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Introduction to High Performance Computer Architecture

Note, this unit will be covered in one week.

In case you finish it earlier, then you have

the following options:

1) Take the early test

2) Study the supplement module

(supplement CS5803.module7)

3) Act as a helper to help other students in

studying CS5803.module7

Note, options 2 and 3 have extra credits as noted in course

outline.
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Glossary of prerequisite topics

Familiar with the topics?
No Review 

CS5803.module7.background

Yes

Remedial action

Yes

No
Take the Module

Take Test

Pass?

Glossary of topics

Familiar with the topics?

Yes

Pass?

Take Test

Yes

Options

Lead a group of students in 

this module (extra credits)?

Study more advanced related 

topics (extra credits)?

Study for the final

No



Extra Curricular activities

Enforcement 

of background 

Current 

Module
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test, record the score, 

and impose remedial 

action if not 

successful

No
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Beyond RISC

The term scalar processor is used to denote
a processor that fetches and executes one
instruction at a time.

Performance of a scalar processor, as
discussed before, can be improved through
instruction pipelining and multifunctional
capability of ALU.

Refer to a RISC philosophy, an improved
scalar processor, at best, can perform one
instruction per clock cycle.
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Beyond RISC

Traditional RISC pipeline
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Beyond RISC

Is it possible to achieve a performance

beyond what is being offered by RISC?
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Beyond RISC

As noted before, the CPU time is

proportional to the:

Number of instructions required to perform an

application,

Average number of processor cycles required

to execute each instruction,

Processor’s cycle time.
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Beyond RISC

CPU Time = Instruction count * CPI * Clock cycle time

CPI is the average number of clock cycles

needed to execute each instruction.

How can we improve the performance?

Reduce the instruction count,

Reduce the CPI,

Increase the clock rate.
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Beyond RISC

RISC philosophy attempts to improve performance by
reducing the CPI through simplification. However,
simplification in general, increases the number of
instructions needed for a task.

RISC designers claim that RISC concept reduces CPI
at a faster rate than the increase in instruction count —
DEC VAXes have CPIs of 8 to 10 and RISC machines
offer CPIs of 1.3 to 3. However, RISC machines
require 50 to 150 percent more instructions than
VAXes.
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Beyond RISC

How to increase the clock rate?

Advances in technology

Architectural advances.

How to reduce the CPI beyond simplicity?

Increase the number of operations issued per

clock cycle.
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Beyond RISC

What is Instruction Level Parallelism?

Instruction Level Parallelism (ILP) ─

Within a single program how many

instructions can be executed in parallel?
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Beyond RISC

ILP can be exploited in two largely

separable ways:

Dynamic approach where mainly hardware

locates the parallelism,

Static approach that largely relies on software

to locate parallelism.



Summary

RISC barrier

Scalar processor

Instruction Level Parallelism

Instruction Issue/Instruction Completion order

Dependence graph (program graph)

Super Pipeline
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Very Long Instruction Word 14
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Super Scalar System

Beyond RISC
Fundamental Limitations

• Data Dependency

• Control Dependency

• Resource Dependency
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Super Scalar System

Data Dependency

Within the scope of data dependency we can talk about:

• Read after write (flow) dependency

• Write after read (anti) dependency

• Write after write (output) dependency

The literature has referred to read after write as true

dependency, and write after read or write after write as

false dependency.
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Super Scalar System

Practically, write after read and write after
write are due to storage conflict and
originated from the fact that in the
traditional systems we are dealing with a
memory organization that is globally shared
by instructions in the program.

Storage medium holds different values for
different computations.
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Super Scalar System

The processor can remove storage conflict

by providing additional registers to

reestablish one-to-one correspondence

between storage (register) and values —

register renaming.
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Super Scalar System

Two constraints are imposed by control

dependencies:

An instruction that is control dependent on a

branch cannot be moved before the branch,

An instruction that is not control dependent on

a branch cannot be moved after the branch.
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Beyond RISC

Resource Dependence

A resource conflict arises when two instructions

attempt to use the same resource at the same

time. Resource conflict is of concern in a scalar

pipelined processor.
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Beyond RISC

Straight line code blocks are between four
to seven instructions that are normally
dependent on each other ─ degree of
parallelism within a code block is limited.

Several studies have shown that average
parallelism within a basic block rarely
exceeds 3 or 4.
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Beyond RISC

The presence of dependence indicates the
potential for a hazard, but actual hazard and
the length of any stalls is a property of the
pipeline.

In general, data dependence indicates:
The possibility of a hazard,

The order in which results must be calculated,

An upper bound on how much parallelism can be
possibly exploited.



23

Beyond RISC

Branches represent 20% of instructions in a

program. Therefore, the length of a basic

block is about 5 instructions.

There is also a chance that some of the

instructions in a basic building block are

data dependent on each other.
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Beyond RISC

Therefore, to obtain substantial

performance gains we must exploit ILP

across multiple basic blocks.

Simplest and most common way to

increase parallelism is to exploit

parallelism among loop iterations ─

loop level parallelism.
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Beyond RISC

Increasing parallelism within blocks

Parallelism within a basic block is limited by

dependencies between instructions. Some of

these dependencies are real, some are false:

r1 := 0 [ r9]

r2 := r1 + 1

r1 := 9

Real dependency
False dependency
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Beyond RISC

Increasing parallelism within blocks

Smart compiler might pay attention to its

register allocation in order to overcome false

dependencies.

Hardware register renaming is another

alternative to overcome false dependencies.
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Beyond RISC

Register Renaming
 Hardware renames the original register identifier in the instruction

to correspond the new register with current value.

 Hardware that performs register renaming creates new register

instance and destroys the instance when its value is superseded and

there are not outstanding references to the value.

 To implement register renaming, the processor typically allocates a

new register for every new value produced — the same register

identifier in several different instructions may access different

hardware registers.
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Beyond RISC

Register Renaming

R3  R3 op R5

R4  R3 + 1

R3  R5 + 1

R7  R3 op R4

R3b  R3a op R5a

R4b  R3b + 1

R3c  R5a + 1

R7b  R3c op R4b

Each assignment to a register creates a new instance of the

register.
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Beyond RISC

Increasing parallelism Cross block boundaries

Branch prediction is often used to keep a

pipeline full.

Fetch and decode instructions after a branch

while executing the branch and the instructions

before it ─ Must be able to execute instructions

across an unknown branch speculatively.
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Beyond RISC

Increasing parallelism Cross block boundaries

Many architectures have several kinds of instructions

that changes the flow of control:

• Branches are conditional and have a destination some off set

from the program counter.

• Jumps are unconditional and may be either direct or indirect:

– A direct jump has a destination explicitly defined in the

instruction,

– An indirect jump has a destination which is the result of some

computation on registers.
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Beyond RISC

Increasing parallelism Cross block boundaries

Loop unrolling is a compiler optimization

technique which allows us to reduce the

number of iterations ─ Removing a large

portion of branches and creating larger blocks

that could hold parallelism unavailable because

of the branches.
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Beyond RISC

Assume the following program:

LOOP:

LD F0, 0(R1) Load vector element into F0

ADD F4, F0, F2 Add Scalar (F2)

SD F4, 0(R1) Store the vector element

SUB R1, R1, #8 Decrement by 8 (size of a double word)

BNZ R1, Loop Branch if not zero
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Beyond RISC

Instruction cycles for a super scalar machine

Assume a super scalar machine that issues two
instructions per cycle, one integer (Load, Store,
branch, or integer), and one floating point:

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB
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Beyond RISC

We will unroll the loop to allow simultaneous

execution of floating point and integer operations:

Integer Inst. Fl. Point Inst. Clock cycle

LD F6, -8(R1)

LD F0, 0(R1)

LD F10, -16(R1)

LD F14, -24(R1)

AD F4, F0, F2

AD F8, F6, F2

LD F18, -32(R1) AD F12, F10, F2

AD F16, F14, F2SD F4, 0(R1)

1

2

3

4

5

6
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Beyond RISC

Integer Inst. Fl. Point Inst. Clock cycle

7

8

9

10

11

12

SD F8, -8(R1)

SD F12, -16(R1)

SD F16, -24(R1)

SD F20, -32(R1)

SUB R1, R1, #40

BNZ R1, Loop

AD F20, F18, F2
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Beyond RISC

Summary

Instruction Level Parallelism

• Dynamic approach

• Static approach

How to improve ILP within a basic block

• Compiler role

• Register renaming

How to improve ILP cross block boundaries

• Static approach (loop unrolling)

• Dynamic approach
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Beyond RISC

Increasing parallelism Cross block boundaries

Software pipelining is a compiler technique

that moves instructions across branches to

increase parallelism ─ Moving instructions

from one iteration to another.
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Beyond RISC

Increasing parallelism Cross block boundaries

Trace scheduling is also a compiler scheduling

technique.

It uses a profile to find a trace (sequence of blocks

that are executed often) and schedules the

instructions of these blocks as a whole ─ Prediction

of branch statically based on the profile (to cope

with failure, code is inserted outside the sequence

to correct the potential error).
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Beyond RISC

Branch Prediction

Simplest way to have dynamic branch

prediction is via the so called prediction buffer

or branch history table ─ A table whose entries

are indexed by lower portion of the target

address.
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Beyond RISC

Branch Prediction

Entries in the branch history table can be

interpreted as:

• 1-bit prediction scheme: Each entry says whether or

not in previous attempt branch was taken or not.

• 2-bit Prediction scheme: Each entry is 2-bit long

and a prediction must miss twice before it is

changed ─ see the following diagram.
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Beyond RISC

Branch Prediction

Prediction Taken

11
Prediction Taken

10

Prediction Not Taken

01
Prediction Not Taken

00

Not Taken

Not Taken

Not Taken

Taken

Taken

Taken

Taken

Not Taken
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Beyond RISC

Branch Prediction
• n-bit Saturation counter: An entry has a

corresponding history feature. A taken branch

increments the counter and untaken branch

decrement the counter. A branch is not taken if the

counter is below 2(n-1).
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Beyond RISC

Branch Prediction

Multilevel prediction ─ Correlating predictors

• A technique that uses behavior of other branches to
make a prediction on a branch.

• The first level is a table that shows the history of the
branch. This may be the history (pattern) of the last
k branches encountered (global behavior) or the last
k occurrences of the same branch.

• The second level shows the branch behavior for this
pattern



44

When instructions are issued in-order and complete in-

order, there is one-to-one correspondence between storage

locations (registers) and values.

When instructions are issued out-of-order and complete

out-of-order, the correspondence between register and

value breaks down. This is even more severe when

compiler optimizer does register allocation — tries to use

as few registers as possible.

Beyond RISC
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Instruction Issue and Machine
Parallelism
Instruction Issue is referred to the process of

initiating instruction execution in the
processor’s functional units.

Instruction Issue Policy is referred to the
protocol used to issue instructions.

Beyond RISC
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Instruction Issue Policy

In-order issue with in-order completion.

In-order issue with out-of-order
completion.

Out-of-order issue with out-of-order
completion.

Beyond RISC
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Instruction Issue Policy — Assume the
following configuration:

Underlying Computer contains an instruction
pipeline with three functional units.

Application Program has six instruction with the
following dependencies among them:

• I1 requires two cycles to complete,

• I3 and I4 conflict for a functional unit,

• I5 is data dependent on I4, and

• I5 and I6 conflict over a functional unit.

Beyond RISC
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In-order issue with in-order completion
ID EX WB

I
6

I1
I

2

I
3

I
4

I
5

I
3

I
4

I
4

I
6

I
1

I
2

I1

I
3

I
4

I
5

I
6

I
6

I1
I

2

I
5

I
3

I
4

Cycle

1

2

3

4

5

6

7

8

This policy is easy to implement, however, it generates 

long latencies that hardly justify its simplicity.

Beyond RISC
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Beyond RISC

Summary

 How to improve ILP cross block boundaries

• Static approach

– loop unrolling,

– software pipelining,

– trace scheduling)

• Dynamic approach

– Branch prediction

 Classification based on order of issue/order of completion

• In order issue/in order completion

 Project,

 Homework #8
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In a simple pipeline structure, both

structural and data hazards could be

checked during instruction decode ─ When

an instruction could execute without hazard,

it will be issued from instruction decode

stage (ID).

Beyond RISC
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To improve the performance, then we

should allow an instruction to begin

execution as soon as its data operands are

available.

This implies out-of-order execution which

results in out-of-order completion.

Beyond RISC
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To allow out-of-order execution, then we

split instruction decode stage into two

stages:

Issue Stage to decode instruction and check for

structural hazards,

Read Operand Stage to wait until no data

hazards exist, then fetch operands.

Beyond RISC
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Dynamic scheduling

Hardware rearranges the instruction execution

order to reduce the stalls while maintaining data

flow and exception behavior.

Earlier approaches to exploit dynamic

parallelism can be traced back to the design

of CDC6600 and IBM 360/91.

Beyond RISC
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In a dynamically scheduled pipeline, all

instructions pass through the issue stage in

order, however, they can be stalled or

bypass each other in the second stage and

hence enter execution out of order.

Beyond RISC



55

In-Order Issue with Out-of-Order Completion

ID EX WB
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Beyond RISC
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In-Order Issue with Out-of-Order Completion

Instruction issue is stalled when there is a
conflict for a functional unit, or when an issued
instruction depends on a result that is yet to be
generated (flow dependency), or when there is
an output dependency.

Out-of-Order completion yields a higher
performance than in-order-completion.

Beyond RISC
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Out-of-Order Issue with Out-of-Order Completion
The decoder is isolated (decoupled) from the execution

stage, so that it continues to decode instructions
regardless of whether they can be executed
immediately.

This isolation is accomplished by a buffer between the
decoder and execute stages — instruction window.

The fact that an instruction is in the window only
implies that the processor has sufficient information
about the instruction to know whether or not it can be
issued.

Beyond RISC
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Out-of-Order Issue with Out-of-Order

Completion

Out-of-Order issue gives the processor a

larger set of instructions available to issue,

improving its chances of finding instructions

to execute concurrently.

Beyond RISC
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Out-of-Order Issue with Out-of-Order Completion
ID EX WB
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Out-of-Order issue creates additional problem known as 

anti-dependency that needs to be taken care of.

Beyond RISC 
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Beyond RISC

Summary

 Classification based on order of issue/order of completion

• In order issue/in order completion

• In order issue/out of order completion

• Out of order issue/out of order completion

 Project, Dec 4

 Final, Dec
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Beyond RISC

Machine with higher clock rate and deeper
pipelines have been called super pipelined.

Machines that allow to issue multiple
instructions (say 2-3) on every clock cycles
are called super scalar.

Machines that pack several operations (say
5-7) into a long instruction word are called
Very-long-Instruction-Word machines.
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Very Long Instruction Word — VLIW

Very Long Instruction Word (VLIW) design

takes advantage of instruction parallelism to

reduce number of instructions by packing

several independent instructions into a very

long instruction.

Naturally, the more densely the operations can

be compacted, the better the performance

(lower number of long instructions).
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Very Long Instruction Word — VLIW

During compaction, NOOPs can be used for

operations that can not be used.

To compact instructions, software must be

able to detect independent operations.
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Very Long Instruction Word — VLIW

The principle behind VLIW is similar to

that of concurrent computing — execute

multiple operations in one clock cycle.

VLIW arranges all executable operations in

one word simultaneously — many statically

scheduled, tightly coupled, fine-grained

operations execute in parallel within a

single instruction stream.
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Very Long Instruction Word — VLIW

A VLIW instruction might include two

integer operations, two floating point

operations, two memory reference

operations, and a branch operation.

The compacting compiler takes ordinary

sequential code and compresses it into very

long instruction words through unrolling

loops and trace scheduling scheme.
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Very Long Instruction Word — VLIW

Block Diagram

CPU0 CPU1 CPUn-1

Local/Global Memory

Inter-processor Communication Network

•  •  •
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Very Long Instruction Word — VLIW

Assume the following FORTRAN code and

its machine code:

C = (A * 2 + B * 3) * 2 * i,

Q = (C + A + B) - 4 * (i + j)
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Very Long Instruction Word — VLIW

Machine code:

1) LD A 2) LD B
3) t1 = A * 2 4) t2 = B * 3

5) t3 = t1 + t2 6) LD I

7) t4 = 2 * I 8) C = t4 * t3

9) ST C 10) LD J

11) t5 = I + J 12) t6 = 4 * t5

13) t7 = A + B 14) t8 = C + t7

15) Q = t8 - t6 16) ST Q
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Very Long Instruction Word — VLIW
1

2 6

8

10

5
12

3 4 7 1113

15

9
14

16
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Very Long Instruction Word — VLIW

LD0 LD1 INT0 INT1 FP0 FP1 BRANCH
LD   A LD   B

LD   I LD   J A * 2 B * 3

2 * I I + J t1 + t2 A + B

4 * t5 t4 - t3

ST   C C + t7

t8 – t6

ST   Q
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Very Long Instruction Word — VLIW

Basic Principle of VLIW Architecture
Original

Source Code

Compiler

Parallel Machine

Code

Hardware

More 

Resources
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Very Long Instruction Word — VLIW

Questions

Compare and contrast VLIW architecture
against multiprocessor and vector processor
(you need to discuss about issues such as —
flow of control, inter-processor
communications, memory organization and
programming requirements).

Within the scope of VLIW architecture, discuss
the major source of problems.
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Super Scalar System

A super scalar processor reduces the average

number of clock cycles per instruction beyond

what is possible in a pipeline scalar RISC

processor. This is achieved by allowing

concurrent execution of instructions in:

the same pipeline stages, as well as

different pipeline stages

multiple concurrent operations on scalar

quantities.
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Super Scalar System

Instruction Timing in a super scalar processor
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Super Scalar System

Fundamental Limitations

Data Dependency

Control Dependency

Resource Dependency
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Super Scalar System

Data Dependency: If an instruction uses a value

produced by a previous instruction, then the second

instruction has a data dependency on the first

instruction.

Data dependency limits the performance of a scalar

pipelined processor. The limitation of data dependency

is even more severe in a super scalar than a scalar

processor. In this case, even longer operational

latencies degrade the effectiveness of super scalar

processor drastically.
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Super Scalar System

Data dependency

I1 uses data computed by I0
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Super Scalar System

Control Dependency

As in traditional RISC architecture, control

dependency effects the performance of super

scalar processors. However, in case of super

scalar organization, performance degradation is

even more severe, since, the control

dependency prevents the execution of a

potentially greater number of instructions.
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Super Scalar System

Control Dependency

I
0

I
1

I
2

I
3

I
4

I
5

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

 /branch
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Super Scalar System

Resource Dependency

A resource conflict arises when two

instructions attempt to use the same resource at

the same time. Resource conflict is also of

concern in a scalar pipelined processor.

However, a super scalar processor has a much

larger number of potential resource conflicts.
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Super Scalar System

Resource Dependency

Performance degradation due to the resource
dependencies can be significantly improved by
pipelining the functional units.

I
0

I
1

IF ID EX WB

IF ID EX WB

Without resource conflict

I
0

I
1

IF ID EX WB

IF ID EX WB

With resource conflict

I
0

I
1

and use the same functional unit
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Super Scalar System

Assume the following program:

LOOP:

LD F0, 0(R1) Load vector element into F0

ADD F4, F0, F2 Add Scalar (F2)

SD F4, 0(R1) Store the vector element

SUB R1, R1, #8 Decrement by 8 (size of a double word)

BNZ R1, Loop Branch if not zero
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Super Scalar System

Instruction cycles for a super scalar machine

Assume a super scalar machine that issues two

instructions per cycle, one integer (Load, Store,

branch, or integer), and one floating point:
IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB
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Super Scalar System

We will unroll the loop to allow simultaneous

execution of floating point and integer operations:

Integer Inst. Fl. Point Inst. Clock cycle

LD F6, -8(R1)

LD F0, 0(R1)

LD F10, -16(R1)

LD F14, -24(R1)

AD F4, F0, F2

AD F8, F6, F2

LD F18, -32(R1) AD F12, F10, F2

AD F16, F14, F2SD F4, 0(R1)

1

2

3

4

5

6
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Super Scalar System

Integer Inst. Fl. Point Inst. Clock cycle

7

8

9

10

11

12

SD F8, -8(R1)

SD F12, -16(R1)

SD F16, -24(R1)

SD F20, -32(R1)

SUB R1, R1, #40

BNZ R1, Loop

AD F20, F18, F2
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Super Scalar System

As noted before, achieving a higher performance

means processing a given task in a smaller amount

of time. To reduce the time to execute a sequence

of instructions, one can:

Reduce individual instruction latencies, or

Execute more instructions concurrently.

Superscalar processors exploit the second

alternative.
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Super Scalar System

General Configuration

Instruction

Fetch & Decode
Instruction

Execution

Instruction Buffer

Branch outcome/Jump address
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Super Scalar System

General Configuration
Instruction fetch unit acts as a producer, which

fetches, decodes, and places decoded instructions
into the buffer.

Instruction execution engine is the consumer,
which removes instructions from buffer and
executes them, subject to data dependence and
resource constraints.

Control dependences provides a feedback
mechanism between the producer and consumer.
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Super Scalar System

General Configuration

Systems having this organization employ

aggressive techniques to exploit instruction

level parallelism.
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Super Scalar System

General Configuration
Wide dispatch and issue paths,

Large issue buffer,

Large pool of physical registers,

Large number of parallel functional units,

Speculation of past multiple branches.

Are some techniques that allow aggressive

exploitation of Instruction Level Parallelism.

Fetch, decode, and issue several instructions

Register Renaming ─ False Dependence

Resource Dependence

Control Dependence
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Super Scalar System

Flow of Operations
A typical superscalar processor fetches and decodes

several incoming instructions at a time.

The outcomes of conditional branch instructions are

usually predicted in advance to ensure an uninterrupted

stream of instructions

The incoming instructions are then analyzed for data

and structural dependencies, and then independent

instructions are distributed to functional units for

execution.
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Super Scalar System

Flow of Operations
Simultaneously fetching several instructions, often

predicting the outcomes of, and fetching beyond,
conditional branch instructions,

Exploit dynamic parallelisms in the program:

• Determine true dependencies involving register
values and communicating these values to the
target instructions during the course of
execution,

• Detect and remove false dependencies,

Initiate or issue multiple instructions in parallel,
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Super Scalar System

Flow of Operations

Manage resources for parallel execution of

instructions, including:

• Multiple pipeline functional units,

• Memory hierarchy

Committing the process state in correct order.
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Super Scalar System

Flow of Operations

The key issue to the success of superscalar

systems is the dynamic scheduling of the

instructions in the program.
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Super Scalar System

Historical Perspective

The development of architectures to exploit
instruction level parallelism in the form of
pipelining can be traced back to the design of
CDC6600 and IBM 360/91.

Within the scope of these systems, practice
showed a pipeline initiation rate at one
instruction per cycle.
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Super Scalar System

Processing Flow

An application is represented in a high level

language program,

This high level program is then compiled into the

static machine level program — The static program

describes a set of executions and its implicit

sequencing model (the order in which instructions

are executed).
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Super Scalar System

Program Representation — High Level Construct

For 0 = i < last

If a(i) > a(i+1)

temp = a(i) 

a(i) = a(i+1)

a(i+1) = temp

End
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Super Scalar System

Program Representation — Assembly code

L2: Move r3, r7 r7  points to an element of the array 

LW r8, (r3) r8 holds the ith element of the array

Add r3, r3, 4 advancing the index

LW r9, (r3) r9 holds the i+1th element of the array

Ble r8, r9, L3

Move r3, r7 In this block ith and i+1th elements

SW r9, (r3) are swapped

Add r3, r3, 4

SW r8, (r3)

Add r5, r5, 1

L3: Add r6, r6, 1 r6 holds the index

Add r7, r7, 4

Blt r6, r4, L2 r4 holds the “last”
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Super Scalar System

Processing Flow
During the course of execution, the sequence of

executed instructions forms a dynamic instruction
stream.

As long as instructions to be executed are
sequential, static instruction sequencing can be
entered into the dynamic instruction sequencing by
incrementing the program counter.
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Super Scalar System

Processing Flow

However, in the presence of conditional
branches and jumps the program counter must
be updated to a nonconsecutive address —
control dependence.

The first step in increasing instruction level
parallelism is to overcome control
dependencies.



101

Super Scalar System

Control Dependencies — Straight line code

Let us talk about control dependencies due to

the incrementing the program counter:

• The static program can be viewed as a collection of

basic blocks, each with a single entry point and a

single exit point, refer to our example, we have three

basic blocks.
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Super Scalar System

Control Dependencies — Straight line code

• Once a basic block is entered, its instructions are

fetched and execute to completion, therefore,

sequence of instructions in a basic block can be

initiated into a conceptual window of execution.

• Once the instructions are initiated, they are free to

execute in parallel, subject only to the data

dependence constraints and availability of the

hardware resources.
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Super Scalar System

Control Dependencies — Conditional Branch

To achieve a higher degree of parallelism, a super
scalar processor should address updates of the
program counter due to the conditional branches.

A method is to predict the outcome of a conditional
branch and speculatively fetch and execute
instructions from the predicted path.

Instructions from predicted path are entered into
the window of execution.
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Super Scalar System

Control Dependencies — Conditional Branch

If prediction is later found to be correct, then the
speculation status of the instructions are removed
and their effect on the state of the system is the
same as any other instructions.

If prediction is later found to be incorrect, the
speculative execution was incorrect and recovery
actions must be taken to undo the effect of
incorrect actions.
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Super Scalar System

Processing Flow

In our running example, the ble instruction
creates a control dependence.

To overcome this dependence, the branch could

be predicted as not taken and hence,

instructions between the branch and label L3

being executed speculatively.
Move r3, r7

SW r9, (r3)

Add r3, r3, 4

SW r8, (r3)

Add r5, r5, 1



106

Super Scalar System

Data Dependencies
Instructions placed in the window of execution

may begin execution subject to data dependence
constraints.

Note that data dependence comes in the form of:

• Read After Write (RAW),

• Write After Read (WAR), and

• Write After Write (WAW).
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Super Scalar System

Data Dependencies

Note that, among the three aforementioned data

dependence, RAW is the true dependence and

the other two are false (artificial) data

dependence.

In the process of execution, the false

dependencies have to be overcome to increase

degree of parallelism.
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Super Scalar System

Data Dependencies

L2:

Move r3, r7

LW r8, (r3)

Add r3, r3, 4

LW r9, (r3)

Ble r8, r9, L3

RAW

WAR

WAW
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Super Scalar System

Processing Flow

After resolving control and artificial
dependencies, instructions are issued and begin
execution in parallel.

The hardware form a parallel execution
schedule.

The execution schedule takes constraints such
as true data dependence and hardware resource
constraints into account.
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Super Scalar System

Processing Flow

A parallel execution schedule means that
instructions complete in an order different than
instructions order dictated by the sequential
execution model.

Speculative execution means that some
instructions may complete execution beyond
the scope of the sequential execution model.
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Super Scalar System

Summary

Out-of-Order Issue, Out-of-Order Completion

Super Scalar processor

Dynamic exploitation of ILP

General Configuration of Super Scalar

Flow of Operations in a Super Scalar
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Super Scalar System

Processing Flow
Speculative execution implies that the execution

results cannot be recorded permanently right away.

As a result, results of an instruction must be held in a
temporary status until the architectural state can be
updated.

Eventually, when it is determined that the sequential
model would have executed an instruction, its
temporary results are made permanent by updating
the architectural state — Instruction is committed or
retired.
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Super Scalar System
Super Scalar Architecture
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Super Pipelined Processor

In a super Pipelined Processor, the major stages of

a pipelined processor are divided into sub-stages.

The degree of super pipelining is a measure of the

number of sub-stages in a major pipeline stage.
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i2
f

f d

d

e

e

2-Stage Super Pipelined Processor
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Super Pipelined Processor

Naturally, in a super Pipelined Processor,

sub-stages are clocked at a higher frequency

than the major stages.

Reducing processor cycle time, hence

higher performance, relies on instruction

parallelism to prevent pipeline stalls in the

sub-stages.
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Super Pipelined Processor

In comparison with Super Scalar:

For a given set of operations, the super

pipelined processor takes longer to generate all

results than the super scalar processor.

Simple operations take longer time to execute

in a super scalar than super pipelined, since

there are no clock with finer resolution.
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Summary

Scalar System

Super Scalar System

Super pipeline System

Very Long Instruction Word System

In-order-issue, In-order-Completion

In-order-issue, Out-of-order-Completion

Dynamic Scheduling

Out-of-order Issue, Out-of-order-Completion

Beyond RISC
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Super Pipelined Processor

From hardware point of view, super scalar

processors are more susceptible to resource

conflicts than super pipelined processor. As a

result hardware should be duplicated for super

scalar processor. On the other hand, in super

pipelined processor, we need latches between

pipeline sub-stages. This adds overhead to

computation — degree of super pipelining

could add severe overhead.



Intel Architecture

Development of Intel Architecture (IA) can

be traced back to the design of 8085 and

8080 microprocessors to the 4004

microprocessors (the first µprocessor

designed by Intel in 1969).

However, the 1st actual processor in the IA

family is the 8086 model that quickly

followed by 8088 architecture.
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The 8086 Characteristics:

16-bit registers

16-bit external data bus

20-bit address space

The 8088 is identical to the 8086 except it

has a smaller external data bus (8 bits).
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The Intel 386 processor introduced 32-bit registers into the

architecture. Its 32-bit address space was supported with

an external 32-bit address bus.

The instruction set was enhanced with new 32-bit operand

and addressing modes with added new instructions,

including the instructions for bit manipulation.

 Intel 386 introduces paging in the IA and hence support for

virtual memory management.

 Intel 386 also allowed instruction pipelining of six stages.
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The Intel 486 processor added more parallelism by

supporting deeper pipelining (instruction decode

and execution units has 5 stages).

8-kByte on chip L1 cache and floating point

functional unit were added to the CPU chip.

Energy saving mode and power management

feature was added in the design of Intel 486 and

Intel 386 as well (Intel 486SL and Intel 386SL).
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 Intel Pentium added a 2nd execution pipeline to achieve

superscalar capability.

On-chip dedicated L1 caches were also added to its

architecture (8 KBytes instruction and an 8 KBytes data

caches).

To support Branch prediction, the architecture was

enhanced by an on-chip branch prediction table.

The register size was 32 bits, however, internal data path

of 128 bits and 256 bits have been added.

Finally it has added features for dual processing.
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 Intel Pentium Pro processor is a non-blocking, 3-way super scalar

architecture that introduced “dynamic parallelism”.

 It allows micro dataflow analysis, out of order execution, superior branch

prediction, and speculative execution.

 It is consist of 5 parallel execution units (2 integer units, 2 floating point units, and

1 memory interface unit).

 Intel Pentium Pro has 2 on-chip 8 KBytes L1 caches and one 256

KBytes L2 on-chip cache using a 64-bit bus. L1 cache is dual-ported

and L2 cache supports up to 4 concurrent accesses.

 Intel Pentium Pro supports 36-bit address space.

 Intel Pentium Pro uses a decoupled 12-stage instruction pipeline.
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L2 Cache

Bus Interface Unit

L1 Inst. Cache

L1 Data Cache

Fetch/Decode 

Unit

Dispatch/ 

Execute Unit
Retire Unit Reg. File

Branch Prediction

System Bus

Branch History Up



Pentium II is an extension of Pantium Pro

with added MMX instructions. L2 cache is

off-chip and of size 256 KBytes, 512

KBytes, 1 MBytes, or 2 MBytes. However,

L1 caches are extended to 16 kBytes.

Pentium II uses multiple low power states

(power management); Auto HALT, Stop-

Grant, Sleep, and Deep Sleep.
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Pentium III is built based on Pentium Pro

and Pentium II processors. It introduces 70

new instructions with a new SIMD floating

point unit.
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Beyond RISC



Intel 

Processor

Perform

(MIPS)

Clock 

Frequency

# trans 

on Die 

Register 

Size 

External Data 

Bus Size  

Addr.

Space

Caches

8086 1978 0.8 8 MHz 29 K 16 bits 16 bits 1 MB None

Intel 286 1982 2.7 12.5 MHz 134 K 16 bits 16 bits 16 MB None

Intel 386 1985 6.0 20 MHz 275 K 32 bits 32 bits 4 GB None

Intel 486 1989 20 25 MHz 1.2 M 32 bits 32 bits 4 GB 8KB L1

Pentium 1993 100 60 MHz 3.1 M 32 bits 64 bits 4 GB 16KB L1

Pentium Pro 1995 440 200 MHz 5.5 M 32 bits 64 bits 64 GB 16KB L1,

256KB L2 or 

512KB L2

Pentium II 1997 466 266 MHz 7 M 32 bits 64 bits 64 GB 32KB L1,

256KB L2 or 

512KB L2

Pentium III 1999 1000 500 MHz 8.2 M 32 (GP), 

128 (FP)

64 bits 64 GB 32KB L1,

512KB L2
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Pentium 4 offers new features that allows

higher performance in multimedia

applications.

The SSE2 extensions allow application

programmers to control cacheability of data.

Pentium 4 has 42 million transistors using

0.18µ CMOS technology.
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Intel 

Processor

µ-arch. Clock 

Freq. 

Tran/Die Reg. Size 

(bits)

Bus 

Bandwidth

Addr.

Space 

On-die Caches

Pentium III 1999 P6 700 

MHz

28 (M) GP: 32

FPU: 80

MMX: 64

XMM: 128

Up to 1.06 

GB/s

64 GB 32KB L1,

256KB L2

Pentium 4 2000 NetBurst 1.50

GHz

42 (M) GP: 32

FPU: 80

MMX: 64

XMM: 128

3.2 GB/s 64 GB 12Kµop Exec. 

Trace Cache;

8KB L1,

256KB L2
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Bus Interface Unit
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 First Level Caches:

 Execution Trace Cache stores decoded instructions and removes

decoder latency from main execution loops.

 Low latency data cache has 2 cycle latency.

 Very deep (20-satge mis-prediction pipeline), out-of-order, speculative

execution engine.

 Up to 126 instructions in flight.

 Up to 48 loads and 24 stores in pipeline.

 Arithmetic Logic Units runs at twice the processor frequency

(3GHz).

 Basic integer operations executes ½ processor cycle time.
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Enhance branch prediction:

Reduce mis-prediction penalty

Advanced branch prediction algorithm

4k-entry branch target array.

Can retire up to three µoperations per clock

cycle.

133

Intel Architecture



134

Wish you all the best

Introduction to High Performance Computer Architecture


