Computer Organization Register Transfer Logic
 Number System

Department of Computer Science Missouri University of Science \& Technology hurson@mst.edu

Decimal Numbers: Base 10

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
-Example:
$3271=$
$>\left(3 \times 10^{3}\right)+\left(2 \times 10^{2}\right)+\left(7 \times 10^{1}\right)+\left(1 \times 10^{0}\right)$

Numbers: positional notation

- Number Base B => B symbols per digit:
* Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Base 2 (Binary): 0, 1
- Number representation:
* $\mathrm{d}_{31} \mathrm{~d}_{30} \ldots \mathrm{~d}_{2} \mathrm{~d}_{1} \mathrm{~d}_{0}$ is a 32-digit number
*. value $=d_{31} \times B^{31}+d_{30} \times B^{30}+\ldots+d_{2} \times B^{2}+d_{1} \times B^{1}+d_{0} \times B^{0}$
- Binary: 0,1
*. $1011010=1 \times 2^{6}+0 \times 2^{5}+1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$ $=64+16+8+2=90$
* Notice that a 7-digit binary number converts into a 2-digit decimal number
* Which base(s) convert(s) to binary easily?

Hexadecimal Numbers: Base 16

Example (convert hex to decimal):
*. $\mathrm{B} 28 \mathrm{~F} 0 \mathrm{DD}=\left(\mathrm{Bx} 16^{6}\right)+\left(2 \mathrm{x} 16^{5}\right)+\left(8 \mathrm{x} 16^{4}\right)+$

$$
\begin{aligned}
& \left(\text { Fx16 } 6^{3}\right)+\left(0 \times 16^{2}\right)+(\text { Dx16 } 1)+\left(\mathrm{Dx}^{1} 6^{0}\right) \\
& =\left(11 \times 16^{6}\right)+\left(2 \times 16^{5}\right)+\left(8 \times 16^{4}\right)+ \\
& \left(15 \times 16^{3}\right)+\left(0 \times 16^{2}\right)+\left(13 \times 16^{1}\right)+\left(13 \times 16^{0}\right) \\
& \quad=187232477 \text { decimal }
\end{aligned}
$$

Notice that a 7-digit hex number is converted to a 9-digit decimal number

Decimal vs. Hexadecimal vs.Binary

- Examples:		00	0	0000
-1010 11000101	(binary)	01	1	0001
	(binary)	02	2	0010
= AC5 (hex)		03	3	0011
		04	4	0100
>10111		05	5	0101
= 00010111	(binary)	06	6	0110
- 0001 0111	(binary)	07	7	0111
= 17 (hex)		08	8	1000
		09	9	1001
		10	A	1010
-3F9(hex)		11	B	1011
= 001111111001	(binary)	12	c	1100
		13	D	1101
		14	E	1110
		15	E	1111

Hex to Binary Conversion

HEX is a more compact representation of binary.
-Each hex digit represents 16 decimal values.
Four binary digits represent 16 decimal values.
Therefore, each hex digit can replace four binary digits.

- Example:

00111011100110101100101000000000 binary
3 b 9 a c a 0 hex

Which Base Should We Use?

Decimal: Great for humans; most arithmetic is done with this base.
-Binary: This is what computers use, so get used to them. Become familiar with how to do basic arithmetic with them (+,-,*,/).
>Hex: Terrible for arithmetic; but if we are looking at long strings of binary numbers, it is much easier to convert them to hex and look at four bits at a time.

representations of numbers?

Everything we can do with decimal numbers.

* Addition
*Subtraction
*Multiplication
* Division
*. Comparison
Example: $10+7=17$

$$
\begin{array}{r}
1010 \\
+\quad 0111
\end{array}
$$

$$
1000001
$$

* so simple to add in binary that we can build circuits to do it
* subtraction also just as in decimal

\star	\star		\star		
Binary	Decimal	Octal	3-Bit String	Hexadecimal	4-Bit String
0	0	0	000	0	0000
1	1	1	001	1	0001
10	2	2	010	2	0010
11	3	3	011	3	0011
100	4	4	100	4	0100
101	5	5	101	5	0101
110	6	6	110	6	0110
111	7	7	111	7	0111
1000	8	10	-	8	1000
1001	9	11	-	9	1001
1010	10	12	-	A	1010
1011	11	13	-	B	1011
1100	12	14	-	C	1100
1101	13	15	-	D	1101
1110	14	16	-	E	1110
1111	15	17	-	F	1111

Table 2-1
Binary, decimal, octal, and hexadecimal numbers.

Conversion	Method	Example
Binary to		
Octal	Substitution	$10111011001_{2}=10111011001_{2}=2731_{8}$
* Hexadecimal	Substitution	$10111011001_{2}=10111011001_{2}=5 \mathrm{D} 9_{16}$
* Decimal	Summation	
Octal to		
Binary	Substitution	$1234_{8}=001010011100_{2}$
Hexadecimal	Substitution	$1234_{8}=001010011100_{2}=001010011100_{2}=29 \mathrm{C}_{16}$
Decimal	Summation	$1234{ }_{8}=1 \cdot 512+2 \cdot 64+3 \cdot 8+4 \cdot 1=668{ }_{10}$
Hexadecimal to		
* Binary	Substitution	$\mathrm{C} 0 \mathrm{DE}_{16}=1100000011011110_{2}$
Octal	Substitution	$\mathrm{CODE}_{16}=1100000011011110_{2}=1100000011011110_{2}=140336_{8}$
* Decimal	Summation	$\mathrm{C} 0 \mathrm{DE}_{16}=12 \cdot 4096+0 \cdot 256+13 \cdot 16+14 \cdot 1=49374_{10}$
Decimal to		
* Binary	Division	$\begin{aligned} & 108_{10} \div 2= 54 \text { remainder } 0 \quad(\mathrm{LSB}) \\ & \div 2= 27 \text { remainder } 0 \\ & \div 2=13 \text { remainder } 1 \\ & \div 2=6 \text { remainder } 1 \\ & \div 2=3 \text { remainder } 0 \\ & \div 2=1 \text { remainder } 1 \\ & \div 2=0 \text { remainder } 1 \quad(\mathrm{MSB}) \end{aligned}$
		$108_{10}=1101100_{2}$
Octal	Division	$108_{10} \div 8=13$ remainder 4 (least significant digit) $\div 8=1$ remainder 5 $\div 8=0$ remainder $1 \quad$ (most significant digit)
		$108_{10}=154_{8}$
* Hexadecimal	Division	$\begin{aligned} & 108_{10} \div 16= \\ & 6 \text { remainder } 12 \quad \text { (least significant digit) } \\ & 108_{10}=6 C_{16} \end{aligned}$

Table 2-2

Conversion methods for common radices.

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Signed-magnitude representation

$>$ In decimal: +98, -10, +0, -0
$>$ In binary, the Most Significant Bit (MSB) (leftmost bit) is dedicated as the sign bit.

* MSB $=0$ for positive numbers
* MSB = 1 for negative numbers
* 8-bit examples: $01010101=+85_{(10)}$

$$
11010101=-85_{(10)}
$$

* Range: -(2 $\left.2^{n-1}-1\right)$ through $+\left(2^{n-1}-1\right)$
- With 8 bits: -127 through +127
* Two representations of zero

Complement number systems

Assumptions are the following:
>Fixed number of digits: n
Radix is r
$>$ Integers of form: $D=d_{n-1} d_{n-2} \ldots d_{1} d_{0}$
If the result of an operation produces a number that needs more than n digits, we discard the higher-order digits
If D is complemented twice, the result is D

$$
\cdots-(-D)=D
$$

Radix-complement notation

Complement of n-digit D is $-D=r^{n}-D$
If $1 \leq D \leq 2^{n}-1$, then $1 \leq-D \leq 2^{n}-1$
$>0^{\prime}=2^{n}$, which is $n+1$ bits long: 100000000

* Per convention, we discard the MSB
* Results in only one representation of 0

2's-complement notation

$>-D=2^{n}-D=\left(\left(2^{n}-1\right)-D\right)+1$
$\Delta 2^{n}-1$ has the form 11111111

* $1-1=0 ; 1-0=1 \quad$ toggles each bit
>Toggle every bit to get ((2n-1)-D)
-Add 1 to result to get 2's complement

2's-complement notation

A number is negative iff its MSB is 1
When converting to decimal, everything is the same, except weight of MSB for a negative number is $-\left(2^{n-1}\right)$ instead of $+\left(2^{n-1}\right)$

PRange: -(2 $\left.2^{n-1}\right)$ through $+\left(2^{n-1}-1\right)$

* For 8 bits: -128 through 127

Examples

$\checkmark 85_{(10)}=\quad 01010101$; toggle bits:

$$
10101010
$$

$$
\frac{+1}{10101011}=-85_{(10)}
$$

\checkmark Check: $\quad-128+32+8+2+1=-85$

- $-99_{(10)}=\quad$ 10011101; toggle bits:

01100010

$+\quad+1$; add 1
$01100011=99_{(10)}$

- Check: $64+32+2+1=99$

2's complement addition

$>$ Just like decimal, but per convention, ignore carry out of MSB
\checkmark Result will be correct unless range is exceeded (overflow)
>Overflow only happens when two numbers being added have the same sign

2's complement addition

Recall that range for 8 bits: -128 through 127

$$
\begin{aligned}
01111111 & =127_{(10)} \\
+00000001 & = \\
\hline 10000000 & =-128_{(10)} \text { incorrect result }
\end{aligned}
$$

We expected 128, which cannot be represented with 8 digits (out of range)

Overflow

```
    \(10000000=-128_{(10}\)
\(+11111111=-1_{(10)}\)
\(101111111=127_{(10)}\) incorrect result
```

We expected -129 , which cannot be represented with 8 digits (out of range)

Overflow

Check for overflow

* Do both addends have the same sign?
*. If no, overflow is impossible.
*. If yes, does the sum have the same sign as them? If it does not, then overflow.
>Other method:
*. If carry into MSB = carry out of MSB; then overflow

2's complement subtraction

- Turn it into an addition by negating the subtrahend $(+4)-(+3)=(+4)+(-3)=+1$

	1
0100	0100
+ 1101	$\begin{array}{r}\text { + } \\ +1100 \\ \hline\end{array}$
10001	10001
$(+3)-(+4)=(+3)+(-4)=-1$	
0011	
+ 1100	$\begin{array}{r}10011 \\ +1011 \\ \hline\end{array}$
1111	111

2's complement subtraction

Shortcut: To negate the second number, we toggle the bits and add 1 to the result. Since we will eventually be adding two numbers, we can combine this addition with the final one.
Toggle bits of the second number (minuend), and add to the first, with a carryin of 1.

Overflow detection

$>$ For overflow detection, check the signs of the two numbers being added, and the sign of the result. This is exactly the same as before.
> Or: If carry into MSB \neq carry out of MSB; then overflow
$>(-8)-(+1)=-9$ overflow is expected 1000
$\begin{array}{r}+1111 \\ \hline\end{array}$
10111

2's complement of a non-integer

Definition is the same as for integers:

* Complement of n-digit D is $-D=r^{n}-D$
* Here, n refers to the number of digits to the left of the decimal point (integer digits)
- Example: D = 010.11
* Number of integer digits $=n=3$
$-D=2^{n}-D=2^{3}-D=1000-010.11$

$$
\begin{array}{r}
1000.00 \\
+\quad 010.11 \\
\hline 101.01
\end{array}
$$

Decimal codes

Binary numbers are most appropriate for internal operations of a computer.
External interfaces (I/O) may read or display decimal, for the benefit of humans.
Logical conclusion is that we need an easy way of representing decimal numbers with bits.
A coded representation of the 10 digits of the decimal number system (0-9) is known as a binary-coded decimal (BCD) representation.

Some definitions

Code: a set of n-bit strings, where each string represents a different number, letter, or other thing.
Code word: one such n-bit string.
A legal, or valid code word, is one that is actually used to represent something.

* With n bits, we can have 2^{n} code words, but not all of these are necessarily used to represent something. Some of them may be unused.
* Example: A BCD code needs to represent 10 digits (0-9)
- At least 4 bits are needed to represent 10 things
- 4 bits give us 16 possible code words
- 10 of these 16 are legal code words
- 6 are unused

Binary coded decimal (BCD)

Most natural representation is to use 4-bit strings, where each decimal digit is represented its binary representation

* 0000 through 1001 is used to represent the decimal digits 0 through 9 , respectively.
* This is the 8421 BCD scheme, which is a weighted code.
\checkmark To convert from decimal to BCD, replace each decimal digit with its BCD 4-bit string.

Binary coded decimal (BCD)

\checkmark Keep in mind that this BCD number is NOT the same as you would get if converting decimal to binary the usual way.

- Example: BCD string for 16 is

Binary equivalent of 16 is 00010000 .
$\checkmark 2$ BCD digits (one byte) can represent 0 through 99.

- A normal byte can represent 0 to 255 (unsigned), or -128 to 127 (signed).
\diamond We will not discuss BCD representation of signed numbers.
- We may come back to BCD arithmetic later in the course.

Unit-distance codes

$>$ Useful for when an analog quantity needs to be converted to digital.
Only one bit can change as successive integers are coded.
Gray code is a common example.

4-bit Gray code	
Decimal number	Gray code
0	0000
1	0001
2	0011
3	0010
4	0110
5	0111
6	0101
7	0100
8	1100
9	1101
10	1111
11	1110
12	1010
13	1011
14	1001
15	1000

Why is it useful?

- Assume that the position of a shaft, which is an analog quantity, needs to be digitally represented.
A positional encoder wheel is attached to the shaft.
Accuracy provided by 4 binary digits is sufficient.

Alphanumeric codes

\checkmark Alphabetic information also needs to be handled by digital systems.
> Need to represent letters of the alphabet in upper and lowercase, numbers, punctuation marks, symbols such as $\$$ and @, and control operations such as Backspace and Carriage Return.
> The best known alphanumeric code is the 7-bit American Standard Code for Information Exchange (ASCII).
A more recent code, the Unicode Standard, uses 16-bit strings and codes characters from foreign languages as well. Also includes codes for math symbols, etc.

