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Introduction to High Performance Computer Architecture

Note, this unit will be covered in three

weeks. In case you finish it earlier, then you

have the following options:

1) Take the early test and start CS5803.module7

2) Study the supplement module

(supplement CS5803.module6)

3) Act as a helper to help other students in

studying CS5803.module6

Note, options 2 and 3 have extra credits as noted in course

outline.
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Glossary of prerequisite topics

Familiar with the topics?
No Review 

CS5803.module6.background

Yes

Remedial action

Yes

No
Take the Module

Take Test

Pass?

Glossary of topics

Familiar with the topics?

Yes

Pass?

Take Test

Yes

Options

Lead a group of students in 

this module (extra credits)?

Study more advanced related 

topics (extra credits)?

Study next module?

No



Extra Curricular activities

Enforcement 

of background 

Current 

Module

At the end: take 

exam, record the 

score, and impose 

remedial action if 

not successful

No
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Multifunctional Systems
General Configuration

The system is composed of a single control unit and a
processor.

The processing unit is composed of several independent
functional units.

Each functional unit has a set of local (private) registers
and all functional units share a set of global registers,
which hold intra-functional operands and act as a buffer
for the memory unit.

Each functional box is tailored around a specific
operation.

Introduction to High Performance Computer Architecture
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Multifunctional Systems
General Configuration

The global registers share a common bus and a
switching network which, together, allow fast data
transmission from point to point.

The primary memory should support a high
processor bandwidth.

The control unit is responsible for the resolution of
register and functional unit conflicts and scheduling
of their operations.

Functional units work independently in
asynchronous mode.

Introduction to High Performance Computer Architecture



7

Introduction to Computer Architecture

Multifunctional Systems
F1
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Multifunctional Systems

Historical Development
CDC 6600 1964

CDC 7600 1969

CRAY-1 1976

CRAY X-MP 1982

CRAY-2 1985

CRAY Y-MP 1988

CRAY-3 and CRAY-4 ?

Superscalar

VLIW

Introduction to High Performance Computer Architecture
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CDC 6600

General Philosophy
Separation of the input/output operations from

the central processor operations.

Highly parallel central processing unit —
multifunctional organization.

Hierarchical and Interleaved memory
organization.

Pipelined instruction cycle.

Overall estimated performance 4.5 MFLOPS.
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CDC 6600 — Block Diagram
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CDC 6600

Peripheral Sub-System is composed of two

parts:

Peripheral Channels

Peripheral Processing Units

Introduction to High Performance Computer Architecture
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CDC 6600

Memory Organization

Central Storage

Stunt Box

Extended Core Storage
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CDC 6600

Central Storage

A collection of 32 independent banks of 60-bit

words.

Banks are arranged in an interleaved fashion

with a memory cycle time of 10 clock cycles.

Introduction to High Performance Computer Architecture
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CDC 6600

Stunt Box

Organization of Stunt Box has already been

discussed. If you recall, it is designed to

provide a maximum flow of addresses to the

central storage. This has been achieved by not

allowing accesses to a busy bank to stop other

accesses to the central storage.
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CDC 6600

Extended Core Storage

Backup storage for central storage.

A collection of up to 16 banks of 480-bit words.

Storage cycle time is 32 clock cycles.

Introduction to High Performance Computer Architecture
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CDC 6600

Central Processor

The central processor is based on a high

degree of functional parallelism.

Functional parallelism is achieved by the use of

many functional units and a number of

essential supporting modules.
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CDC 6600

Central Processor is composed of:

24 Registers

Instruction Stack

Functional Units

Scoreboard

Introduction to High Performance Computer Architecture
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CDC 6600
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CDC 6600

Central Processor

Two formats of instructions are supported:

F m i j k

3 3 3 3 3

Short format instruction - 15 bits.

F m i j k

3 3 3 3 18

Long Format instruction - 30 bits.

Introduction to High Performance Computer Architecture



20

CDC 6600

Central Processor

F, m fields collectively represent the op-code.

i, j, k fields refer to one of the A, X, B registers.

k field represents an immediate value used as

a constant or branch destination.

Introduction to High Performance Computer Architecture
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CDC 6600

24 Registers

Eight operand registers (X-registers) - 60 bits.

Eight address registers (A-registers) - 18 bits.

Eight index registers (B-registers) - 18 bits.

Operand registers are paired up one-for-one

with a corresponding address register.

Five address-operand register pairs are used

for read and two are used for write.

Introduction to High Performance Computer Architecture
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CDC 6600

Instruction Stack

Instruction Stack is a collection of eight 60-bit
registers — instruction register and seven
buffer registers. This configuration allows up to
32 previously fetched instructions to be readily
available in the instruction stack.

A reference to an instruction resident in the
instruction stack is granted by the instruction
stack. This:
Allows faster access to the referenced instruction,

and

Reduces the main memory contention.

Introduction to High Performance Computer Architecture
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CDC 6600

Functional Units
Ten independent functional units make up the

arithmetic and logic portion of the CDC 6600.
These units may operate simultaneously:
Floating Point Add

Floating Point Multiply (2)

Floating Point Divide

Fixed Point Add

 Increment (2)

Boolean

Shift

Branch

Introduction to High Performance Computer Architecture
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Introduction to Computer Architecture

CDC 6600

Functional Units

Unit
Execution Time

(clock cycles)
Semantics

Floating Point Multiply

Floating Point Add/Sub

Fixed Point Add/Sub

Increment/Decrement

Boolean

Shift

Floating Point divide

Branch

10

4

3

3

3

3-4*

29

8
1

,9
2

14
3

 if next inst.

in stack else add + 6

Xi Xj* Xk

Xi Xj+Xk

Xi Xj+Xk

18 bits operand,

indexing,

conditional branch,

reading, storing

60 bits logic operation

Shift, normalize,*

pack, unpack, mask

Xi Xj/ Xk

Each two consecutive words are1 if increment unit is used

fetched after 8 minor cycles 2 if floating point add is used

(if no memory conflict exists). 3 if constant + contents of B 

register is used
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CDC 6600

Scoreboard

Scoreboard is a hardware unit which keeps

track of instruction conflicts in an attempt to

issue independent instructions as fast as

possible.

Scoreboard holds the current status of each

instruction that is currently being executed or

waiting to be executed in the functional units.
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CDC 6600

Instruction Fetch
An instruction word is fetched into the

instruction register. Instruction words are made
up of four parcels of 15 bits each.

During each clock cycle the contents of two
successive parcels (instruction packet) are
fetched and passed through a series of
registers - U0, U1, U2 (instruction pipe). Two
consecutive instruction packets overlap 15 bits
of information.

Introduction to High Performance Computer Architecture
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CDC 6600

Instruction Pipe
During the transition from U1 to U2 the

instruction packet will be translated, this
determines the length of the instruction, the
functional unit being requested and the
operand register(s) involved.

If no conflict exists, the instruction is issued to
the appropriate functional unit. Otherwise, the
instruction may not be issued, halting
(temporarily) the flow of the information in the
instruction pipe.

Introduction to High Performance Computer Architecture
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CDC 6600

Instruction Pipe

Scoreboard

and

Functional

Units

U 1
U 2

U 0

Translate

Instruction Packet

Instruction Packet 1

Instruction Packet 0

Instruction Packet 2

Instruction

Packet 3

59 45 44 30 29 15 14 0

Instruction

Packet 3
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CDC 6600

Instruction Pipe

Note after each long instruction, the contents of

the next instruction packet is an invalid

instruction and will be skipped.

Introduction to High Performance Computer Architecture
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CDC 6600

Conflicts and Their Resolutions

In a parallel environment, simultaneous

execution of instructions is possible as long as

instructions are independent of each other.

In the case of dependence, the degree of

dependence should be recognized and proper

resolution should be taken.

Introduction to High Performance Computer Architecture
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CDC 6600 — Conflicts and Their

Resolutions

First Order Conflict

Functional Unit Conflict (conflict over hardware

resources)





X6 = X1 + X2

X5 = X3 + X4

Introduction to High Performance Computer Architecture
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CDC 6600 — Conflicts and Their

Resolutions

First Order Conflict

Result Register Conflict (Write After Write)





X6 = X1 * X2

X6 = X4 + X5

Introduction to High Performance Computer Architecture
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CDC 6600 — Conflicts and Their

Resolutions

First Order Conflict

Resolution: The second instruction is not

issued until the first instruction is completed

(instruction pipe is temporarily halted).
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CDC 6600 — Conflicts and Their

Resolutions

Second Order Conflict (Read After Write)

This conflict occurs when an instruction

requires the result of a previously issued, and

as yet uncompleted, instruction as an input

operand.





X6 = X1 * X2

X7 = X5 / X6
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CDC 6600 — Conflicts and Their

Resolutions

Second Order Conflict (Read After Write)

Resolution: Functional unit is reserved and

instruction is issued, but its execution is

delayed.
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CDC 6600 — Conflicts and Their

Resolutions

Third Order Conflict (Write After Read)

This conflict occurs when an instruction is

called on to store its result in a register which

is to be used as an input operand for a

previously issued, but as yet not started,

instruction.

Introduction to High Performance Computer Architecture
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CDC 6600 — Conflicts and Their

Resolutions

Third Order Conflict (Write After Read)









X3 = X1 / X2

X5 = X4 * X3

X4 = X0 + X6

Introduction to High Performance Computer Architecture
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CDC 6600 — Conflicts and Their

Resolutions

Third Order Conflict (Write After Read)

Resolution: The instruction is issued, its

execution will be started, but its result will be

held in the functional unit as long as the conflict

exists.

Introduction to High Performance Computer Architecture
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CDC 6600 — Example

Within the scope of CDC6600, calculate

the timing chart for the following

expression:

Y = AX2 + BX + C

Introduction to High Performance Computer Architecture
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CDC 6600 — Example
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N1 A 1 =A1 +K1     FETCH X

N1 A 2 =A2 +K2     FETCH A

N2 A 3 =A3 +K3    FETCH B

N3 A 4 =A4 +K4    FETCH C

N3 X5 =X6 +X3     FORM A X2 +BX

N5 A 7 =A7 +K5    STORE Y

SemanticsInstructionWord #

N4 X7 =X5 +X4     FORM Y

N2 X0 =X1 *X1     FORM X2

N2 X6 =X0 *X2     FORM AX2

N3 X3 =X3 *X1     FORM BX

Introduction to High Performance Computer Architecture
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Computation Gap

Computation gap is defined as the difference

between computational power demanded by the

application environments and computational

capability of the existing computers.

Today, one can find many applications which

require orders of magnitude more computations

than the capability of the most powerful

computers.

Introduction to High Performance Computer Architecture
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Computation Gap

Computational requirements of some

applications

It is estimated that the so called Problem

Solving and Inference Systems require an

environment with the computational power in

the order of 100 MLIPS to 1 GLIPS (1 LIPS 

100-1000 instructions).

Introduction to High Performance Computer Architecture
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Computation Gap

Computational requirements of some

applications

Experiences in Fluid Dynamics have shown

that the conventional super-computers can

calculate steady 2-dimensional flow in minutes.

However, conventional super-computers

require up to 20 hours to handle time

dependent 2-dimensional flow or steady 3-

dimensional flows on simple objects.

Introduction to High Performance Computer Architecture



44

Computation Gap

Computational requirements of some

applications

Numerical Aerodynamics Simulator requires an

environment with a sustained speed of 1 billion

FLOPS.

Strategic Defense Initiative requires a

distributed, fault tolerant computing

environment with a processing rate of 600

MOPS.

Introduction to High Performance Computer Architecture
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Computation Gap

Computational requirements of some applications

U.S. Patent Office and Trademark has a database of size

25 terabytes subject to search and update.

An angiogram department of a mid-size hospital

generates more than 64 * 1011 bits of data a year.

NASA's Earth Observing System will generate more than

11,000 terabytes of data during the 15-year time-period

of the project.

Introduction to High Performance Computer Architecture



Computation Gap

Computational requirements of some applications
 It was estimated that in 2002, 5 exabytes (1 exabyte= 1018 bytes

which is approximately equal to all words spoken by human beings)
of new information was generated.

 The TREC database holds around 800 million static pages having 6
trillion bytes of plain text equal to the size of a million books.

 The Google system routinely accumulates millions of pages of new
text information every week.

Introduction to High Performance Computer Architecture
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Computation Gap

Performance of some computers

CDC STAR-100 25-100 MFLOPS

DAP 100 MFLOPS

 ILLIAC IV 160 MFLOPS

HEP 160 MFLOPS

CRAY-1 25-80 MFLOPS

CRAY X-MP(1) 210 MFLOPS

CRAY X-MP(4) 840 MFLOPS

Introduction to High Performance Computer Architecture
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Computation Gap

Performance of some computers

CRAY-2 250 MFLOPS

CDC CYBER 200 400 MFLOPS

HitachiS-810(10) 315 MFLOPS

HitachiS-810(20) 630 MFLOPS

FujitsuFACOM VP-50 140 MFLOPS

FujitsuFACOM VP-100 285 MFLOPS

FujitsuFACOM VP-200 570 MFLOPS

FujitsuFACOM VP-400 1,140 MFLOPS

Introduction to High Performance Computer Architecture
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Computation Gap

Performance of some computers

NEC SX-1 570 MFLOPS

NEC SX-2 1,300 MFLOPS

IBM RP3 1,000 MFLOPS

MPP 8-bit integer 1545-6553 MIPS

MPP 12-bit integer 795-4428 MIPS

MPP 16-bit integer 484-3343 MIPS

MPP 32-bit FL 165-470 MIPS

MPP 40-bit FL 126-383 MIPS

Introduction to High Performance Computer Architecture



Computation Gap
Performance of some computers

NEC (Earth System) 35 tera FLOPS

IBM Blue Gene 70 tera FLOPS

Introduction to High Performance Computer Architecture
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Rank Site Computer/Year Vendor Country Cores
Rmax

(Pflops)

Rpeak

(Pflops)

Power

(MW)

1
RIKEN Advanced Institute for 

Computational Science 

K computer, SPARC64 VIIIfx

2.0GHz,/ 2011 Fujitsu
Japan 548,352 8.162 8.774 9.899

2
National Supercomputing 

Center in Tianjin
Tianhe-1A - NUDT / 2010 NUDT China 186,368 2.566 4.701 4.040

3
DOE/SC/Oak Ridge National 

Laboratory

Jaguar - Cray XT5-2.6 GHz / 

2009 Cray Inc.
USA 224,162 1.759 2.331 6.951

4
National Supercomputing 

Centre in Shenzhen 

Nebulae - Dawning TC3600 

Blade/ 2010 Dawning
China 120,640 1.271 2.984 2.580

5
GSIC Center, Tokyo Institute 

of Technology
TSUBAME 2.0/2010 NEC/HP Japan 73,278 1.192 2.288 1.399

6 DOE/NNSA/LANL/SNL
Cielo - Cray XE6 8-core 2.4 GHz 

/2011Cray Inc.
USA 142,272 1.110 1.365 3.980

7
NASA/Ames Research 

Center/NAS
Pleiades - 2.93 Ghz,/ 2011 SGI USA 111,104 1.088 1.315 4.102

8 DOE/SC/LBNL/NERSC
Hopper - Cray XE6 12-core 2.1 

GHz / 2010 Cray Inc.
USA 153,408 1.054 1.289 2.910

9
Commissariat a l'Energie

Atomique (CEA)

Tera-100 - Bull bullx super-node 

S6010/S6030 / 2010 Bull SA
France 138,368 1.050 1.255 4.590

10 DOE/NNSA/LANL Roadrunner - 3.2 Ghz /2009 IBM USA 122,400 1.042 1.376 2.346

51
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Trend in Supercomputer technology

#1

#500

Sum
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Countries Share
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Absolute Counts

US: 274

China: 41

Germany: 26

Japan: 26

France: 26

UK: 25



54

Trend in Supercomputer technology (June 2012)
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Countries Count Share % Rmax Sum (GF) Rpeak Sum (GF) Processor Sum

Australia 6 1.20 % 400406 552142 40344

Austria 2 0.40 % 188670 243386 26172

Belgium 2 0.40 % 83840 151472 16704

Brazil 2 0.40 % 269730 330445 37184

Canada 8 1.60 % 640129 890598 82684

China 61 12.20 % 7136315 14331013 881832

Denmark 2 0.40 % 198408 260395 22218

Finland 2 0.40 % 117858 180690 18640

France 25 5.00 % 3180744 4100571 454928

Germany 30 6.00 % 3242111 4181323 568952

India 2 0.40 % 187910 242995 18128

Ireland 1 0.20 % 40495 76608 7200

Israel 2 0.40 % 135361 280436 23928

Italy 5 1.00 % 471746 748248 42080

Japan 26 5.20 % 11182236 13641290 832838

Korea, South 4 0.80 % 950833 1126280 123384

Netherlands 1 0.20 % 50924 64973 3456

Norway 1 0.20 % 40590 51060 5550

Poland 5 1.00 % 315075 448204 44274

Russia 12 2.40 % 1341586 2290994 115120

Saudi Arabia 4 0.80 % 359240 414841 81920

Singapore 2 0.40 % 94073 144562 13192

Spain 2 0.40 % 135860 197696 14160

Sweden 5 1.00 % 489530 661642 75280

Switzerland 4 0.80 % 317895 383373 49480

Taiwan 2 0.40 % 220504 313570 32148

United Kingdom 27 5.40 % 1872107 2806546 260572

United States 255 51.00 % 25265849 36064596 5803755655

Rapid change in

Countries Share 

http://top500.org/country/12
http://top500.org/country/13
http://top500.org/country/20
http://top500.org/country/28
http://top500.org/country/36
http://top500.org/country/42
http://top500.org/country/54
http://top500.org/country/68
http://top500.org/country/69
http://top500.org/country/75
http://top500.org/country/92
http://top500.org/country/96
http://top500.org/country/97
http://top500.org/country/98
http://top500.org/country/100
http://top500.org/country/106
http://top500.org/country/143
http://top500.org/country/153
http://top500.org/country/164
http://top500.org/country/170
http://top500.org/country/180
http://top500.org/country/185
http://top500.org/country/191
http://top500.org/country/197
http://top500.org/country/198
http://top500.org/country/200
http://top500.org/country/216
http://top500.org/country/217


As of June 2013, Tianhe-2 (Milky Way-2) (will be

deployed at the National Supercomputer Center in

Guangzho, China, by the end of the year) is the

fastest super computer with theoretical peak

performance of 54.9 PF/s (Linpack Performance

of 33.8 PF/s). It is composed of 3,120,000 cores,

consuming 17,808 kW.
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Titan, a Cray XK7 system installed at the U.S.

Department of Energy’s (DOE) Oak Ridge

National Laboratory and previously the No. 1

system, is now ranked No. 2. Titan achieved 17.59

petaflop/s on the Linpack benchmark using

261,632 of its NVIDIA K20x accelerator cores.

Titan is one of the most energy efficient systems

on the list, consuming a total of 8.21 MW and

delivering 2,143 Mflops/W.
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Sequoia, an IBM BlueGene/Q system installed at

DOE’s Lawrence Livermore National Laboratory,

also dropped one position and is now the No. 3

system. Sequoia was first delivered in 2011 and

has achieved 17.17 petaflop/s on the Linpack

benchmark using 1,572,864 cores. Sequoia is also

one of the most energy efficient systems on the

list, consuming a total of 7.84 MW and delivering

2,031.6 Mflops/W.
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Computation Gap

Problem

Suppose a machine capable of handling 106

characters per second is in hand. How long

does it take to search 25 terabytes of data?

25 * 10
12

10
6

 = 25 * 10
6
 sec.  4 * 10

5
 min.  7 * 10

3
 Hours  290 days 

NOT PRACTICAL!
WHAT ARE THE SOLUTIONS?

Introduction to High Performance Computer Architecture
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Computation Gap — How to reduce it?

Reduce the amount of needed

computations.

Improve the speed of the computers:

Physical Speed

Logical Speed

Introduction to High Performance Computer Architecture
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Computation Gap — Fewer Computation

Advances in Software Technology and

Algorithms

Since the early days of computers, the

development of software support to maximize

hardware utility has stimulated much research.

Software systems were developed to tailor the

embedded hardware features of a system to a

specific application.

Introduction to High Performance Computer Architecture
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Computation Gap — Fewer Computation

Advances in Software Technology and

Algorithms

Various data structure techniques can be used

in order to achieve a higher performance.

Different algorithms can be developed to

improve performance.

Introduction to High Performance Computer Architecture
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Computation Gap — Fewer Computation

Advances in Software Technology and

Algorithms

A compiler equipped with an optimizer routine

improves the performance during the runtime

by creating an efficient target language

program.

Introduction to High Performance Computer Architecture
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Computation Gap — Fewer Computation

Advances in Software Technology and

Algorithms

A vectorized and parallelized compiler can

enhance the performance by detecting the

parallelism in an application program and

rearranging the instructions in the object

program to allow the simultaneous execution of

independent instructions or block of instructions

on the target machine, during the run time.

Introduction to High Performance Computer Architecture
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Computation Gap — Physical Speed

Advances in Technology

Transition from vacuum tubes to VLSI has

made it possible to reduce the gate switching

delay and size, and to increase the reliability of

the hardware components.

Introduction to High Performance Computer Architecture
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Computation Gap — Physical Speed

Advances in Technology

Within the period of 1940-1980 the processor

speed has been increased by more than four

orders of magnitude, and logic circuit size and

memory cell size have been reduced by factors

of 500 and 6400, respectively.

Introduction to High Performance Computer Architecture
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Computation Gap — Physical Speed

Advances in Technology

In 1944, a basic operation was executed in 333

msec.

About 8 years later, in 1950s, due to the

advances in technology, the same basic

operation was executed in 282 µsec.

In the early 1960s, again, because of the

advances in technology, it took 300 sec to

perform the same operation.

Introduction to High Performance Computer Architecture
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Computation Gap — Physical Speed

Advances in Technology

Is it possible to handle the same basic

operation in 300 pico sec?

For the period of 40s-60s, performance (speed)

improvement due to the advances in

technology has been at the rate of 103 per

decade. Should we expect the same

improvement rate forever?

Introduction to High Performance Computer Architecture
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Computation Gap — Physical Speed

Advances in Technology

In 1970, Intel introduced the first single chip

microprocessor, the Intel 4004.

It had 2,600 manually placed transistors with

clocking frequency of 100 KHz.

Intel 4004 packed as much computing power

as the ENIAC.

Introduction to High Performance Computer Architecture
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Computation Gap — Physical Speed

Advances in Technology
Limitations

Speed of Light and

Distance

Light travels 12 * 109 inch per sec. = 12 inch
per sec.

In 300 pico sec. light travels 4 inches.
Therefore, in a hardware unit (basic operation),
if the total signal propagation distance is more
than 4 inches then it is impossible to execute
the same basic operation in 300 pico seconds.
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Computation Gap

Technolgy

Approximate

number of

transistors

per chip in

commercial

products

Typical

Products

Invention

of the

Transistor

1

-

Discrete

Components

1

Junction

Transistor

and Diode

SSI

10

Planar

Devices,

Logic Gates,

Flip-Flops

MSI

100-

1000

Counters,

Multiplexers,

Adders

LSI

1000-

20,000

8-bit

Microproc.

ROM, RAM

VLSI

20,000-

500,000

16 & 32-bit

Microproc.

Sophisticated

Peripherals

ULSI*

>500,000

Special

Processors

Real Time

Image Proc.

GSI**

>1,000,000

?

Year 1947 1950 1961 1966 1971 1980 1985 1990

* Ultra Large Scale Integration. ** Giant Scale Integration
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Computation Gap — Physical Speed

Advances in Technology

Advances in technology reduce the circuit

switching delay and miniaturize the hardware

circuits. Nevertheless, it cannot transfer

signals faster than the speed of light, and

cannot eliminate the distance.
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Computation Gap — Physical Speed

Advances in Technology

In the late 1960s, Moore predicted that

component density on a chip was quadrupling

every three or four years. However, as

advances in technology approach the limit, the

Moore's law is no longer applicable.
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Computation Gap — Logical Speed

One can take two general approaches to

improve the logical speed of the system:

Architectural advances of the traditional uni-

processor systems,

Concurrency
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Computation Gap — Logical Speed

Architectural advances of uni-processor

system

In this case, one has to look at the existing

bottlenecks in a uni-processor systems and

make an attempt to reduce these bottlenecks.

As we discuss before access gap is one of the

bottlenecks of the traditional uni-processor

systems.
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Computation Gap — Logical Speed

Architectural advances of uni-processor

system

Access gap is defined as the time difference

between the CPU cycle time and the main

memory cycle time.
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Computation Gap — Logical Speed

Architectural advances of uni-processor system

Access gap problem was created by the advances in

technology. In fact, in early computers such IBM 704,

CPU and main memory cycle time were identical - i.e., 12

µsec.

 IBM 360/195 had the logic delay of 5 sec per stage, the

CPU cycle time of 54 sec and the main memory cycle

time of .756 µsec.

CDC 7600 had the CPU and main memory cycle time of

27.5 sec and .275 µsec, respectively.
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Computation Gap — Logical Speed

Concurrency

To overcome the technological limitations,

computer designers have long been attracted

to techniques that are classified under the term

of Concurrency.
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Computation Gap — Logical Speed

Concurrency

Concurrency is a generic term which defines

the ability of the computer hardware to

simultaneously execute many actions at any

instant.

Within this general term are several well

recognized techniques such as Parallelism,

Pipelining, and Multiprocessing.
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Computation Gap — Logical Speed

Concurrency
These techniques have the same origin and are

often hard to distinguish, in practice they are
different in their general approach.

In parallelism concurrency is achieved by
replicating the hardware structure many times,
while pipelining takes the approach of splitting
the function to be performed into smaller pieces
and allocating separate hardware to each
piece.
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Computation Gap — Logical Speed

Concurrency
To develop an understanding about concurrency, let us look at

several architectural models. As a reminder, an instruction
cycle is composed of these phases:

 I-fetch: to fetch the next instruction and update the program

counter.

 I-decode: to decode the instruction and fetch operand(s).

 I-execute: to execute the instruction.

Assume that TI-fetch = TI-decode = TI-execute = t
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Computation Gap — Logical Speed

Concurrency — Model-1

This architectural model represents a traditional uni-
processor organization.

For each instruction, system goes into an instruction
cycle, one cycle at a time.

Introduction to High Performance Computer Architecture



83

Computation Gap — Logical Speed

Concurrency — Model-1

I-Execute

I-Decode

I-Fetch

1 2 3 4 5 6 7 8

I1

I1

I1

I2

I2

I2

I3

I3

Time

• • •

Tn = n*(3t)Time to execute n instructions
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Computation Gap — Logical Speed

Concurrency — Model-2

In this model, I-Fetch phase is overlapped with I-
Execute phase. This can be easily achieved since,
these two phases do not require any common
hardware resources.
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Computation Gap — Logical Speed

Concurrency — Model-2

I-Execute

I-Decode

I-Fetch

1 2 3 4 5 6 7 8

I1

I1

I1

I2

I2

I2

I3

I3

Time

I3

• • •

Tn = (n-1) * 2t + 3t = (2n +1)t

Time to execute n instructions
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Computation Gap — Logical Speed

Concurrency — Model-3

This architectural model allows two instructions to
be fetched at the same time - i.e., a Primitive look-
ahead concept - while being able to overlap I-Fetch,
I-Decode and I-Execute phases
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Computation Gap — Logical Speed

Concurrency — Model-3

I-Execute

I-Decode

I-Fetch

1 2 3 4 5 6 7 8

I1

I1

I2

I2

I3

I3

Time

• • •

I4

I4

I1 , I2 I3 , I4 I5 , I6

Tn=t+ n /2 t+ n /2 t+ n /2 t ((n+1)+ n /2 )t

Time to execute n instructions
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Computation Gap — Logical Speed

Concurrency — Model-4
In this architecture I-Fetch, I-Decode and I-Execute

phases are carried out in a pipeline fashion
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Computation Gap — Logical Speed

Concurrency — Model-4

I-Execute

I-Decode

I-Fetch

1 2 3 4 5 6 7 8

I1

I1

I1

I2

I2

I2

I3

I3

I3

Time

• • •

I4

I4

I4 I5 I6

I5 I6

I5 I6

Tn = 3t+(n-1)t = (n+2)t

Time to execute n instructions:
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Question

Before advancing further let me pose the

following question: How can we increase the

performance of CDC6600?
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CDC 7600

General Philosophy

It is an upward-compatible member of the CDC
6600 that was announced in 1969.

It was four to eight times faster than CDC 6600.

It had a clock period more than three times faster
than clock cycle of CDC6600.

Main memory was also more than three times faster
than of CDC6600.

The back up memory also was about two times
faster than of CDC6600.

Introduction to High Performance Computer Architecture



92

CDC 7600

General Philosophy

Separation of the input/output operations from the
central processor operations.

Multifunctional processor.

Hierarchical and Interleaved memory organization.

Pipelined instruction cycle.

Pipelined functional units (except the divide unit).
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CDC 7600

External

Unit

15
Peripheral
Channels

Each Supporting
12-bit Words

6
Peripheral
Processors

Stunt Box

Small Core
Memory

Large
Core

Memory

• 9 Functional Units

• Instruction Stack

• 3 Sets of Registers

• Scoreboard

• Multiple links to
    Central Storage

Memory
Organi zation

Address

Data

Address

Data

Peripheral
Sub-System

Central Processor

Central Processor
Sub-System
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CDC 7600

Memory Organization

Small Core Memory (SCM) — 32 banks of 60-bit

words.

Stunt Box

Large Core Memory (LCM) — 8 banks of 480-bit

words each with 4-bit parity.
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CDC 7600

Central Processor is composed of:

24 Registers

Instruction Stack

Functional Units

Scoreboard
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CDC 7600
.

x
0

x
1

x
5

x
6

x
7

•

•

•

Add

Multiply

Divide

Fixed Add

Increment

Pop. count

Boolean

Shift

Normalize

Functional Units

Scoreboard

Instruction

Stack

Small

Core

Memory

•

•

•

A 0

A 1

A 5

A 6

A 7

Store

Addresses

Read

Addresses

Data

Data

Address

Registers

Operand

Registers

•

•

•

B 0

B 1

B 6

B 7

Index

Registers
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CDC 7600

24 Registers

Eight operand registers (X-registers) - 60 bits.

Eight address registers (A-registers) - 18 bits.

Eight index registers (B-registers) - 18 bits.

Operand registers are paired up one-for-one with a

corresponding address register.

Five address-operand register pairs are used for read

and two are used for write.
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CDC 7600

Instruction Stack

Instruction Stack is a collection of twelve 60-bit

registers.

This configuration allows up to 48 previously

fetched instructions to be readily available in the

instruction stack.
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CDC 7600

Instruction Stack

A reference to an instruction resident in the

instruction stack will be responded to by the

instruction stack. This:

 allows faster access to the referenced instruction, and

 reduces the main memory contention.
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CDC 7600

Functional Units

Functional units make up the arithmetic and logic

portion of the CDC 7600.

In contrast to the CDC 6600, all the functional units

are pipelined except the divide unit.

Functional units are independent of each other and

may operate simultaneously.
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CDC 7600

Functional Units: The nine units are:

Floating Point Add

Floating Point Multiply

Floating Point Divide

Fixed Point Add

 Increment

Boolean

Population count

Shift

Normalize
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CDC 7600
Unit Function Segment

Time
Execution Time

Boolean Basic Logic operations,
Pack/unpack Flt. point

1 2

Shift Shifting, mask
generation

1 2

Fixed Add Integer add/sub 1 2

Floating Add Floating add 1 4

Floating
Multiply

Floating Multiply 2 5

Floating Divide Floating divide 18 20

Normalize Normalize operations 1 3

Pop. Count Count number of 1s in a
word

1 2

Increment 1's complement add/sub 1 2
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CDC 7600
Four clock cycles are required to access a SCM

bank (if no conflict).

All of the functional units, except the multiply and

divide, can start a new operation in each clock cycle.
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Questions

Within the scope of the CDC 7600

organization, discuss the conflicts and their

possible resolutions.

Fill out the entries in the following table for:

Y = AX2 + BX + C
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I

S

S

U

E

S

T

A

R

T

R

E

S

U

L

T

U

N

I

T

F

E

T

C

H

S

T

O

R

E

1

?

?

?

?

?

?

?

?

?

1

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

N1 A1 =A 1 +K1     FETCH X

N1 A2 =A 2 +K2    FETCH A

N2 A3 =A 3 +K3   FETCH B

N3 A4 =A 4 +K4    FETCH C

N3 X5 =X6 +X3     FORM A X
2

+BX

N5 A7 =A 7 +K5   STORE Y

Sem a n ticsIns t ru ct io nWor d #

N4 X7=X5 +X4    FORM Y

N2 X0=X1*X1    FORM X2

N2 X6=X0*X2    FORM AX2

N3 X3 =X3 *X1     FORM BX
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Computation Gap — Concurrency

Classification
Different researchers made an attempt to

classify the concurrent space. This includes:

Feng's Classification

Flynn's Classification

Handler's Classification

In this course we will concentrate on Flynn’s

classification.
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Computation Gap — Concurrency

Flynn’s classification
Flynn has classified the concurrent space

according to the multiplicity of instruction and
data streams

I = Single Instruction stream, Multiple Instruction stream

D = {Single Data stream, Multiple Data stream}

Introduction to High Performance Computer Architecture



108

Computation Gap — Concurrency

Flynn’s classification

The cartesian product of the two

aforementioned sets will define four different

classes:

SISD

SIMD

MISD

MIMD
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Computation Gap — Concurrency

In this course, concurrent space is classified

into two groups:

Control Flow

Data Flow
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Computation Gap — Concurrency

In the control flow model of computation,

execution of an instruction activates the

execution of the next instruction.

In the data flow model of computation,

availability of the data activates the

execution of the next instruction(s).
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Computation Gap — Concurrency

Within the scope of the control flow systems we

distinguish three sub-classes:

Parallel Systems

Pipeline Systems

Multiprocessors

This distinction is due to the exploitation of

concurrency and the interrelationships among the

control unit, processing elements and memory

modules in each group.
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Computation Gap — Parallel Systems

These systems are the natural extension of

parallel ALU processors, where

concurrency is exploited through a

collection of identical and independent

processing elements controlled by the

same control unit.

Introduction to High Performance Computer Architecture



113

Computation Gap — Parallel Systems

According to Flynn's classification these

systems are classified as SIMD

organization.

Parallel systems are synchronous

organizations, scalable, and offer a good

degree of fault tolerance.
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Computation Gap — Parallel Systems

Parallel systems can be further classified

as:

Ensemble Processors

Array Processors

Associative Processors
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Computation Gap — Parallel Systems

Ensemble Processors had very limited
capability and flexibility. Because of these
limitations this class mainly became a
conceptual class.
It is an extension of a conventional

uniprocessor system.

It is a collection of N processing elements and
N memory modules under the control of a
single control unit.
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Computation Gap — Parallel Systems

Ensemble Processors

Each processing element consists of an ALU, a

set of local registers and very limited local

control capability.

There exist no direct communication paths

among processing elements.

There exist fixed interconnections among

processing elements and memory modules.
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Computation Gap — Parallel Systems

Array of Processors
It is composed of N identical processing

elements under the control of a single control
unit and a number of memory modules.

Processing units and memory elements
communicate with each other through an
interconnection network.

Complexity of the control unit is at the same
level of the uniprocessor system.
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Computation Gap — Parallel Systems

Array of Processors
Control unit is a computer with its own high

speed registers, local memory and arithmetic
logic unit.

The main memory is the aggregate of the
memory modules.

Control and scalar type instructions are
executed in the control unit.

Vector instructions are performed in the
processing elements.
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Computation Gap — Parallel Systems

Array of Processors

Array processors can be further classified based on

complexity of the processing elements or the processors

memory modules relationships:

 Processing element complexity

• Single-bit processors (connection machine)

• Multi-bit processors (ILLIAC IV)

 Processor-memory interconnection

• Global memory organization (BSP)

• Dedicated memory organization (ILLIAC IV)
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Computation Gap — Parallel Systems

Array of Processors — Global Memory Organization

PE 1

Control Unit

PE2 PE n

Alignment Network

• • •

M1 M2 Mk

I/O System

• • •
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Computation Gap — Parallel Systems

Array of Processors — Dedicated Memory Organization

Control Unit

• • •

Mn

PEnPE2

M2M1

PE1

I/O System

Interconnection Network
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Questions

Compare and contrast single-bit and multi-bit

array processor organizations against each other.

Compare and contrast global memory and

dedicated memory array processor organizations

against each other.

Discuss the problem(s) which degrade the

performance of an array processor the most.
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Computation Gap — Parallel Systems

Array of Processors
Data structuring and detection of parallelism in

a program are the major bottlenecks in an array
processor organization.

Operations such as X(i) = A(i) * B(i) 1  i  n
could be executed in parallel, if the elements of
the arrays A and B are distributed properly
among the processors or memory modules - ith

processor is assigned the task of computing
X(i).
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Computation Gap — Parallel Systems

Array of Processors — Example

Compute where A and B

are two one dimensional

arrays of N elements, and elements of A

and B are properly distributed among

processors - assume a dedicated

organization.

Y = A(i) * B(i)
i=1

N
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Computation Gap — Parallel Systems

Array of Processors — Example

The product terms are generated in parallel.

Additions will be performed in iterations.

Speed up factor (S) then is:

at the expense of a poor resource

utilization(why)?

S = 2N-1

1+ log 2N
  N

log 2N
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Computation Gap — Parallel Systems

Associative Processors

An associative processor is defined as an

associative memory capable of performing

arithmetic and logic operations.

Within this scope, then, an associative

computer is defined as a system that uses an

associative memory or associative processor

as an essential component for storage or

processing, respectively.

Introduction to High Performance Computer Architecture



127

Computation Gap — Parallel Systems

Associative Processors

The main motivations for the application of

associative processing are:

 reducing the semantic gap and bottleneck in the

conventional systems, and

 increasing the performance due to the parallel nature

of the operations at the storage level and elimination

of address computation.
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Computation Gap — Multiprocessor

Systems

Multiprocessor systems are the nature

extension of parallel systems (justify this?)

The attribute that characterizes a

multiprocessor system is the sharing of a

global memory by several independent

processing units making up the system.
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Computation Gap — Multiprocessor Systems

Two arguments justify a multiprocessor

organization:

Higher throughput: due to the ability to overlap both

computation intensive and I/O intensive tasks among

independent processors in the system.

Existence of a large class of problems that can be split

up into a number of smaller and independent tasks.
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Computation Gap — Multiprocessor Systems

A multiprocessor system contains two or more

processing units, each with its own control unit.

Processors can be homogeneous or

heterogeneous.

Processing units are not highly specialized.

Processing units share a main memory that

usually consists of several independently

accessible modules.
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Computation Gap — Multiprocessor

Systems

Besides a common memory, processing

units usually share other resources such

as I/O channels and devices.

The whole system is under the control of a

single integrated operating system.
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Computation Gap — Multiprocessor

Systems

Multiprocessor systems can be grouped

into two classes:

Tightly Coupled: shared memory modules are

separated from processors by an

interconnection network or a multiport interface.

The memory access time (assuming no

conflict) is independent of the module being

accessed (uniform Memory access).
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Computation Gap — Multiprocessor

Systems

Loosely Coupled: each processor has a local-

public memory.

Each processor can directly access its memory

module, but all other accesses to non-local

memory modules must be made through an

interconnection network (non-uniform memory

access).
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Computation Gap — Multiprocessor

Systems

Besides the higher throughput,

multiprocessor systems offer more

reliability since failure in any one of the

redundant components can be tolerated

through system reconfiguration.
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Computation Gap — Multiprocessor

Systems

Multiprocessor organization is a logical

extension of the parallel system - i.e., array

of processor organization.

However, the degree of freedom

associated with the processors are much

higher than it is in an array processor.
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Computation Gap — Multiprocessor

Systems

The independence of the processors and

the sharing of resources among the

processors - both desirable features - are

achieved at the expense of an increase in

complexity at both the hardware and

software levels.
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Computation Gap — Pipeline Systems

The term pipelining refers to a design

technique that introduces concurrency by

taking a basic function to be involved

repeatedly in a process and partitioning it

into several sub-functions with the

following properties:
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Computation Gap — Pipeline Systems

Evaluation of the basic function is equivalent to
some sequential evaluation of the sub-
functions.

Other than the exchange of inputs and outputs,
there is no interrelationships between sub-
functions.

Hardware may be developed to execute each
sub-function.

The execution time of these hardware units are
usually approximately equal.
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Computation Gap — Pipeline Systems

The concept of pipelining can be

implemented at different levels. With

regard to this issue, one can then address:

Arithmetic Pipelining

Instruction Pipelining

Processor Pipelining
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Computation Gap — Pipeline Systems

Pipeline systems can be further classified as:
Linear Pipe

Feedback Pipe

Scalar Pipe

Vector Pipe

Unifunction Pipe

Multifunction Pipe

Statically Configured Pipe

Dynamically Configured Pipe
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Computation Gap — Pipeline Systems

Example

Calculate the speed-up factor for

in a multifunction pipe of 5 stages,

where A and B are two one

dimensional arrays of N elements.

Y = A(i) * B(i)
i = 1

N
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Computation Gap — Pipeline Systems

Example

Product terms will be generated in (n-1)+5

steps.

Additions will be performed in

5+(n/2-1)+5+(n/4-1)+...+5+(1-1)  (4log2n+n) steps.

Speed-up ratio

S = 
5(2n-1)

2n+4 log 2n+4
  5   for large n
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Parallelism vs. Pipelining
Both techniques attempt to increase the

performance.

Parallelism is achieved through the replication
of basic hardware, while pipelining is the result
of staging the hardware unit.

In general, parallelism is more reliable than
pipelining.

Parallelism is more extendable than pipelining.

The difference between the two schemes also
shows up in memory organization, bandwidth,
internal interconnection and control.
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Shortcomings of the Concurrent Control Flow

Systems
Complexity: This is mainly due to the simultaneous

competition/cooperation of several modules over

common resources. This leads to more complexity and

sophistication at the control structure and interconnection

network.

Specialization: Control flow concurrent systems require

specialized and different programming skills for efficient

resource utilization.
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Shortcomings of the Concurrent Control
Flow Systems

Semantic Gap: Control flow concurrent
systems offer a wider semantic gap than their
sequential predecessors.

Lack of suitable parallel algorithms for various
applications.

Lack of suitable parallel high level languages to
allow the programmer to express parallelism
explicitly in the problem being encoded.
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Shortcomings of the Concurrent Control

Flow Systems
Lack of suitable compilation techniques to

detect embedded parallelism in a sequential

program.

Lack of suitable control algorithms to distribute

hardware resources among concurrently

running programs.
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Shortcomings of the Concurrent Control

Flow Systems — Example

Let us compute
y = A(i)*B(i)

i = 1

N
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Shortcomings of the Concurrent Control Flow
Systems — Example

 In Parallel System assuming that the operands are

properly aligned and only a subset of processor which

handle these operands become active at successive

iterations:

 Product terms could be generated in parallel in one step.

 Additions will be performed in log2N iterations.

 Speed up ratio is achieved at the

expense of poor

resource utilization.

S = 2N-1

1+ log 2N
0 N

log 2N
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Shortcomings of the Concurrent Control

Flow Systems — Example

In Pipeline System assuming a multi-function

pipe of 5 stages and availability of a constant

flow of data to the pipe:

Product terms will be generated in (N-1)+5 steps.

Additions will be performed in

Speed up ratio

5+ 
N

2
-1 +5+ 

N

4
-1 + ... +5+(1-1)  4logN+N steps

S = 
5(2N-1)

2N+4logN+4
  5
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Sample Problems
Explain the following terms:

Carry lookahead

 Iterative method (multiplication)

 Interleaved memory
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Sample Problems
The "add and shift" algorithm can be used to

multiply two negative numbers (say A and B) in 2s

complement format.

Calculate the correction term.

Apply your conclusion to perform the following operation

using "add and shift" algorithm (show step-by-step

operation).

101001

* 110011

Note: numbers are in 2s complement format.
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Sample Problems
Use SRT division method to perform the following

operation: AQ/B

 where AQ = .00100000 and B = .0110

Show step-by-step operation.
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Sample Problems
Apply the Column Compression technique to

perform the following operation:

101011 * 110101

Note: numbers are in 2s complement format.

Explain what factors degrade the performance of an

interleaved memory. Why
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Sample Problems
For a fully parallel word organized associative

memory, write an algorithm to find the minimum

word in the memory array. Note: each word

contains one unsigned number. Your algorithm

should be well documented, and you have to show

me that your algorithm is correct.
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Sample Problems
Within the scope of cache organization:

 explain write-back and write-through policies,

 discuss the advantages and disadvantages of each, and

 is it possible to extend the write-back policy for better

performance? How? Explain.

Discuss the advantages of having an instruction

cache (which only stores the program code but not

data).
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Sample Problems
Apply reduction of summands scheme (using half and full

adders) to perform the following operation:

 1 1 0 1 1 1 1 * 0 1 1 0 0 1 1

 Calculate the execution time of the operation (show the work).

Note: operands are in 2s complement format.

Explain the following terms:

 pipelining

 parallelism

 non-restoring division

 size gap
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Sample Problems
Name and explain at least 5 distinct factors which

affect the length and the format of an instruction

(assembly (machine) level). Why?

The following operation is assumed in which

numbers are in 2s complement format:

 1100111 * 0101111

Calculate the correction factor and apply Hurson's scheme

to perform the aforementioned multiplication.
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Sample Problems
In an interleaved memory organization prove that in

case of branch the average number of memory

modules to be used effectively is:

Where n is the number of modules and l is the

probability of a successful branch.

IBn = 
1-(1-l)

n

l
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Sample Problems
Within the scope of cache organization explain the

following terms:

Direct Mapping,

Associative Mapping, and

Set Associative Mapping.

compare and contrast the aforementioned mapping

schemes against each other.
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Sample Problems
Explain the following terms (be as specific and

precise as possible):

Computation Gap,

Multiprocessor System,

RISC (Reduced Instruction Set Computer), and

Parallel System.
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Sample Problems
Consider CDC 6600 (multi-function organization):

Table 1 shows the timing table in such an

organization for an expression. Fill out the entries

and explain your reasoning.
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Sample Problems

Word # Instruction Semantics ISSUE START RESULT UNIT FETCH STORE

N1 A1=A1+k1 Fetch X (long) 1 1 4 5 9

A2=A2+k2 Fetch A (long) ? 3 6 7 ?

N2 A3=A3+k3 Fetch B (long) 9 9 12 13 17

A4=A4+k4 Fetch C (long) 11 11 14 15 19

N3 B1=B0+1 Set B1 to 1 (long) ? 17 20 21

B2=B0+k5 Set vector length
(long)

19 19 22 23

N4 X0=X1*X1 Form X2 (short) 25 25 35 36

X6=X0*X2 Form AX2 (short) 26 35 ? 46

X0=X3*X1 Form BX (short) ? 36 46 47

A1=A1+B1 Fetch Next X
(short)

37 37 40 41 ?

N5 B2=B2-B1 Decrement B2

(short)

41 41 44 45

X5=X6+X0 Form AX2+BX
(short)

42 ? 50 51

X7=X5+X4 Form Y (short) ? 51 55 56

A7=A7+B1 Store Y (short) ? ? 59 60 64
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