
Mobile and Heterogeneous databases
Distributed Database System

Transaction Management

A.R. Hurson
Computer Science

Missouri Science & Technology

1

Note, this unit will be covered in four
lectures. In case you finish it earlier, then
you have the following options:

1) Take the early test and start CS6302.module4
2) Study the supplement module

(supplement CS6302.module3)
3) Act as a helper to help other students in

studying CS6302.module3
Note, options 2 and 3 have extra credits as noted in course
outline.

Distributed Database System

2

Glossary of prerequisite topics

Familiar with the topics?
No Review CS6302

module3background

Yes

Remedial action
Yes

No
Take the Module

Take Test

Pass?

Glossary of topics

Familiar with the topics?
Yes

Pass?

Take Test

Yes

Options

Lead a group of students in
this module (extra credits)?

Study more advanced related
topics (extra credits)?

Study next module?

No

{

Extra Curricular activities

Enforcement
of background

{Current
Module

At the end: take
exam, record the

score, impose
remedial action if not

successful

No

Distributed Database System

3

 You are expected to be familiar with:
 Transaction processing in centralized database

configuration
 If not, you need to study

CS6302.module3.background

Distributed Database System

4

 Module 2 concentrated on query processing, query optimization, and
more specifically, query processing in distributed databases. This
module will concentrate on transaction processing in general and
transaction processing in distributed system. Note that we will
distinguish transaction from query. A query does not change the data
in base sources (e.g., relations), however, a transaction my do so. As a
result, queries, initiated by several users, do not have conflicts with
each other and can be executed in any order (including
simultaneously). However, this is not true for transactions, since they
may be in conflict with each other and hence needs to be executed in a
proper sequence.

5

Distributed Databases

 In this module, we will talk about:
 Transaction processing and management
 Formal definition of transactions
 ACID property
 Serializability
 Concurrency control
 Concurrency control protocols
 Transaction processing
 Transaction processing in distributed system

6

Distributed Databases

7

Distributed Databases

 Distributed transaction management
 Several issues hinder transaction consistency:

 Concurrent execution of transactions,
 Replicated data, and
 Failure.

 A replicated database is in a mutually
consistent state if copies of every data item in it
have identical values ─ one copy equivalence.

8

Distributed Databases

 Distributed transaction management
 In general, in a database system, one needs to

ensure Atomicity, Consistency, Isolation, and
Durability properties of transactions:

9

Distributed Databases

 Distributed transaction management
 Atomicity (all or nothing): either all operations of the

transaction are reflected in database, or none are.
 Consistency (no violation of integrity rules): Execution of

transaction in isolation preserves the consistency of the
database.

 Isolation (Concurrent changes invisible and serializable):
Even though multiple transactions may execute concurrently,
each transaction assumes it is executed in isolation (it is
unaware of other transactions executing concurrently in the
system).

 Durability (Committed updates persist): After a transaction
completes successfully, its results are becoming persistence.

10

Distributed Databases

 Distributed transaction management
 It is much easier if internally consistent

transactions are run serially ─ each transaction is
executed alone, one after the another. However,
there are two good motivations to allow concurrent
execution of transactions:
 Improved throughput and resource utilization
 Improved average response time.

 Concurrent execution of transactions means that
they should be scheduled in order to ensure
consistency.

11

Distributed Databases

 Distributed transaction management
 The concurrency control mechanism attempts

to find a suitable trade-off between maintaining
the consistency of the database and maintaining
a high level of concurrency.

 Note concurrency control deals with the
isolation and consistency properties of
transactions.

12

Distributed Databases

 Distributed transaction management
 A schedule (a history) over a set of transactions

T = {T1, T2, …, Tn} is an interleaved order of
execution of these transactions.

 A schedule is a complete schedule, if it defines
the execution order of all operations in its
domain.

13

Distributed Databases

 Distributed transaction management
SC

TFormally a complete schedule over a set of transactions
T = {T1, T2, …, Tn} is a partial order where:},{ TT

C
TS Σ=


n

i iT 1= ΣΣ =

 
n

i iT 1=⊇
For any two conflicting operations Oij, Okl ∈ ΣT either Oij T
Okl or Okl T Oij.
1st rule shows that the schedule must contain all operations in
participating transactions.
2nd rule shows that the ordering relation on T is a superset of
ordering relations of individual transactions.
3rd rule shows the execution order among conflicting operations.

14

Distributed Databases

 Distributed transaction management
 When interleaving instructions from different

transactions, one can come up with a number of
execution sequence (schedule).

 In this case, we can ensure consistency if the
concurrent schedule has the same effect as a
serial schedule of transactions ─ Concurrent
schedule is equivalent to a serial schedule.

15

Distributed Databases

 Distributed transaction management ─
Conflict Serializability
 Two schedules S and S’ are conflict equivalent

if S’ is generated by a series of swaps of non
conflicting instructions in S.

Read (A);
Write (A);

Read (B);

Write (B);

Read (A);

Write (A);

Read (B);
Write (B);

Read (A);
Write (A);

Read (B);
Write (B);

Read (A);
Write (A);

Read (B);
Write (B);

16

Distributed Databases

 Distributed transaction management ─
Conflict Serializability
 Formally, two schedules S and S’ over a set of

transactions are conflict equivalent if for each
pair of conflicting operations Oij, Okl (i ≠ k),
whenever Oij S Okl, then Oij S’ Okl.

17

Distributed Databases

 Distributed transaction management ─
Conflict Serializability
 Concept of conflict equivalent leads to the

concept of conflict serailizability.
 A schedule S is conflict serializable if it is

conflict equivalent to a serial schedule.

18

Distributed Databases

 Distributed transaction management
 The primary function of concurrency controller

is to generate a serializable schedule for
execution of a sequence of transactions ─ to
devise algorithms that guarantee the generation of
serializable schedules.

19

Distributed Databases

 Distributed transaction management
 In a distributed databases, with no data

replication if local schedules are serializable
then their union (global schedule) is also
serializable as long as local serialization order
is identical.

20

Distributed Databases

 Distributed transaction management
 In distributed databases, in case of replication,

local schedules could be serializable, but the
global schedule might not ─ mutual consistency
of database is compromised.

 Consider the following transactions and the two
schedules:

21

Distributed Databases

 Distributed transaction management
T1:

Read (x)
x ← x + 5
Write (x)
Commit

T2:
Read (x)
x ← x * 10
Write (x)
Commit

S1 = {R1(x), W1(x), C1, R2(x), W2(x), C2}

S2 = {R2(x), W2(x), C2, R1(x), W1(x), C1}

 Distributed transaction management
 In case of replicated databases, it is the task of

replica control protocol to make sure that the
operations (read and write) on logical data are
mapping correctly onto physical data.

 Assume we have a data item (x) with copies x1,
x2, …, xn.

22

Distributed Databases

 Distributed transaction management
 read(x) needs to be mapped onto one of the

replica, so say it will be modified as read(X5).
 write(x) will be extended to write(x1), write(x2),

write(x3), …, write(xn).

23

Distributed Databases

24

Distributed Databases

 Distributed transaction management
 Within the scope of the distributed databases,

we distinguish two entities:
 Local entities, and
 Global entity.

 As a result, we can talk about local transactions
vs. global transactions.

25

Distributed Databases

 Distributed transaction management
 In this environment, each site has its own local

transaction manager, whose function is to
ensure ACID properties for those local
transactions executed at that site.

 Different transaction managers cooperate with
each other to execute global transactions.

26

Distributed Databases

 Centralized Transaction Execution

User application User application

Transaction Manager

Scheduler

Recovery Manager Operations

Result

Scheduled operations

27

Distributed Databases

 Centralized Transaction Execution
 Transaction Manager is responsible for

coordinating the execution of the database
operations on behalf of an application.

 Scheduler is responsible for the implementation
of a specific concurrency control algorithm.

 Recovery manager is responsible to implement
procedures that transform database into a
consistent state after a failure.

28

Distributed Databases

 Distributed transaction management ─
General configuration

TC1

TM1

TCn

TMn

Site1 Siten

• • •

29

Distributed Databases

 Distributed transaction management ─
General configuration
 Transaction manager manages the execution of

transactions (local transaction or global sub-transaction)
that access local data.

 Transaction coordinator coordinates the execution of
transactions (local or global) that are initiated at that
site.

30

Distributed Databases

 Distributed transaction management ─
General configuration
 The structure of transaction manager is similar

to the one in a centralized database. It is
responsible to:
 Maintain a log for recovery,
 Participate in a concurrency control protocol to

coordinate concurrent execution of transaction at
that site.

31

Distributed Databases

 Distributed transaction management ─
General configuration
 The transaction coordinator is a new entity and

responsible for:
 Starting the execution of the transaction,
 Converting a global transaction into sub-transactions and

distribute sub-transactions to the designated sites, and
 Coordinate the termination of the transactions ─ note a

global transaction must be committed or aborted at all
sites.

32

Distributed Databases

 Distributed transaction management ─
General configuration
 Besides the type of failures common in a

centralized database (software/hardware errors,
disk crashes), a distributed system suffers from:
 Site failure,
 Loss/corruption of messages,
 Link failure,
 Network partitioning

33

Distributed Databases

 Distributed transaction management ─
General configuration
 Within a distributed system, sites are

communicating with each other via messages.
If two sites are not physically linked together,
then messages must be routed through a
sequence of communication links.

 In case of link failure, messages might be able
to find different route through the network.

34

Distributed Databases

 Distributed transaction management ─
General configuration
 Network partitioning is the result of link

failure, where a group of sites cannot
communicate with each other ─ system is
partitioned into subsystems.

35

Distributed Databases

 Distributed transaction management ─ General
Comments
 Lock Based approach: Transactions are synchronized

by physical or logical locks on some portion (granule)
of the database ─ Locking granularity.

 In a distributed environment, we can distinguish three
classes of lock based protocols:
 Centralized Locking
 Primary Copy Locking
 Decentralized Locking

36

Distributed Databases

 Distributed transaction management ─ Lock
Based approach
 Centralized Locking: One of the sites in the network is

designated as the primary site, where the lock tables for
the entire database are stored, in charge with the task of
granting locks to transactions.

37

Distributed Databases

 Distributed transaction management ─ Lock
Based approach
 Primary Copy Locking: One of the copies of each data

unit is designated as the primary copy and it is the
primary copy that has to be locked for the purpose of
accessing that data unit ─ all transactions desiring to
access data item obtain their lock at the site where the
primary copy resides at.

 If data item is not replicated, the primary copy protocol
distributes the lock management task among a number
of sites.

38

Distributed Databases

 Distributed transaction management ─ Lock
Based approach
 Decentralized Locking: The lock manager duty is

shared by all the sites in the network ─ Execution of a
transaction involves the participation and coordination
of schedulers at several sites.

 In case of replication, transaction accessing a data item
must obtain locks at all sites.

39

Distributed Databases

 Distributed transaction management ─ General
Comments
 Timestamp Ordering: Assigns a unique

identifier to each transaction and data items in
order to organize their execution sequence.

 In this group we can talk about:
 Basic Timestamp Ordering
 Multi-version Timestamp Ordering
 Conservative Timestamp Ordering

40

Distributed Databases

 Distributed transaction management ─ General
Comments
 Note there is a class of Hybrid Concurrency

control algorithms which are mixed of locking-
based and timestamp-based schemes. This
class is intended to improve efficiency and the
level of concurrency.

41

Distributed Databases

 Distributed transaction management ─ Centralized
Two-phase Locking protocol
 Lock manager responsibility is delegated to a single

site.
 Transaction coordinators at the other sites communicate

with the centralized lock manager rather than with their
own lock managers.

 This scheme also is referred to as: primary site two-
phase locking.

42

Distributed Databases

 Distributed transaction management ─ Centralized
Two-phase Locking protocol

Data Processing at
Participating sites

Coordinating
Transaction Manager

Central site
Lock Manager

43

Distributed Databases

 Distributed transaction management ─ Centralized
Two-phase Locking protocol
 Centralized lock manager does not communicate with

the data processing sites directly.
 The distributed transaction manager must implement

replica control protocol, if database is replicated.
 Bottleneck at central lock manager and reliability are

the major drawbacks of this approach.

44

Distributed Databases

 Distributed transaction management ─ Primary copy
Two-phase Locking protocol
 This scheme is the direct extension of centralized two-phase

locking protocol in an attempt to remove its performance
bottleneck.

 It simply distributes the task of lock manager among several lock
managers for a given set of lock units.

 The transaction coordinators send their lock and unlock requests to
the lock managers that are responsible for specific lock unit ─ The
location of the primary copy of each data item needs to be
determined before sending a lock or unlock request.

45

Distributed Databases

 Distributed transaction management ─ Distributed
Two-phase Locking protocol
 Here a lock manager exists at each site.

 In case of no replication, this scheme degenerates
into the Primary copy Two-phase Locking protocol.

 In case of replica, the algorithm implements the read
once/write all (ROWA) replica control protocol.

46

Distributed Databases

 Distributed transaction management ─ Distributed
Two-phase Locking protocol

Participating Data
Processing sites

Participating schedulers
Lock Managers

Coordinating
Transaction Manager

47

Distributed Databases

 Distributed transaction management ─
Distributed Two-phase Locking protocol
 In comparison to centralized approach, lock and unlock

messages are sent to the lock managers at all
participating sites. In addition, operations are sent, by
participating lock managers, to the data processors
instead of coordinating transaction manager.

48

Distributed Databases

 Distributed transaction management ─ Two-
phase commit protocol
 Transaction T is initiated at site Si with the

transaction coordinator TCi.
 T is decomposed by TCi and transmitted to

different sites for execution.
 When all sites at which T is executed inform

TCi that T is completed, TCi starts the 2-phase
commit protocol.

49

Distributed Databases

 Distributed transaction management ─ Two-
phase commit protocol (Phase1)
 TCi adds the record “prepare T” to the log and forces

the log to permanent storage.
 “Prepare T” message is communicated with all the sites

involved.
 At each designated site, the transaction manager follows the

following actions:
 If not willing to “commit”, then adds “no T” to its log and sends

an “abort T” message to TCi.
 If willing to commit, then adds “ready T” to its log and sends a

“ready T” message to TCi.

50

Distributed Databases

 Distributed transaction management ─ Two-
phase commit protocol (Phase2)
 On receiving replies from the sites, TCi determines

whether or not the transaction must be committed or
aborted.

 Based on the local decisions, either a “commit T” or an
“abort T” is logged on permanent storage.

 TCi sends either an “abort T” or “commit T” to the
participating sites.

 The message from the TCi is logged at the participating
sites.

51

Distributed Databases

 Distributed transaction management ─ Two-
phase commit protocol
 A “ready T” message from a participating site to TCi is

a promise that the site will follow the coordinator
commit or abort command.

 Unanimity is required by the coordinator to commit a
transaction.

 In some implementation, at the end of the 2nd phase,
participating sites send “acknowledge T” message to
the TCi. TCi upon receiving all “acknowledge T”
messages, adds the “complete T” record into its log.

52

Distributed Databases

 Distributed transaction management ─
Two-phase commit protocol
 Failure of a participating site: Transaction is

aborted if TCi detects a failure before receiving
“ready T” message, otherwise the coordinator
continue normal sequence of operations.

53

Distributed Databases

 Distributed transaction management ─ Two-
phase commit protocol
 After recovery from failure, the site must examine its

log to determine the fate of those transactions that were
in the midst of execution when the failure occurred.
 If log contain “commit T”, then the site executes “redo (T)”,
 If log contains “abort T”, then the site performs “undo (T)”,
 If log contains “ready T”, then it should consult with the

coordinator,
 If log contains no “commit, abort, ready” messages about T,

then it performs “undo (T)”.

54

Distributed Databases

 Distributed transaction management ─ Two-phase
commit protocol
 Failure of the coordinator: If the coordinator fails in the midst of

operation of a transaction T:
 If an active site contains “commit T” in its log, then T must be

committed,
 If an active site contains “abort T” in its log, then T must be aborted,
 If some active site do not contain “ready T” in their logs, then T must

be aborted,
 If none of these cases holds, then all active sites must have “ready T”

record in their logs. In this case they must wait for the coordinator
site to recover ─ this will cause blocking problem since data items
involved in T might be unavailable to other transactions.

55

Distributed Databases

 Distributed transaction management ─ Two-phase
commit protocol
 Network Partition: In this case we have two

possibilities:
 Coordinator and all sites are in the same partition. In this case

the failure has no effect on the fate of transaction.
 Coordinator and all sites involved belong to several partitions.

In this case, coordinator and sites in the same partition, follow
the protocol that the other sites in other partitions have failed.
Sites in the partitions that does not contain the coordinator
follow the protocol that the coordinator has failed.

56

Distributed Databases

 Distributed transaction management ─
Three-phase commit protocol
 This is an extension to two-phase commit that

avoids blocking under certain assumptions. It
assumes no network partitioning and can
tolerate up to K sites failure.

 Under aforementioned assumptions, it
introduces a third phase where multiple sites
are involved in the decision to commit.

57

Distributed Databases

 Distributed transaction management ─ Three-
phase commit protocol
 Instead of noting the commit decision in its log (permanent

storage) and then informing other sites involved, the coordinator
make sure that at least k sites are aware of its intension to commit.

 If the coordinator fails, the remaining sites first select a
coordinator, the new coordinator, checks the status of the
transaction from other sites. If there was a decision to commit the
transaction, the new coordinator respects that and initiate the third
phase, otherwise, it will abort the transaction.

58

Distributed Databases

 Distributed transaction management ─
Locking protocols
 First we will look at the schemes that require update to

be done on all replicated data. Then, we will look at
schemes that allow us to relax this restriction.

59

Distributed Databases

 Distributed transaction management ─
Locking protocol
 Locking protocol as we studied before can be used for

distributed environment by extending the scope of lock-
manager in order to handle replicated data.

 Two cases will be considered:
 Single lock-manager approach
 Distributed lock-manager approach

60

Distributed Databases

 Distributed transaction management ─ Single
lock-manager approach
 This is the same as locking scheme in centralized

database environment.
 A single lock-manager is maintained in one site ─ say

Si. As a result, every lock and unlock requests are
made at site Si.

61

Distributed Databases

 Distributed transaction management ─ Single
lock-manager approach
 Upon a request, lock-manager determines whether or

not the lock can be granted immediately:
 If so, a message to that effect is sent to the site requesting the

lock.
 If no, request is delayed until it can be granted and a message

to this fact is sent to the site requesting the lock.

 A transaction can read data from any replica, but all
replicas participate in a write operation.

62

Distributed Databases

 Distributed transaction management ─ Single
lock-manager approach
 Simple implementation
 Simple deadlock detection

 Are major advantages of this approach.

 Bottleneck at the lock-manager
 Vulnerability and lack of fault tolerance

 Are the disadvantages of this approach.

63

Distributed Databases

 Distributed transaction management ─ Distributed
lock-manager approach
 Each site maintains a local lock manager whose

function is to administer the lock and unlock requests
for data items stored at that site.

64

Distributed Databases

 Distributed transaction management ─ Distributed
lock-manager approach (request for unreplicated data)
 When a transaction wishes to lock data item from a site

(Si) and if the data item is not replicated, a message is
sent to the lock manager at site Si.
 If the data item is locked in an incompatible mode, then the

request is delayed until it can be granted.
 Once it is determined that the lock can be granted, the lock

manager sends a message back to the initiator that the lock
request is granted.

65

Distributed Databases

 Distributed transaction management ─ Distributed
lock-manager approach (request for unreplicated data)
 This approach has low implementation overhead, it is

easy to implement, and without bottleneck at a local
site.

 However, it is harder to implement deadlock detection
─ there is a potential for inter-site deadlock even when
there is no deadlock within a single site.

66

Distributed Databases

 Distributed transaction management ─ Distributed
lock-manager approach (request for replicated data)
 Primary copy protocol

 In this case, one replica is chosen as the primary
copy and hence, its corresponding site is called
primary site.

 Any lock request for a data item must be sent to the
primary site. As a result, this approach allows
implementation of concurrency control for
replicated data as the replica does not exist.

67

Distributed Databases

 Distributed transaction management ─ Distributed
lock-manager approach (request for replicated data)
 Majority protocol

 In case data item is replicated in n sites, a lock
request must be sent to more than one-half of the
sites.

 A transaction cannot operate on the requested data
item until it has obtained a lock on the majority of
the replicas.

68

Distributed Databases

 Distributed transaction management ─ Distributed
lock-manager approach (request for replicated data)
 Majority protocol

 This approach is more complicated to implement
and requires more messages to lock and unlock a
data item.

 There is also a potential for global deadlocks.

69

Distributed Databases

 Distributed transaction management ─ Distributed lock-
manager approach (request for replicated data)
 Biased protocol

 This is a version of the majority protocol where the request for
shared locks are given more favorable treatment than the
request for exclusive locks.

 Consequently, it imposes less overhead on read operations than
does the majority protocol ─ it is more appropriate for
application domains which require much more read operations
than write operations.

 As before, the transaction does not operate on a data item until
it has successfully obtained a lock on a majority of the replica.

70

Distributed Databases

 Distributed transaction management ─ Distributed
lock-manager approach (request for replicated data)
 Biased protocol

 Shared lock request on a data item is sent to just one
site holding a replica.

 Exclusive lock request on a data item is sent to all
sites holding the replicas.

71

Distributed Databases

 Distributed transaction management ─ Distributed
lock-manager approach (request for replicated data)
 Quorum Consensus protocol

 It is a generalization of both majority and biased
protocols.

 Each site is an assigned weight, wi.
 Read and write operations on an item x is

enhanced by two integers, read Quorum Qr and
write Quorum Qw, that must satisfy the following
relations:

This image cannot currently be displayed.

This image cannot currently be displayed.

This image cannot currently be displayed.

∑>+ wQQ x
i

x
w

x
r ∑> wQ x

i
x
w*2

72

Distributed Databases

 Distributed transaction management ─ Distributed
lock-manager approach (request for replicated data)
 Quorum Consensus protocol

 To execute a read/write on x, enough replicas must
be read/written that their total weight satisfy the
following: QQw

x

w

x

r

x

i /≥∑

73

Distributed Databases

 Distributed transaction management ─ Distributed
lock-manager approach (request for replicated data)

 Quorum Consensus protocol
 This approach is more dynamic which

allows one, based on the application domain,
to favor read or write operations.

 In addition, site weight can be assigned such
that the sites that are more reliable weighted
higher.

74

Distributed Databases

 Distributed transaction management ─ Conservative
timestamp-ordering
 What is the major problem with the timestamp-ordering

in a distributed system?
 Timestamp-ordering is a deadlock free protocol, since

operations never wait, but it forces transaction restart.
 This is a major problem in distributed systems since

transactions generated by inactive sites executed at
active sites will keep being rejected continuously.

75

Distributed Databases

 Distributed transaction management ─ timestamp-
ordering
 To avoid continuous restart of rejected transactions, counters at

different sites must be synchronized.
 Synchronization cost of counters is expensive ─ large number of

required messages.
 Simple solution can be adapted to avoid high cost of

synchronization (if we use system clock and if clocks are of
comparable speed).

76

Distributed Databases

 Distributed transaction management ─ timestamp-
ordering
 As another solution, we let the transaction coordinators to

communicate with each other.
 A transaction coordinator sends its remote operations to other

transaction coordinators at other sites ─ instead of transaction
managers.

 At receiving sites, each transaction coordinator whose counter is
less than the incoming timestamp, adjust its counter to one more
than the incoming one ─ this policy ensures that none of the
counters gets away or lags behind the others significantly.

77

Distributed Databases

 Distributed transaction management ─ Timestamp
ordering

 This approach assigns a unique identifier to each
transaction in order to decide the serialization order. So
in a distributed environment the challenge lies in the
generation of the unique identifier.

 Two cases can be recognized:
 Centralized timestamping,
 Distributed timestamping.

78

Distributed Databases

 Distributed transaction management ─ Timestamp
ordering

 Centralized timestamping: In this case, a single site
distributes the timestamping.

 Distributed timestamping: In this case, a global
timestamp is composed of two entities:
 A unique local timestamp, as in centralized environment,
 A unique site identifier.

Local site timestamp Site identifier

	Mobile and Heterogeneous databases �Distributed Database System�Transaction Management
	Distributed Database System
	Distributed Database System
	Distributed Database System
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases

