Array Processor

CDC7600: (1*1, 1*9, 60*1)
CDCStar: (1*1, 2*1, 64*4)

Computation Gap

Concurrent Systems
Handler’s Classification

• According to the extended Handler's scheme:
DAP: (1*1,1*1, 32*1) * [(1*1,128*1, 32*1) v (1*1, 4096*1, 1*1)]

front-end Array Processor

Computation Gap

Questions
What are the motivations behind
classification of the computer systems?
What are the shortcomings of
aforementioned classification schemes?
Can you propose a new classification schem

Computation Gap

Why classify computer architecture?
Generalize and identify the characteristics
different systems.
Group machines with common architect
features:

• To study systems easier.
• To transfer solutions easier.

Computation Gap

Why classify computer architecture?
Better estimate the weak and strong points
system:

• To utilize a system more effectively.
Anticipate the future trends and the
developments:

• Research directions.

Computation Gap

Goals of a classification scheme
Categorize all existing and foreseeable desig
Differentiate different designs.
Assign an architecture to a unique class.

Computation Gap

Summary
Computation Gap
How to reduce Computation Gap:
• Advances in Software and Algorithms
• Advances in Technology
• Advances in Computer Organization/Architecture

Concurrency
Classification
• Feng
• Flynn/Extended MIMD
• Handler

Computation Gap

Concurrent Systems
Scalar

Sequential Lookahead

I/E Overlap Functional
Parallelism

Multiple
Func. Units

Pipeline

Implicit vector Explicit vector

Memory-to
-Memory

Register-to
-Register

SIMD MIMD

Associative
Processor

Processor
Array Multi-computer Multiprocessor

VLIWSuperScalar

Su

Computation Gap

Concurrent Systems
We group concurrent systems into two group

• Control Flow
• Data Flow

Computation Gap
Concurrent Systems

In the control flow model of computat
execution of an instruction activates
execution of the next instruction.
In the data flow model of computat
availability of the data activates the execu
of the next instruction(s).

Computation Gap

Concurrent Systems

Concurrent
Systems

Control
Flow

Data
Flow

Parallel Systems

Multiprocessor
Systems

Pipelined Systems

Data Driven
Systems

Demand Driven
Systems

Ensemble P
SIMD Arr
Associative

Loosely Co
Tightly Co

Linear/Fee
Unifunctio
Static/Dyn

°°°

Static

Dynamic

Computation Gap

Concurrent Systems
Within the scope of the control flow syst
we distinguish three classes — namely:

• Parallel Systems
• Pipeline Systems
• Multiprocessors

Computation Gap

Concurrent Systems
This distinction is due to the exploitation
concurrency and the interrelationships am
the control unit, processing elements
memory modules in each group.

Computation Gap

Multiprocessor Systems
Multiprocessor systems can be grouped
two classes:

• Tightly Coupled (Central Memory — not scalab
• Loosely Coupled (Distributed Memory — scalab

Computation Gap

Multiprocessor Systems
Tightly Coupled (Central Memory — not Scala
shared memory modules are separated from proce
by an interconnection network or a multiport interfa
All processors have equal access time to all mem
words. Therefore, the memory access time (assum
no conflict) is independent of the module b
accessed (C.mmp, HEP, Encore's Multimax, Cedar
NYU Ultracomputer).

Computation Gap

Multiprocessor Systems
Loosely Coupled (Distributed Memory — Scala
each processor has a local-public memory.
Each processor can directly access its memory mo
but all other accesses to non-local memory mod
must be made through an interconnection network
access time varies with the location of the mem
module (Cm*, BBN Butterfly, and Dash).

Computation Gap

Multiprocessor Systems
Besides the higher throughput, multiproce
systems offer more reliability since failure in
one of the redundant components can be toler
through system reconfiguration.
Multiprocessor organization is a logical exten
of the parallel system — i.e., array of proce
organization. However, the degree of free
associated with the processors are much hi
than it is in an array of processor.

Computation Gap

Multiprocessor Systems
The independence of the processors and
sharing of resources among the processors
both desirable features — are achieved at
expense of an increase in complexity at both
hardware and software levels.

Computation Gap

Multi-computer Systems
A multi-computer system is a collection
processors, interconnected by a messa
passing network.
Each processor is an autonomous comp
having its own local memory
communicating with each other through
message passing network (iPSC, nCUBE,
Mosaic).

Computation Gap

Pipeline Systems
The term pipelining refers to a design technique
introduces concurrency by taking a basic function t
involved repeatedly in a process and partitioning it
several sub-functions with the following properties:

Computation Gap

Pipeline Systems
• Evaluation of the basic function is equivalen

some sequential evaluation of the sub-functions.
• Other than the exchange of inputs and outputs, t

is no interrelationships between sub-functions.
• Hardware may be developed to execute each

function.
• The execution time of these hardware units

usually approximately equal.

Computation Gap

Pipeline Systems
Under the aforementioned conditions, the sp
up from pipelining equals the number of p
stages.
However, stages are rarely balanced
furthermore, pipelining does involve so
overhead.

Computation Gap

Pipeline Systems
The concept of pipelining can be implemen
at different levels. With regard to this is
one can address:

• Arithmetic Pipelining
• Instruction Pipelining
• Processor Pipelining

Computation Gap

Pipeline Systems
Non-pipelined instruction cycle:

Inst. i IF ID EX MEM WB

Inst. i+1 IF ID EX MEM WB

Inst. i+2 IF ID EX

Computation Gap

Pipeline Systems
Pipelined instruction cycle:

Inst. i IF ID EX MEM WB

Inst. i+1 IF ID EX MEM WB

Inst. i+2 IF ID EX MEM WB

Inst. i+3 IF ID EX MEM WB

A pipelined instruction cycle gives a peak performa
of one instruction every step.

Computation Gap

Pipeline Systems — Example
Assume an unpipeline machine has a 10 ns c
cycles. It requires four clock cycles for the ALU
branch operations and five clock cycles for the mem
reference operations. Calculate the average instruc
execution time, if the relative frequencies of t
operations are 40%, 20%, and 40%, respectively.

Ave. instr. exec. time = 10 * [(40%+20%) * 4 + 40%
= 44 ns

Computation Gap

Pipeline Systems — Example
Now assume we have a pipeline version of
machine. Furthermore, due to the clock skew and
up, pipelining adds 1 ns overhead to the clock t
Ignoring the latency, now calculate the ave
instruction execution time.

Ave. instr. exec. time = 10 + 1 ns, and
Speed up = 44/11 = 4

Computation Gap

Pipeline Systems — Example
Assume that the time required for the five units i
instruction cycle are, 10 ns, 8 ns, 10 ns, 10 ns, and
Further, assume that pipelining adds 1 ns overh
Find the speed up factor:

Ave. instr. exec. timeunpipeline = 10 + 8 + 10 + 10 + 7
= 45 ns

Ave. instr. exec. timepipeline = 11 ns
Speed up = 45/11 = 4.1

Computation Gap

Pipeline Systems
Issues of concern:

• Overlapping operations should not over com
resources — Every pipe stage is active on e
clock cycle.

• All operations in a pipe stage should comple
one clock and any combination of operations sh
be able to occur at once.

Computation Gap

Pipeline Systems
Pipeline systems can be further classified as

• Linear Pipe / Feedback Pipe
• Scalar Pipe / Vector Pipe
• Uni-function Pipe / Multifunction Pipe
• Statically/Dynamically Con-figured Pipe

Computation Gap

Pipeline Systems
Uni-function Pipeline: Pipeline is dedicated
specific function — CRAY-1 has 12 dedic
pipelines.
Multifunction Pipeline: Pipeline system
perform different functions either at different ti
or at the same time — TI-ACS has
multifunction pipelines reconfigurable for a var
of arithmetic operations.

Computation Gap

Pipeline Systems
Static Pipeline: Pipeline system assumes
configuration at a time.
Dynamic Pipeline: Pipeline system all
several functional configurations to e
simultaneously.

Computation Gap

Pipeline Systems — Example
In a multifunction pipe of 5 stages calculate
speed-up factor for

Y = A(i) * B(i)
i=1

n

Computation Gap

Pipeline Systems — Example
Product terms will be generated in (n-1
steps.
Additions will be performed in:
5 + (n/2 -1) + 5 + (n/4 -1) + ... + 5 + (1-
(4log2n + n) steps.
Speed-up ratio

S = 5(2n-1)
2n+4 log 2n+4

 5 for large n

Computation Gap

Pipeline Systems
A concept known as hazard is a major conc
in a pipeline organization.
A hazard prevents the pipeline from accep
data at the maximum rate that the staging cl
might support.

Computation Gap

Pipeline Systems
A hazard can be of three types:

• Structural Hazard: Arises from resource conflicts w
the hardware cannot support all possible combinatio
instructions in simultaneous overlapped execution —
different pieces of data attempt to use the same sta
the same time.

• Data-Dependent Hazard: Arises when an instru
depends on the result of a previous instruction —
pass through a stage is a function of the data value.

Computation Gap

Pipeline Systems
• Control Hazard: Arises from the pipelinin

instructions that affect PC — Branch.

Computation Gap

Pipeline Systems
Structural Hazard (Assume a Single mem
pipeline system)

Inst. i IF ID EX MEM WB

Inst. i+1 IF ID EX MEM WB

Inst. i+2 IF ID EX MEM WB

Inst. i+3 IF ID EX MEM WB

Inst. i+4 IF ID EX MEM WB
Stall

Computation Gap

Pipeline Systems
Data Hazard

• A data hazard is created whenever there
dependence between instructions, and they are c
enough that the overlap caused by pipelining w
change the order of access to an operand.

ADD R1, R2, R3
SUB R4, R1, R5

Computation Gap

Pipeline Systems
Data Hazard

• Data Hazard can be resolved with a sim
forwarding technique — If the forwarding hard
detects that the previous ALU operation has wr
to a source register of the current ALU opera
control logic selects the forwarded result as the A
input rather the value read from the register file.

Computation Gap

Pipeline Systems
Data Hazard — Classification

• Assume i and j are two instructions and j is
successor of i, then one could expect three type
data hazard:
− Read after write (RAW)
− Write after write (WAW)
− Write after read (WAR)

Computation Gap

Pipeline Systems
Data Hazard — Classification

• Read after write (RAW) — j reads a source befor
writes it (flow dependence).

• Write after write (WAW) — j writes into the sam
destination as i does (output dependence).

LW R1, 0(R2) IF ID EX MEM1 WBMEM2

Add R1, R2, R3 IF ID EX WB

Computation Gap

Pipeline Systems
Data Hazard — Classification

• Write after read (WAR) — j writes into a source
(anti dependence).

SW 0(R1), R2 IF ID EX MEM1 WBMEM2

Add R2, R4, R3 IF ID EX WB

Computation Gap
Pipeline Systems

Data Hazard — Forwarding
• One can use the concept of data forwardin

overcome stall (s) due to data hazard.

Add R1, R2, R3 IF ID EX MEM WB

Sub R4, R1, R5 IF ID EX MEM WB

IF ID EX MEM WBAnd R6, R1, R7

IF ID EX MEM WBOR R8, R1, R9

IF ID EX MEM
XOR R10, R1, R11

Computation Gap

Pipeline Systems
Data Hazard — Forwarding

• In some cases data forwarding does not work:

LW R1, 0(R2) IF ID EX MEM WB

Sub R4, R1, R5 IF ID EX MEM WB

IF ID EX MEM WBAdd R6, R1, R7

IF ID EX MEM WBOR R8, R1, R9

Forwarding works

Forwardin
does not w

Computation Gap

Pipeline Systems
Data Hazard — Stalling

• In cases where data forwarding does not work
pipe has to be stalled:
LW R1, A IF ID EX MEM WB

Add R4, R1, R7 IF ID EX MEM WB

IF ID EX MEM WBSub R5, R1, R8

IF ID EX MEM WAnd R6, R1, R7

Computation Gap

Pipeline Systems
Data Hazard — Stalling

LW R1, A IF ID EX MEM WB

Add R4, R1, R7 IF ID EX MEM W

Sub R5, R1, R8 IF ID EX MEM

IF ID EXAnd R6, R1, R7

Stalls

Computation Gap

Pipeline Systems
Data Hazard — Stalling

• The pipeline interlock detects a hazard and stall
pipeline until the hazard is cleared .

• This delay cycle — bubble or pipeline stall, al
the load data to be generated at the time it is ne
by the instruction.

Computation Gap

Pipeline Systems
Data Hazard — Stalling

• Let us look at A B + C

LW R1, B IF ID EX MEM WB

IF ID EX MEMAdd R3, R1, R2

IF ID EX MST A, R3

LW R2, C IF ID EX MEM WB

Stall needed to allow
load of C to complete

Fo

Computation Gap

Pipeline Systems
Data Hazard — Example

• Assume 30% of the instructions are load and
the time the instruction following a load instruc
depends on the result of the load. If the ha
creates a single-cycle delay, how much faster i
ideal pipelined machine?

CPIideal = 1
CPInew = (.7 * 1 + .3 * 1.5) = 1.15

Computation Gap

Pipeline Systems
Data Hazard — Pipeline Scheduling or Instruc
Scheduling

• Compiler attempts to schedule the pipeline to a
the stalls by rearranging the code sequenc
eliminate the hazard — Software support to a
data hazard.

• Sometimes if compiler can not schedule
interlocks, a no-op instruction may be inserted.

Computation Gap

Pipeline Systems
Data Hazard — Pipeline Scheduling or Instruc
Scheduling

• Let us look at the following sequence
instructions:

a = b + c
d = e - f

Computation Gap

Pipeline Systems
Data Hazard — Pipeline Scheduling or Instruc
Scheduling

IF
IF

IF
IF

Load Rb, b

Load Rc, c

ADD Ra, Rb, Rc

Store a, Ra

ID
ID

ID
ID EX
EX

EX
EX

MEM

MEM

MEM

MEM

WB
WB

WB
WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM W
IF ID EX M

Load Re, e

Load Rf, f

SUB Rd, Re, Rf
Store d, Rd

Computation Gap

Pipeline Systems
Control Hazard

• If instruction i is a successful branch, then the P
changed at the end of MEM phase. This m
stalling the next instructions for three clock cycl

Computation Gap

Pipeline Systems
Control Hazard

Computation Gap

Pipeline Systems
Control Hazard — Observations

• Three clock cycles are wasted for every branch.
• However, the above sequence is not even poss

since we do not know the nature of the instruc
until after the instruction i + 1 is fetched.

Computation Gap

Pipeline Systems
Control Hazard — Solution

Computation Gap

Pipeline Systems
Control Hazard — Solution

• Still the performance penalty is severe.
• What are the solution(s) to speed up the pipeline

Computation Gap

Pipeline Systems
Control Hazard — Reducing pipeline br
penalties

• Detect, earlier in the pipeline, whether or not
branch is successful,

• For a successful branch, calculate the value o
PC earlier,

• It should be noted that, these solutions come a
expense of extra hardware,

Computation Gap

Pipeline Systems
Control Hazard — Reducing pipeline br
penalties

• Freeze the pipeline — Holding any instruction
the branch until the branch destination is know
Easy to enforce,

• Assume unsuccessful branch — Continue to
instructions as if the branch were a no
instruction. If a branch is taken, then stop
pipeline and restart the fetch,

Computation Gap

Pipeline Systems
Control Hazard — Reducing pipeline br
penalties

• Assume the branch is successful — as soon a
target address is calculated, fetch and exe
instructions at the target,

• Delayed Branch — Software attempts to make
successor instruction valid and useful.

Computation Gap

Pipeline Systems
Control Hazard — Reducing pipeline br
penalties

• Assume branch is not successful:
IF

IF
IF

IF

IF

Inst. i + 1

Inst. i + 2

Inst. i + 3

Inst. i + 4

ID
ID

ID

ID

ID EX

EX

EX
EX

EX

ME

MEM

MEM

MEM

MEM

W

WB
WB

WBUntaken branch Inst.

Computation Gap

Pipeline Systems
Control Hazard — Reducing pipeline br
penalties

Computation Gap

Pipeline Systems
Structural Hazard

• For Statically Configured pipelines, one c
predict precisely when a structural hazard m
occur and hence it is possible to schedule
pipeline so that the collisions do not occur.

Computation Gap

Pipeline Systems
Structural Hazard

• Let Si (1 i n) denote a stage of a pipeline
performs a well defined subtask with a delay tim

i.
• Define latency as the minimum time ela

between the initiation of two processes. There
for a linear pipeline the latency is Max(i) 1 i

Computation Gap

Pipeline Systems
Structural Hazard

• Reservation Table represents the flow of
through the pipeline for one complete evaluatio
a given function.

• It is a table which shows the activation of
pipeline stages at each moment of time.

Computation Gap

Pipeline Systems
Structural Hazard

• Assume the following pipeline:

in
S0 S1 S2 S3

2 nd pass

3 rd pass S4

S5

i= t 0 i 6 and i 3
3=2 t

Computation Gap
Pipeline Systems

Structural Hazard
• The following is the reservation table of

aforementioned pipeline organization:
Time

Stage t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 t 12

S 0

S 1

S 2

S 3

S 4

S 5

S 6

x
x

x
x x

x
x

x x

x
x

x

x
x

Computation Gap

Pipeline Systems
Structural Hazard

• For a given pipeline organization, one can alw
derive its unique reservation table. How
different pipeline organizations might have the s
reservation table.

Computation Gap

Pipeline Systems
Structural Hazard

• A pipeline is statically configured if it assume
same reservation table for each activation.

• A pipeline is multiply configured if the reserva
table is one from a set of reservation tables.

• A pipeline is dynamically configured if
activation does not have a predetermined reserva
table.

Computation Gap

Pipeline Systems
Structural Hazard

• A collision occurs if two or more activations atte
to use the same pipeline segment simultaneously

• A collision will occur if reservation tables are of
by l time units and activation of the same pip
segment overlaps.

• l is called a forbidden latency — two activa
should not be initiated l time units apart.

Computation Gap

Pipeline Systems
Structural Hazard

• Given a pipeline system, one can define
forbidden list L as the set of forbidden latencies

L = (l1, l2, ..., ln)

C = (Cn, Cn-1, ..., C1)
n = Max(lj) lj L and
Ci = 1 if i L
Ci = 0 otherwise

• For a given L we can define the collision vector
C as:

Computation Gap

Pipeline Systems
Structural Hazard

• The collision vector can be interpreted tha
initiation is allowed at every time unit such that
0. This allows us to build a finite state diagra
possible initiations.

• Initial state is the collision vector, and each sta
represented by a combination of collision ve
which have led to such a state.

Computation Gap

Pipeline Systems
Structural Hazard

• In case of our example we have:

L = (4,8,1,3,5)
C = 10011101

• Initial state 10011101 indicates that we can have
initiation at time 2, 6, or 7. If we have a new init
at time 2 then the finite state machine would be i
state (00100111) (10011101) = 10111111.
Following such a procedure then we have:

Computation Gap

Pipeline Systems
Structural Hazard

Computation Gap

Pipeline Systems
Structural Hazard

• From State Diagram then one can design a controll
regulate the initiation of the activations.

• In a state diagram:
− The simple cycle is a cycle in which each state ap

only once.
− The average latency of a cycle is the sum of its late

divided by the number of states in the cycle.
− The greedy cycle is a cycle that always minimize

latency between the current initiation and the very
initiation.

Computation Gap

Pipeline Systems — Example
For a 5-stage pipeline characterized by the follow
reservation table:

Time
Stage

x
x x

x
x x

x x

x

0

1

5

2

4

3

x

1 2 3 4 5 6 7 8

a) Determine forbidden list and collision vector.
b) Draw the state diagram and determine the minimal

average latency and the maximum throughput.

Computation Gap

Pipeline Systems
Multifunction Pipeline

• The scheduling method for static uni-func
pipelines can be generalized for multifunc
pipelines.

• A pipeline that can perform P distinct functions
be classified by P overlaid reservation tables.

Computation Gap

Pipeline Systems
Multifunction Pipeline

• Each task to be initiated can be associated w
function tag to identify the reservation table t
used.

• In this case collision may occur between tw
more tasks with the same function tag or
distinct function tags.

Computation Gap

Pipeline Systems
Multifunction Pipeline

• For example, the following reservation
characterizes a 3-stage 2-function pipeline

1

2

3

0 41 32

A

B

B

A

AB

A

A

B

B

TimeStage

Computation Gap

Pipeline Systems
Multifunction Pipeline

• A forbidden set of latencies for a multifunction pip
is the collection of collision-causing latencies.

• A cross-collision vector marks the forbidden late
between the functions - i.e., vAB represents the forbi
latencies between A and B. Therefore, for a P fun
pipeline one can define P2 cross-collision vectors.

• P2 cross-collision vectors can be represented b
collision matrices.

Computation Gap

Pipeline Systems
Multifunction Pipeline

• For our example we have:

Cross Collision Vectors
vAA=(0110) vAB=(1011)
vBA=(1010) vBB=(0110)
Collision Matrices

Computation Gap

Pipeline Systems
Multifunction Pipeline

• Similar to the uni-function pipeline, one can us
collision matrices in order to construct a
diagram.

Computation Gap

Pipeline Systems
Multifunction Pipeline

0110
1010

0111
1111

1011
0111

0111
1010

1111
0111

B1

B4

B5 +
B4

B4

A3

A3

A4

A4

A1

A4

A5 +

1011
0110

B1, B3

B1, B3

Computation Gap

Pipeline Systems
Vector Processors

• A vector processor is equipped with multiple ve
pipelines that can be concurrently used u
hardware or firmware control.

• There are two groups of pipeline processors:
− Memory-to-Memory Architecture
− Register-to-Register Architecture

Computation Gap
Pipeline Systems

Vector Processors
• Memory-to-Memory architecture that support

pipeline flow of vector operands directly from
memory to pipelines and then back to the mem
(Cyber 205).

• Register-to-Register architecture that uses ve
registers as operands for the functional pipe
(Cray series that use size registers and Fujitsu
2000 series that use reconfigurable vector registe

Computation Gap

Pipeline Systems
Vector Processors

• Vector machines allow efficient use of pipeli
while reducing memory latency and pip
scheduling penalties.

• Computations on vector elements are ma
independent from each other — lack of
hazards.

Computation Gap
Pipeline Systems

Vector Processors
• A vector instruction is equivalent to a loop,

implies:
− Smaller program size, hence reducing the instru

bandwidth requirement.
− Fewer number of control hazards.

• Vector instructions initiate regular operand f
pattern — allowing efficient use of mem
interleaving and efficient address calculations.

Computation Gap

Pipeline Systems
Vector Processors — Vector Stride

• What if adjacent vector elements of a vector oper
are not positioned in sequence in the memory.

• The distance separating elements that ought to be me
into a single vector is called the stride.

• Almost all vector machines allow access to vectors
any constant stride. Some constant strides may c
memory-bank conflict.

Computation Gap

Pipeline Systems
Vector Processors — Chaining

• Chaining allows a vector operation to start as
as the individual elements of its vector so
operand become available.

• Result of the first functional unit (pipeline) in
chain are forwarded to the second functional uni

Computation Gap
Pipeline Systems

Efficient Use of Vector Processors — Mem
to-Memory Organization

• Increase the vector size — if possible:
− Change the nesting order of the loop,
− Convert multidimensional arrays into one-dimen

arrays,
− Rearrange data into unconventional forms so that sm

vectors may be combined into a single large vector.
• Perform as many operations on an input vecto

possible before storing the result vector back in
main memory.

Computation Gap

Pipeline Systems
Efficient Use of Vector Processors — Mem
to-Memory Organization

• Changing the nesting order of the loop:

Do I = 1, 100
A(I, 1:60) = 0

End

Do J = 1, 60
A(1:100,J) =

End

Computation Gap

Pipeline Systems
Efficient Use of Vector Processors — Mem
to-Memory Organization

• Convert multidimensional arrays into
dimensional arrays:

Do I = 1, 100
A(I, 1:60) = 0

End
A(1:6000) = 0

Computation Gap

Pipeline Systems
Efficient Use of Vector Processors — Regi
to-Register Organization

• Values often used in a program should be kept in int
registers.

• Perform as many operations on an input vecto
possible before storing the result vector back in the
memory.

• Organize vectors into sections of size equal to the le
of the vector registers — Strip mining.

• Convert multidimensional arrays into one-dimens
arrays.

Computation Gap

Question
Compare and contrast Memory-to-Memory
Register-to-Register pipeline systems aga
each other.

