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Why did I ask some questions ab
CDC6600 and 7600?

Earlier notion of Super scalar processor w
discussed.

What is Instruction Level Parallelism?
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ILP can be exploited in two larg
separable ways:

Dynamic approach where mainly hardw
locates the parallelism,
Static approach that largely relies on softw
to locate parallelism.
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Straight line code blocks are between f
to seven instructions that are norm
dependent on each other ─ degree
parallelism within a code block is limited

Several studies have shown that aver
parallelism within a basic block rar
exceeds 3 or 4.
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The presence of dependence indicates
potential for a hazard, but actual hazard
the length of any stalls is a property of
pipeline.

In general, data dependence indicates:
The possibility of a hazard,
The order in which results must be calculated,
An upper bound on how much parallelism can
possibly exploited.
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Branches represent 20% of instructions i
program. Therefore, the length of a ba
block is about 5 instructions.
There is also a chance that some of
instructions in a basic building block
data dependent on each other.
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Therefore, to obtain substan
performance gains we must exploit I
across multiple basic blocks.
Simplest and most common way
increase parallelism is to expl
parallelism among loop iterations
loop level parallelism.
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Data Dependency: If an instruction uses a v
produced by a previous instruction, then the se
instruction has a data dependency on the
instruction.
Data dependence limits the performance of a s
pipelined processor. The limitation of data depend
is even more severe in a super scalar than a s
processor. In this case, even longer operati
latencies degrade the effectiveness of super s
processor drastically.



Fall 2010

Beyond RISC

Data dependency

I1 uses data computed by 
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Control Dependence
As in traditional RISC architecture, con
dependence effects the performance of su
scalar processors.
However, in case of super scalar organizat
performance degradation is even more sev
since, the control dependence prevents
execution of a potentially greater number
instructions.
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Control Dependency

I0

I1

I
2

I3

I4

I5

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

 /branch
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Resource Dependence
A resource conflict arises when two instruct
attempt to use the same resource at the s
time. Resource conflict is of concern in a sc
pipelined processor.
A super scalar processor has a much la
number of potential resource conflicts.
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Resource Dependency

I0

I1

IF ID EX WB

IF ID EX WB

Without resource conflict

I0

I1

IF ID EX W

IF ID

With resource confli
I0 I1and use the same fun

Performance degradation due to the resource depende
can be significantly improved by pipelining the functi
units.
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A quick look at our previous examples co
imply that the data dependencies and resou
dependencies have the same effect on instruc
pipelining.
Resource dependence can be resolved
moderated by duplicating the hardware
pipelining the hardware. However, this is not
for the data dependence case.
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Resource and Data Dependencies — Assum
pipelined functional units:

I0

I1

IF ID EX EX WB

I0 and use the same functional unitI1

EX EX1 2 3 4

IF ID EX EX WBEX EX1 2 3 4

I0

I1

IF ID EX EX WBEX EX1 2 3 4

IF ID EX EX WBEX EX1 2 3 4

I0I1
uses data generated by
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Increasing parallelism within blocks
Parallelism within a basic block is limited
dependencies between instructions. Some
these dependencies are real, some are false:

r1 := 0 [ r9]
r2 := r1 + 1
r1 := 9

Real dependency
False depen
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Increasing parallelism within blocks
Smart compiler might pay attention to
register allocation in order to overcome f
dependencies.
Hardware register renaming is ano
alternative to overcome false dependencies.
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Register Renaming
Hardware renames the original register identifier in the instru
to correspond the new register with current value.
Hardware that performs register renaming creates new re
instance and destroys the instance when its value is supersede
there are not outstanding references to the value.
To implement register renaming, the processor typically alloc
new register for every new value produced — the same re
identifier in several different instructions may access dif
hardware registers.
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Register Renaming

R3 R3 op R5

R4 R3 + 1
R3 R5 + 1
R7 R3 op R4

R3b R3a op R5a
R4b R3b + 1
R3c R5a + 1
R7b R3c op R4b

Each assignment to a register creates a new instance o
register.
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Increasing parallelism Cross block boundari
Branch prediction is often used to kee
pipeline full.
Fetch and decode instructions after a bra
while executing the branch and the instruct
before it ─ Must be able to execute instruct
across an unknown branch speculatively.
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Increasing parallelism Cross block boundaries
Many architectures have several kinds of instruc
that changes the flow of control:

• Branches are conditional and have a destination some o
from the program counter.

• Jumps are unconditional and may be either direct or indire
− A direct jump has a destination explicitly defined i

instruction,
− An indirect jump has a destination which is the result of

computation on registers.
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Increasing parallelism Cross block boundari
Loop unrolling is a compiler optimiza
technique which allows us to reduce
number of iterations ─ Removing a la
portion of branches and creating larger blo
that could hold parallelism unavailable beca
of the branches.
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Assume the following program:
LOOP:

LD F0, 0(R1) Load vector element into F0

ADD F4, F0, F2 Add Scalar (F2)
SD F4, 0(R1) Store the vector element
SUB R1, R1, #8 Decrement by 8 (size of a double

BNZ R1, Loop Branch if not zero
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Instruction cycles for a super scalar machine
Assume a super scalar machine that issues
instructions per cycle, one integer (Load, St
branch, or integer), and one floating point:

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB
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We will unroll the loop to allow simultane
execution of floating point and integer operatio

Integer Inst. Fl. Point Inst. Cloc

LD F6, -8(R1)
LD F0, 0(R1)

LD F10, -16(R1)
LD F14, -24(R1)

AD F4, F0, F2
AD F8, F6, F2

LD F18, -32(R1) AD F12, F10, F2

AD F16, F14, F2SD F4, 0(R1)
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Integer Inst. Fl. Point Inst. Clock

SD F8, -8(R1)
SD F12, -16(R1)
SD F16, -24(R1)
SD F20, -32(R1)
SUB R1, R1, #40
BNZ R1, Loop

AD F20, F18, F2



Fall 2010

Beyond RISC

Increasing parallelism Cross block boundari
Software pipelining is a compiler technique
moves instructions across branches to incre
parallelism ─ Moving instructions from
iteration to another.
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Summary
Instruction Level Parallelism

• Dynamic approach
• Static approach

How to improve ILP within a basic block
• Compiler role
• Register renaming

How to improve ILP cross block boundaries
• Static approach
• Dynamic approach
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Increasing parallelism Cross block boundaries
Trace scheduling is also a compiler schedu
technique.
It uses a profile to find a trace (sequence of bl
that are executed often) and schedules
instructions of these blocks as a whole ─ Predic
of branch statically based on the profile (to c
with failure, code is inserted outside the sequ
to correct the potential error).
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Branch Prediction
Simplest way to have dynamic bra
prediction is via the so called prediction bu
or branch history table ─ A table whose ent
are indexed by lower portion of the ta
address.
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Branch Prediction
Entries in the branch history table can
interpreted as:

• 1-bit prediction scheme: Each entry says wheth
not in previous attempt branch was taken or not.

• 2-bit Prediction scheme: Each entry is 2-bit
and a prediction must miss twice before
changed ─ see the following diagram.
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Branch Prediction

Prediction Taken
11

Prediction Taken
10

Prediction Not Taken
01

Prediction Not Taken
00

Not Taken

Not Taken
Not Taken

Taken

Taken
Taken

Taken

Not Taken



Fall 2010

Beyond RISC

Branch Prediction
• n-bit Saturation counter: An entry ha

corresponding history feature. A taken br
increments the counter and untaken br
decrement the counter. A branch is not taken i
counter is below 2(n-1).
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Branch Prediction
Multilevel prediction ─ Correlating predicto

• A technique that uses behavior of other branch
make a prediction on a branch.

• The first level is a table that shows the history o
branch. This may be the history (pattern) of the
k branches encountered (global behavior) or the
k occurrences of the same branch.

• The second level shows the branch behavior for
pattern
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Question
With respect to our earlier definition of C
time, discuss how the performance can
improved?
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Beyond RISC
Is it possible to achieve a performa
beyond what is being offered by RISC?



Fall 2010

Beyond RISC

Beyond RISC
Machine with higher clock rate and dee
pipelines have been called super pipelined.
Machines that allow to issue mult
instructions (say 2-3) on every clock cycles
called super scalar.
Machines that pack several operations (say
into a long instruction word are called V
long-Instruction-Word machines.
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A super scalar processor reduces the average num
of clock cycles per instruction beyond what is poss
in a pipeline scalar RISC processor. This is achie
by allowing concurrent execution of instructions in

• The same pipeline stages, as well as
• Different pipeline stages

Multiple concurrent operations on scalar quantities.
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Beyond RISC
Instruction Timing in a super scalar processor
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Beyond RISC
Fundamental Limitations
• Data Dependency
• Control Dependency
• Resource Dependency
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Data Dependency
Within the scope of data dependency we can talk ab

• Read after write (flow) dependency
• Write after read (anti) dependency
• Write after write (output) dependency

The literature has referred to read after write as
dependency, and write after read or write after wri
false dependency.
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Practically, write after read and write a
write are due to storage conflict
originated from the fact that in
traditional systems we are dealing wit
memory organization that is globally sha
by instructions in the program.

Storage medium holds different values
different computations.
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The processor can remove storage conf
by providing additional registers
reestablish one-to-one corresponde
between storage (register) and values
register renaming.
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Two constraints are imposed by con
dependencies:

An instruction that is control dependent o
branch cannot be moved before the branch,
An instruction that is not control dependen
a branch cannot be moved after the branch.
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When instructions are issued in-order and complete
order, there is one-to-one correspondence between stor
locations (registers) and values.
When instructions are issued out-of-order and comp
out-of-order, the correspondence between register
value breaks down. This is even more severe w
compiler optimizer does register allocation — tries to
as few registers as possible.
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As noted before, achieving a higher performa
means processing a given task in a smaller amo
of time. To reduce the time to execute a seque
of instructions, one can:

Reduce individual instruction latencies, or
Execute more instructions concurrently.

Superscalar processors exploit the sec
alternative.
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General Configuration

Instruction
Fetch & Decode

Instruction
Execution

Instruction Buffer

Branch outcome/Jump address
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General Configuration
Instruction fetch unit acts as a producer, w
fetches, decodes, and places decoded instruct
into the buffer.
Instruction execution engine is the consu
which removes instructions from buffer
executes them, subject to data dependence
resource constraints.
Control dependences provides a feedb
mechanism between the producer and consumer
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General Configuration
Systems having this organization emp
aggressive techniques to exploit instruc
level parallelism.
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General Configuration
Wide dispatch and issue paths,
Large issue buffer,

Large pool of physical registers,
Large number of parallel functional units,
Speculation of past multiple branches.

Are some techniques that allow aggressi
exploitation of Instruction Level Parallel

Fetch, decode, and issue several instructions

Register Renaming ─ False Dependence

Resource Dependence
Control Dependence
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Flow of Operations
A typical superscalar processor fetches and dec
several incoming instructions at a time.
The outcomes of conditional branch instructions
usually predicted in advance to ensure an uninterru
stream of instructions
The incoming instructions are then analyzed for
and structural dependencies, and then indepen
instructions are distributed to functional units
execution.
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Flow of Operations
Simultaneously fetching several instructions, o
predicting the outcomes of, and fetching beyo
conditional branch instructions,
Exploit dynamic parallelisms in the program:

• Determine true dependencies involving regi
values and communicating these values to
target instructions during the course
execution,

• Detect and remove false dependencies,
Initiate or issue multiple instructions in parallel,
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Flow of Operations
Manage resources for parallel execution
instructions, including:

• Multiple pipeline functional units,
• Memory hierarchy

Committing the process state in correct orde
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Flow of Operations
The key issue to the success of supersc
systems is the dynamic scheduling of
instructions in the program.
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Historical Perspective
The development of architectures to exp
instruction level parallelism in the form
pipelining can be traced back to the design
CDC6600 and IBM 360/91.

Within the scope of these systems, prac
showed a pipeline initiation rate at
instruction per cycle.
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Summary
Out-of-Order Issue, Out-of-Order Completio
Super Scalar processor
Dynamic exploitation of ILP
General Configuration of Super Scalar
Flow of Operations in a Super Scalar
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Processing Flow
An application is represented in a high l
language program,

This high level program is then compiled into
static machine level program — The static prog
describes a set of executions and its imp
sequencing model (the order in which instruct
are executed).
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Program Representation — High Level Constr

For 0 = i < last
If a(i) > a(i+1)

temp = a(i) 
a(i) = a(i+1)
a(i+1) = temp

End



Fall 2010

Super Scalar System
Program Representation — Assembly code
L2: Move r3, r7 r7  points to an element of the

LW r8, (r3) r8 holds the ith element of the
Add r3, r3, 4 advancing the index
LW r9, (r3) r9 holds the i+1th element of 
Ble r8, r9, L3
Move r3, r7 In this block ith and i+1th elem
SW r9, (r3) are swapped
Add r3, r3, 4
SW r8, (r3)
Add r5, r5, 1

L3: Add r6, r6, 1 r6 holds the index
Add r7, r7, 4
Blt r6, r4, L2 r4 holds the “last”
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Processing Flow
During the course of execution, the sequenc
executed instructions forms a dynamic instruc
stream.

As long as instructions to be executed
sequential, static instruction sequencing can
entered into the dynamic instruction sequencin
incrementing the program counter.
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Processing Flow
However, in the presence of conditio
branches and jumps the program counter m
be updated to a nonconsecutive address
control dependence.

The first step in increasing instruction l
parallelism is to overcome con
dependencies.
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Control Dependencies — Straight line code
Let us talk about control dependencies du
the incrementing the program counter:

• The static program can be viewed as a collectio
basic blocks, each with a single entry point a
single exit point, refer to our example, we have t
basic blocks.
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Control Dependencies — Straight line code
• Once a basic block is entered, its instructions

fetched and execute to completion, there
sequence of instructions in a basic block can
initiated into a conceptual window of execution.

• Once the instructions are initiated, they are fre
execute in parallel, subject only to the
dependence constraints and availability of
hardware resources.
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Control Dependencies — Conditional Branch
To achieve a higher degree of parallelism, a s
scalar processor should address updates of
program counter due to the conditional branche

A method is to predict the outcome of a conditi
branch and speculatively fetch and exe
instructions from the predicted path.
Instructions from predicted path are entered
the window of execution.
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Control Dependencies — Conditional Branch
If prediction is later found to be correct, then
speculation status of the instructions are remo
and their effect on the state of the system is
same as any other instructions.

If prediction is later found to be incorrect,
speculative execution was incorrect and reco
actions must be taken to undo the effect
incorrect actions.
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Processing Flow

In our running example, the ble instruc
creates a control dependence.
To overcome this dependence, the branch co
be predicted as not taken and he
instructions between the branch and label
being executed speculatively.

Move r3, r7
SW r9, (r3)
Add r3, r3, 4
SW r8, (r3)
Add r5, r5, 1
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Data Dependencies
Instructions placed in the window of execu
may begin execution subject to data depend
constraints.

Note that data dependence comes in the form of
• Read After Write (RAW),
• Write After Read (WAR), and
• Write After Write (WAW).
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Data Dependencies
Note that, among the three aforementioned
dependence, RAW is the true dependence
the other two are false (artificial)
dependence.
In the process of execution, the f
dependencies have to be overcome to incre
degree of parallelism.
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Data Dependencies

L2:
Move r3, r7
LW r8, (r3)
Add r3, r3, 4
LW r9, (r3)
Ble r8, r9, L3

RAW

WAR

WAW
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Processing Flow
After resolving control and artifi
dependencies, instructions are issued and be
execution in parallel.
The hardware form a parallel execu
schedule.
The execution schedule takes constraints s
as true data dependence and hardware resou
constraints into account.
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Processing Flow
A parallel execution schedule means
instructions complete in an order different t
instructions order dictated by the sequen
execution model.
Speculative execution means that so
instructions may complete execution bey
the scope of the sequential execution model.
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Processing Flow
Speculative execution implies that the execu
results cannot be recorded permanently right awa
As a result, results of an instruction must be held
temporary status until the architectural state ca
updated.
Eventually, when it is determined that the seque
model would have executed an instruction,
temporary results are made permanent by upda
the architectural state — Instruction is committe
retired.
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Super Scalar Architecture

Pre-
decode

Instr.
cache

Inst.
buffer

Decode,
rename,
dispatch

Fl. Pt.
registers

Intg.
registers

Fl. Pt.
Instr.
buffer

Intg./address
Instr. buffer

Funct.
Units

Funct. Units
and

data cache

Re-order & Commit
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Instruction Fetch and Branch Prediction
For a super scalar implementation, the fetch p
must be able to fetch multiple instructions
cycle. To achieve this, it has been found usefu
separate the instruction cache from the data cac
The number of instructions fetched per c
should at least match the peak instruction dec
and execution rate.
Instruction buffer is used to smooth the instruc
fetch irregularities due to cache misses
branches.
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Instruction Fetch and Branch Prediction
The default instruction fetching method is
increment the program counter by the numbe
fetched instructions.
The handling of branch (specially the conditi
branch) is critical to good performance of a s
scalar processor. Processing conditional br
involves:

• Recognizing the branch,
• Determining the branch outcome,
• Computing the branch target, and
• Transferring control.
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Instruction Fetch and Branch Prediction
Recognizing the branch

• In general, recognizing the instruction type
advanced, can speed up the instruction flow to
execution buffer.

• This can be achieved by pre-decoding
instruction prior to its residence in the cach
Each instruction in the cache is extended by
bits.
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Recognizing the branch

Pre-
decode

Instr.
cache

Decode,
rename,
dispatch

Fl. Pt.
registers

Intg.
registers

Fl. Pt.
Instr.
buffer

Intg./address
Instr. buffer

Funct.
Units

Funct. Units
and

data cache

Re-order & Commit

Instr.
buffer
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Instruction Fetch and Branch Prediction
Determining the branch outcome

• Several techniques can be used to predict
outcome of a branch.

• Some predictors use static information, others
dynamic information based on the branch history

• Note that, if prediction was incorrect, instruc
fetching must be redirected to the correct path
addition, if instructions were executed speculativ
they must be purged and their results mus
nullified.
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Instruction Fetch and Branch Prediction
Computing the branch target

• Early calculation of the target branch c
improve the performance.

• This can be sped up by having a branch ta
buffer that holds the target address that was u
the last time the branch was executed.

• As an example PowerPC 64 uses the Bra
Target Address Cache.
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Instruction Fetch and Branch Prediction
Transferring Control

• In case of a taken branch, there is at least one c
cycle delay — to recognize the branch, calculat
program counter, and fetching instruction from
target address.

• Several techniques can be used to mask out
delay:
− Use instructions in the instruction buffer,
− Fill out instruction buffer by taken and not taken path
− Use of delayed branch.
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Instruction Fetch and Branch Prediction

Instruction Decoding, Renaming, and Dispatch
• At this stage, instructions from fetch buffer

removed, examined, control and data depend
relationships are set up, and dispatched to
instruction buffers associated with the functi
units.

• Often to improve the degree of parallelism, this
tries to remove the false dependence by renam
the physical storage locations as defined in
instructions.
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Instruction Fetch and Branch Prediction

Decode,
rename,
dispatch

Pre-
decode

Instr.
cache

Inst.
buffer

Fl. Pt.
registers

Intg.
registers

Fl. Pt.
Instr.
buffer

Intg./address
Instr. buffer

Funct.
Units

Funct. Units
and

data cache

Re-order & Commit
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Register Renaming
R3 R3 op R5 R3b R3a op R5a

R4 R3 + 1 R4b R3b + 1
R3 R5 + 1 R3c R5a + 1
R7 R3 op R4 R7b R3c op R4b

Each assignment to a register creates a
instance of the register.
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Instruction Fetch and Branch Prediction
Register Renaming
• There are two register renaming techniqu

−The physical register file is larger
logical register file,

−The physical register file is the same siz
the logical register file.
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Instruction Fetch and Branch Prediction
Register Renaming — The physical register file is larger
logical register

• A mapping table is used to associate a physical register
the current value of a logical register.

• For each logical destination register a physical register,
the list of free registers, is extracted and association bet
the two is recorded in the mapping table.

• As part of rename operation, for each source logical reg
the mapping table is investigated to find its associated ph
register.



Fall 2010

Super Scalar System
Instruction Fetch and Branch Prediction

Register Renaming — The physical register
is larger than logical register file

Before Add r3,r3,4
Mapping Table

•••

r0

r4

r1

r2

r3

R9

R8

R7

R5

R1

Free list R2,R6,R13

After
Mapping Table

•••

r0

r4

r1

r2

r3

R9

R8

R7

R5

R2

R6,R13

Add R2,R1,4
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Instruction Fetch and Branch Prediction
Register Renaming — The physical register file is larger
logical register file

• After a physical register has been read for the last time, i
be returned to the free list to be reused.

• A counter can be associated to each physical register,
− It will be incremented whenever it is renamed as a source,
− It will be decremented each time an instruction issue

actually reads a value from the register.
− A physical register is returned back to free space, if its cou

zero and corresponding logical register is renamed.
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Instruction Fetch and Branch Prediction
Register Renaming — The physical register fi
the same as logical register file

• This model uses a so called reorder buffer
maintains proper instruction ordering (instruc
that are dispatched but not yet completed)
precise interrupts.

• Reorder buffer is organized as a circular queue.



Fall 2010

Super Scalar System

Instruction Fetch and Branch Prediction
Register Renaming — The physical register fi
the same as logical register file

• As instructions are dispatched based on seque
ordering of the program, they are entered into
reorder FIFO buffer.

• As instructions complete execution, their r
values are inserted into the previously assi
entry, wherever it may happen to be in the reo
buffer.
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Instruction Fetch and Branch Prediction
Register Renaming — The physical register fi
the same as logical register file

• When an instruction reaches the head of the bu
if it is completed, it is removed from the buffer
its result is stored into the register file.

• An incomplete instruction at the head of the b
blocks the buffer until it completes.
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Instruction Fetch and Branch Prediction

Register Renaming — The physical register fi
the same as logical register file

Before Add r3,r3,4
Mapping Table

•••

r0

r4

r1

r2

r3

r4

r0

r1

r2

rob6

Reorder buffer •••r3

6 0

After Add r3,ro
Mapping Table

•••

r0

r4

r1

r2

r3

r4

r0

r1

r2

rob8

r3

68

r3
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Instruction Issue and Execution
Instruction issue is defined as the run-t
checking for availability of data and resourc
After decode/rename/dispatch phase, the n
step is to determine which instruction types
be issued for execution.
Three topology has been discussed:
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Instruction Issue and Execution
Single Queue Model

• If there is a single queue and no out-of-order exec
then renaming is not necessary and operand availa
can be managed via a simple reservation bits assign
each register.

• A register is reserved when an instruction modifyin
issued.

• A register is cleared when the instruction completes.
• An instruction is issued if there is no functional co

and no reservation on its operand.
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Instruction Issue and Execution
Multiple Queue Model

• In this case, instructions are issued from each q
in order, but the queues may issue out of order
respect to one another.

• The instruction queues are organized accordin
the instruction types.
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Instruction Issue and Execution
Reservation Station

• In this case, instructions are issued out-of-order
of the reservation stations simultaneously mo
their source operand for availability of data.

• When an instruction is dispatched to the reserv
station, any already available operand values are
from the register file into the reservation station.
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Instruction Issue and Execution
Reservation Station

• Reservation station compares the ope
designators of unavailable data with the r
designators of completing instructions. When t
is a match, the result value is pulled into
matching reservation station — sort of forwardin

• When all the operands are available in
reservation station, the instruction may be issued
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Committing State

The final phase of an instruction is commit or r
state.
In the commit state, the effects of the instruction
allowed to modify the logical state of the process.

The purpose of this phase is to implement
appearance of a sequential execution model
though the actual execution is not sequential due to
speculative execution and out-of-order execution.
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Committing State
In one approach, the state of the machin
certain points are saved (check pointed) ei
in a history buffer or a checkpoint.

Instructions update the state of the machin
they execute and when a precise state is nee
it is recovered from the history buffer.
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Super Scalar System

Committing State
In another approach, the state of the machin
separated into the:

• Physical state, and
• Logical (architectural) state.
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Super Scalar System
Committing State

The physical state is updated as the opera
completes.

The logical state is updated in sequential prog
order, as the speculative state of the operation
cleared. The speculative state is maintained in a reo
buffer.

To commit an instruction, its result has to be rem
from the reorder buffer into the architectural reg
file.
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Super Scalar System
MIPS R1000 ─ General Configuration

Pre-
decode

Instr.
cache

Inst.
buffer

Decode,
rename,
dispatch

Fl. Pt.
registers

Intg.
registers

Fl. Pt.
Instr.
buffer

Intg./address
Instr. buffer

Funct.
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and

data cache

Re-order & Commit
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Super Scalar System

MIPS R1000
Performs extensive dynamic scheduling,
Fetches four pre-decoded instructions at a t
from an instruction cache of 512 lines,
Pre-decoding extends each binary instruc
by 4 bits,
Physical register file (64) is twice the log
register file (32),
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Super Scalar System

MIPS R1000
Supports a Branch prediction table of 512 entries a
contained within the instruction cache mechan
Each entry holds 2-bit counter to show the hi
information,

For predicted taken branch, one cycle is neede
redirect instruction fetching. During this c
sequential instructions are fetched and placed
resume cache ─ a space of four instructions blocks,
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Super Scalar System

MIPS R1000
In case of a predicted branch, a snapshot of
register mapping table is taken ─ up to
snapshots can be stored at the same time,
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Super Scalar System

MIPS R1000
Dispatches up to four instructions into th
instruction queues:

• Memory,
• Integer, and
• Floating point

Instruction queues are 16 entries deep and o
a full queue can block dispatch unit,
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Super Scalar System

MIPS R1000
Supports five functional units:

• An address adder,
• Two integer ALUs,
• A floating point multiplier/divider/square rooter
• A floating point adder
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Super Scalar System

MIPS R1000
Supports an on-chip 2-way set associative
Kb) primary cache and an off-chip second
cache,
Uses re-order buffer to maintain a precise s
at the time of exception,
Commits instructions in the original prog
sequence, up to four at a time.
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Super Scalar System
DEC Alpha 21164 ─ General Configuration

Instr.
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Super Scalar System

DEC Alpha 21164
Compromises dynamic scheduling in favor of a hi
clock rate,
Fetches four instructions at a time from an 8 Kb
instruction cache,
Has two instruction buffers, each capable of hol
four instructions,
Issues instructions from instruction buffer in
program order. An instruction buffer must be emp
before the other being used,
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Super Scalar System

DEC Alpha 21164
Instruction cache is enhanced by a bra
history table, each entry is a 2-bit counter,
At most one predicted and yet unresol
branch can exist at a time,
Following instruction fetch and dec
instructions are inspected and upon availab
of operands they are issued ─ during
process instructions are not allowed to pass
another,
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Super Scalar System

DEC Alpha 21164
Supports four functional units:

• Two integer ALUs,
• A floating point adder, and
• A floating point multiplier,

Supports two level of on-chip caches:
• Primary cache ─ dedicated each 8 Kbytes,
• Secondary cache ─ unified 96 Kbytes.
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Super Scalar System

Limitations
Limit on instruction level parallelism,
Complexity of superscalar.
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Very Long Instruction Word — VLIW

Hardware complexity and scalability
two major issues that question the valid
of the Super Scalar machines.

Consider the following cases:
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Very Long Instruction Word — VLIW

The instruction issue logic of PA-8000
four issue Super Scalar machine with
instruction queue entries) occupies 20%
the die area.
As the issue width increases the need
register renaming, complexity of bypassi
forwarding, and interlocks increa
dramatically.
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Very Long Instruction Word — VLIW

Increasing hardware complexity pays b
lesser dividends:

Performance of a 200 MHZ MIPS R5000
single issue machine) on SPEC95 is about 7
of a 200MHZ MIPS R10000 (a four i
machine).
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Very Long Instruction Word — VLIW

Commercial VLIW machines w
introduced in early 80’s.

Multiflow delivered:
• Trace/200 ─ 256-bit 7 wide issue machine,
• Trace/300 ─ 256-bit 7 wide issue machine, and
• Trace/500 ─ 512, 1024-bit 14, 28 wide i

machine.
Cydrome delivered:

• Cydra 5 ─ 256-bit 6 wide issue machine.
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Very Long Instruction Word — VLIW

Present commercial VLIW machines:
IA-64 is a joint venture between Intel and H
Philips Trimedia processor, a DSP chip
multimedia applications,
CRUSOE by Transmeta.



Fall 2010

Very Long Instruction Word — VLIW
Basic Principle of VLIW Architecture

Original
Source Code

Compiler

Parallel Machine
Code

Har

M
Re
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Very Long Instruction Word — VLIW

Very Long Instruction Word (VLIW) des
takes advantage of instruction parallelism
reduce number of instructions by pack
several independent instructions into a v
long instruction.
The principle behind VLIW is similar
that of parallel computing — exec
multiple operations in one clock cycle.
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Very Long Instruction Word — VLIW

VLIW arranges all executable operations in
word simultaneously — many static
scheduled, tightly coupled, fine-grained operat
execute in parallel within a single instruc
stream.
Naturally, the more densely the operations can
compacted, the better the performance (lo
number of long instructions).
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Very Long Instruction Word — VLIW

During compaction, NOOPs can be used
operations that can not be used.

To compact instructions, software must be a
to detect independent operations.
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Very Long Instruction Word — VLIW

A VLIW instruction might include two inte
operations, two floating point operations,
memory reference operations, and a bra
operation.
The compacting compiler takes ordin
sequential code and compresses it into very l
instruction words through unrolling loops
trace scheduling scheme.
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Very Long Instruction Word — VLIW

Block Diagram

CPU0 CPU1 CPUn-1

Local/Global Memory

Inter-processor Communication Network

•  •  •
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Very Long Instruction Word — VLIW
This organization is very similar to
heterogeneous multiprocessor system, however

Each long instruction contains op. code to control
individual processors,
Instructions are in a single flow of control —
instruction is fetched, all the processors do
individual operations, then the next instructio
fetched — Only one locus of control,
Instruction word completely controls all
communication among the processors.
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Very Long Instruction Word — VLIW

VLIW fits somewhere between SIMD and MI
in Flynn’s taxonomy.
VLIW consists of multiple functional unit
single control unit, and a single monolithic reg
file.
The processor fetches from the instruction cac
very long instruction containing a set of prim
instructions, and dispatches them simultaneo
for parallel execution.
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Very Long Instruction Word — VLIW

FP Add FP 
Mult.

Int. 
ALU Branch

Load/
Store

Instruction Issue Unit

FP
Add

FP
Mult.

Int.
ALU

Branch Load/
Store

Regis
File
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Very Long Instruction Word — VLIW

This architecture allows any functional u
to access any registered data. This imp
too many ports to fully connect the regi
file to all functional units.
More realistic solution, partitions regi
file into banks and allows a subset
functional units to have exclusive acces
each register bank.
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Very Long Instruction Word — VLIW

Assume the following FORTRAN code
its machine code:

C = (A * 2 + B * 3) * 2 * i,
Q = (C + A + B) - 4 * (i + j)
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Very Long Instruction Word — VLIW

Machine code:
1) LD A 2) LD B
3) t1 = A * 2 4) t2 = B * 3
5) t3 = t1 + t2 6) LD I
7) t4 = 2 * I 8) C = t4 * t3
9) ST C 10) LD J
11) t5 = I + J 12) t6 = 4 * t5
13) t7 = A + B 14) t8 = C + t7
15) Q = t8 - t6 16) ST Q
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Very Long Instruction Word — VLIW
1 2 6

8

10

5 12

3 4 7 1113

15

9 14

16
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Very Long Instruction Word — VLIW

LD0 LD1 INT0 INT1 FP0 FP1 BR
LD   A LD   B
LD   I LD   J A * 2 B * 3

2 * I I + J t1 + t2 A + B
4 * t5 t4 - t3

ST   C C + t7
t8 – t6

ST   Q
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Very Long Instruction Word — VLIW

Summary
VLIW ─ General Philosophy
VLIW ─ General Configuration
VLIW ─ Advantages and Disadvantages
VLIW ─ An example
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Very Long Instruction Word — VLIW

Assume a VLIW machine capable
issuing two floating point operations, t
memory reference operations and
integer/branch operation.

Further assume the following loop:
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Very Long Instruction Word — VLIW

LOOP:
LD F0, 0(R1) Load vector element into F0

ADD F4, F0, F2 Add Scalar (F2)
SD F4, 0(R1) Store the vector element
SUB R1, R1, #8 Decrement by 8 (size of a double

BNZ R1, Loop Branch if not zero

We will unroll the loop seven times to a
optimal performance:
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Very Long Instruction Word— VLIW

LD  F6, -8(R1)LD  F0, 0(R1)
LD  F10, -16(R1) LD  F14, -24(R1)

AD  F4, F0, F2 AD  F8, F6, F2LD  F18, -32(R1)
AD  F12, F10, F2 AD  F16, F14, F2

SD  F4, 0(R1)

1
2
3
4
5
6
7
8
9

IntegFl. Point 1Memory
Reference 1

Memory
Reference 2

Fl. Point 2

LD  F22, -40(R1)
LD  F26, -48(R1)

AD  F20, F18, F2 AD  F24, F22, F2
SD  F8, -8(R1)

SD  F12, -16(R1) SD  F16, -24(R1)
SD  F20, -32(R1) SUB

BNZ

AD  F28, F26, F2

SD  F24, -40(R1)
SD  F28, -48(R1)



Fall 2010

Very Long Instruction Word — VLIW

VLIW Compiler Technology
Effectiveness of VLIW architecture is hea
dependent on the exploitation of parallelisms in
application program by the compiler.
The compiler must be efficient and clever.
VLIW compilers heavily use:

• Speculative scheduling when branch is encountered,
• Loop unrolling to expose more instruction level parallelism
• Software pipelining,
• Inlining to reduce the overhead associated with proc

calls, and
• Trace Scheduling.
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Very Long Instruction Word — VLIW

VLIW machine can actually run two pos
paths of a branch.
When the branch is computed at run time and
correct path is known, the incorrect branc
discarded and execution continues as if there
no branch.
Consequently, the branch penalty can be alm
zero compared to a scalar processor.
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Very Long Instruction Word — VLIW

Trace Scheduling
This technique is applied once all intermed
optimizations are complete and the code i
machine level instructions.
Trace is a linear section of code that mus
executed together.
Trace scheduling is composed on two parts:

• Selection, and
• Compaction
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Very Long Instruction Word — VLIW

Trace Scheduling
Selection modules, recursively, selects the t
with highest probability of execution and se
it to the compaction module.

Trace compaction uses several technique
rearrange instructions within a trace
minimize wasted instructions in a long w
and consequently, to reduce the total numbe
long words.
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Very Long Instruction Word — VLIW

Trace Scheduling
If an instruction in the trace is moved f
before a conditional jump to after the jum
copy of it must be placed in the off-trace e
of the jump.
1:  O1
2:  if cond.          4:  O3
3:  O2 5:  O4

2:  if cond. 1′:
1′:  O1 4: 
3:  O2 5: 
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Very Long Instruction Word — VLIW

Trace Scheduling
If a trace operation is moved above a rejoin
trace, then a copy must be placed on the
trace rejoin edge.

1:  O1 4:  O4
2:  O2

3:  O3

1:  O1 4
3′:  O3 3
2:  O2
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Very Long Instruction Word — VLIW

Trace Scheduling
Block X is said to post dominate block
every path through Y must ultimately p
through X.

1:  if cond. 5: O5
2:  O2 6: O6
3:  O3

4:  O4

4′:  O4
1:  if cond. 5: O
2:  O2 6: O
3:  O3
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Very Long Instruction Word — VLIW

Trace Scheduling
In some cases compensation code
bookkeeping code is inserted into the progra

If  w > 0

x:= x - 2x:= x + 1

y := 2 * x

z := u + v

If  w > 0

x:= x - 2

x:= x + 1

y := 2 * x

z := u + v

x:= x - 1
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Very Long Instruction Word — VLIW

IA-64 ─ General Philosophy
A full 64-bit address space,
Large directly accessible register file,
Enough instruction bits to communi
information from compiler to hardware,
Ability to express large amount of Instruc
Level Parallelism.
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Very Long Instruction Word — VLIW

IA-64 ─ Register Configuration

First 32 registers are used Statically, an
rest will be used as Stacked/rotating re
Stacked/rotating registers are used to s
Procedure calls. 

General Purpose Registers

65 bits

R0

R1

R31

R32

R126

R127

Static

Stacked/
Rotating
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Very Long Instruction Word — VLIW

IA-64 ─ Register Configuration
Floating Point Registers

82 bits

Fr0
Fr1

Fr31

Fr32

Fr126

Fr127

Rotating

Register rotating is used to ease the
Task of allocating registers in softw
Pipelined loops.
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Very Long Instruction Word — VLIW

IA-64 ─ Register Configuration
Special Application Registers

64 bits

Ar0

Ar1

Ar2

Ar125

Ar126

Ar127

Special purpose application registers 
are used to support features such as
Register stack, Software pipelining,…
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Very Long Instruction Word — VLIW

IA-64 ─ Register Configuration

64 bits

b0

b1

b2

b6

b7

Branch Registers

Branch registers are used 
For indirect branches.
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Very Long Instruction Word — VLIW

IA-64 ─ Register Configuration

Predicate Registers

P0 P1 P2 P62 P63 1 bit

Each bit represents the result of a 
conditional expression evaluation.
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Very Long Instruction Word — VLIW

IA-64 ─ Instruction Format

Op-code PredicateReg. 1 Reg. 2 Reg. 3

14 bits 7 bits 7 bits 7 bits 6 bits
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Very Long Instruction Word — VLIW

IA-64 ─ Instruction Format (instruction bund

Inst.2 TemplateInst. 1 Inst. 0

41 bits 41 bits 41 bits 5 bits

Template field specifies what type of Execution Units 
each instruction in a group requires.
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Very Long Instruction Word — VLIW

Summary
Compilation techniques to exploit ILP

• Loop Unrolling
• Trace Scheduling
• Software Pipelining
• Speculative scheduling

IA-64
• General Configuration
• Register sets
• Instruction Format
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Very Long Instruction Word — VLIW

IA-64
Two levels of parallelisms are provided:

• Instruction Level Parallelism ─ Compiler cre
instruction groups (a collection of instruc
bundles) so that all instructions in an instruc
group can be executed in parallel safely.

• Control Flow Parallelism ─ is provided
executing compound And and Or condition
parallel. This allows several multiway branch
be grouped together and executed in a si
instruction group.
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Very Long Instruction Word — VLIW

IA-64 ─ Compound Conditional Code
Assume the following code:

If ((a = 0) || (b 5) || (c d) || (f > 10))
r3 = 8;



Fall 2010

Very Long Instruction Word — VLIW

IA-64 ─ Compound Conditional Code
In IA-64 the aforementioned code is express

Cmp.ne   p1 = r0 , r0
Add   t = -5 , b
Add   k = -10, f

Cmp.eq.or p1 = 0 , a
Cmp.ge.or p1 = 0 , t
Cmp.ne.or p1 = c , d
Cmp.gt.or  p1 = 0 , k

(p1)  mov r3 = 8
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Very Long Instruction Word — VLIW

IA-64 ─ Compound Conditional Code
Register p1 is initialized to false,
The conditions for each of the OR express
is calculated in parallel, and
Final result of the p1 is used in the
instruction.
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IA-64 ─ Branches
IA-64 reduces the negative effect of
branches.

It allows the compiler to generate the cod
execute instructions from multiple conditio
paths at the same time.

Very Long Instruction Word — VLIW
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IA-64 ─ Branches
Assume the following code:

If (r1 = r2)
r9 = r10 – r11;

else
r5 = r6 + r7;

Very Long Instruction Word — VLIW
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IA-64 ─ Branches
In IA-64 we have the following:

Cmp.eq p1, p2 = r1 , r2;
(p1) sub r9 = r10 , r11;
(p2) add r5 = r6 , r7;

Very Long Instruction Word — VLIW

Predicate regis
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Very Long Instruction Word — VLIW

IA-64 ─ Branches
Ability to calculate compound conditio
codes in parallel and associating a predic
to each statement allows compiler to b
larger basic blocks and hence to increase
degree of instruction level parallelism.
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IA-64 ─ Branches

Very Long Instruction Word — VLIW
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IA-64 ─ Branches
Trace scheduling then will be app
extensively to schedule traces with hig
probability of execution earlier.

Very Long Instruction Word — VLIW
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Speculative load
Speculative load is an interesting technique
allows to speculatively early start execution of
critical instructions (load).
Load can be safely scheduled ahead of one or m
branches.
In case of exception, flag is raised and attached to
load result ─ At runtime, a deferred exception tok
written to the target register (extra bit of register).
At proper moment, this flag is checked to redirec
control to a fix-up code.

Very Long Instruction Word — VLIW
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Speculative load

Very Long Instruction Word — VLIW

Instr A
Instr B

br

Ld8  r1 = [r2]
Use  r1 Barrier

Ld8.s r1 = [r2]

Use   r1
Instr A
Instr B

br

Chk.s
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Speculative load
Note that almost all instructions in IA
propagate the tag on a register, as a re
entire calculation chains may be schedu
speculatively.
The compiler only inserts a single chk.s (ch
speculate) to check the result of mult
speculative computations.

Very Long Instruction Word — VLIW
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Data speculation
IA-64 allows the compiler to schedule a l
before one or more prior stores ─
speculation.
Advanced load instruction (ld.a) along w
advanced load check instruction (chk.a)
used to accomplish this.

Very Long Instruction Word — VLIW
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Data speculation

Very Long Instruction Word — VLIW

Instr A
Instr B

Store

Ld8  r1 = [r2]
Use  r1

Ld8.a r1 = [r2]

Use   r1
Instr A
Instr B

Store

Chk.a
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Very Long Instruction Word — VLIW

Data speculation
An advanced load is a load that has b
speculatively moved above store instruction
which it is potentially dependent.
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Data speculation
Advanced load is similar to traditional l
During the run time, system reco
information such as:

• The target register,
• Memory address accessed, and
• Access sized

In the advanced load address table.

Very Long Instruction Word — VLIW
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Very Long Instruction Word — VLIW

Data speculation
When a store is executed, an associative l
up against the active advanced load add
table is performed. If there is a match,
advanced load address entry is marked
invalid (it is cleared).
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Data speculation
Later, when the chk.a is executed, hardw
checks the advanced load address table for
entry installed by its corresponding advan
load.

• If an entry is found, the speculation was succe
and nothing will happen.

• If no entry is found, there may have been a colli
and the check instruction branches to a fix-up
to reexecute the code.

Very Long Instruction Word — VLIW
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Questions
Compare and contrast VLIW architec
against multiprocessor and vector proce
(you need to discuss about issues such as
flow of control, inter-proce
communications, memory organization
programming requirements).
Within the scope of VLIW architecture, disc
the major source of problems.

Very Long Instruction Word — VLIW
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VLIW machines are not software compatible with
general purpose machine. Even they are
compatible with themselves.
Density of long instructions depend on the instruc
level parallelism detected during the compila
This could effect space utilization drastically.
VLIW offers performance improvement.
There is no need for extra hardware in order to de
parallelism.

Very Long Instruction Word — VLIW
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Super Pipelined Processor

In a super Pipelined Processor, the major stage
a pipelined processor are divided into sub-stage
The degree of super pipelining is a measure of
number of sub-stages in a major pipeline stage.

i0

i1

i2
f

f

f

d

d

d

e

e

e

2-Stage Super Pipelined Processor
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Super Pipelined Processor

Naturally, in a super Pipelined Proces
sub-stages are clocked at a higher freque
than the major stages.
Reducing processor cycle time, he
higher performance, relies on instruct
parallelism to prevent pipeline stalls in
sub-stages.
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Super Pipelined Processor

In comparison with Super Scalar:
For a given set of operations, the su
pipelined processor takes longer to generate
results than the super scalar processor.
Simple operations take longer time to exe
in a super scalar than super pipelined, s
there are no clock with finer resolution.
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Super Pipelined Processor

From hardware point of view, super sc
processors are more susceptible to resou
conflicts than super pipelined processor. A
result hardware should be duplicated for su
scalar processor. On the other hand, in su
pipelined processor, we need latches betw
pipeline sub-stages. This adds overhead
computation — degree of super pipelin
could add severe overhead.
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Super Pipelined Superscalar Processo

Since the number of instructions issued
cycle and the cycle time are theoretica
orthogonal, we could have a super pipeli
superscalar machine.

i0
i1

i2
f

f
f

d
d

d

e
e

e

2-Stage 2-issue Super Pipelined Superscalar Proc

f d ei3
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Beyond RISC

As noted before, achieving a higher performa
means processing a given task in a smaller amo
of time. To reduce the time to execute a seque
of instructions, one can:

Reduce individual instruction latencies, or
Execute more instructions concurrently.

Superscalar processors exploit the sec
alternative.
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Beyond RISC

Under pipelined 
Machine

Faster Clock Rate

Lo
w

er
 C

PI

RISC Super pipelin

Superscalar

VLIW Vector
Machine
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Beyond RISC

Software pipelining

Iteration1

Iteration2

Iteration4
Iteration3

Iteration2

Iteration1
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Beyond RISC

Software pipelining
Software pipelining requires

• Managing the loop count,
• Handling renaming the registers for the pipeline
• Finishing the work in progress when the loo

ended.
• Starting the pipeline when the loop is entered, an
• Unrolling to expose cross-iteration parallelism.
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Beyond RISC

Software pipelining
Software pipelining is a technique
reorganizes loops such that each iteration in
software-pipelined code is made f
instructions chosen from different iteration
the original loop ─ it interleaves instruct
from different iterations without unrolling
loop.
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Beyond RISC

Software Pipelining
LOOP:

LD F0, 0(R1) Load vector element into F0

ADD F4, F0, F2 Add Scalar (F2)

SD F4, 0(R1) Store the vector element

SUB R1, R1, #8 Decrement by 8 (size of a double

BNZ R1, Loop Branch if not zero
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Beyond RISC

Software Pipelining
Iteration i: LD F0, 0(R1)

ADD F4, F0, F2
SD F4, 0(R1)

Iteration i+1 LD F0, 0(R1)
ADD F4, F0, F2
SD F4, 0(R1)

Iteration i+2 LD F0, 0(R1)
ADD F4, F0, F2
SD F4, 0(R1)
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Beyond RISC

Software Pipelining
LOOP:

SD F4, 16(R1) Stores into M[i]
ADD F4, F0, F2 Adds to M[i-1]
LD F0, 0(R1) Loads M[i-2]
SUB R1, R1, #8 Decrement by 8
BNZ R1, Loop Branch if not zero


