Computer Organization

Register Transfer Logic

Number System

Department of Computer Science Missouri University of Science & Technology hurson@mst.edu

Decimal Numbers: Base 10

lacktriangle Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Example:

$$3271 =$$

 $(3x10^3) + (2x10^2) + (7x10^1) + (1x10^0)$

Numbers: positional notation

- ◆ Number Base B => B symbols per digit:
 - *Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 Base 2 (Binary): 0, 1
- ♦ Number representation:
 - $\star d_{31}d_{30} \dots d_2d_1d_0$ is a 32-digit number
 - * value = $d_{31}x B^{31} + d_{30}x B^{30} + ... + d_2x B^2 + d_1x B^1 + d_0x B^0$
- **♦** Binary: 0,1
 - * $1011010 = 1x2^6 + 0x2^5 + 1x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 0x2^0$ = 64 + 16 + 8 + 2 = 90
 - * Notice that a 7-digit binary number converts into a 2-digit decimal number
 - * Which base(s) convert(s) to binary easily?

Hexadecimal Numbers: Base 16

Example (convert hex to decimal):

*B28F0DD =
$$(Bx16^6) + (2x16^5) + (8x16^4) +$$

 $(Fx16^3) + (0x16^2) + (Dx16^1) + (Dx16^0)$
= $(11x16^6) + (2x16^5) + (8x16^4) +$
 $(15x16^3) + (0x16^2) + (13x16^1) + (13x16^0)$
= 187232477 decimal

◆Notice that a 7-digit hex number is converted to a 9-digit decimal number

Decimal vs. Hexadecimal vs.Binary

```
Examples:
                                              00
                                                          0000
                                             01
                                                          0001
 ◆1010 1100 0101
                           (binary)
                                              02
                                                          0010
     = AC5 (hex)
                                                    3
                                                          0011
                                             03
                                                          0100
                                             04
                                                    4
                                             05
                                                    5
                                                          0101
igoplus 10111
                            (binary)
                                                          0110
                                              06
          0001
                   0111
                            (binary)
                                             07
                                                          0111
     = 17 \text{ (hex)}
                                             80
                                                    8
                                                          1000
                                                          1001
                                             09
                                                          1010
                                             10
                                                   \mathbf{A}
♦3F9(hex)
                                                          1011
                                             11
                                                    \mathbf{B}
                                             12
                                                          1100
  = 0011 \ 1111 \ 1001
                           (binary)
                                                          1101
                                             13
                                                   \mathbf{D}
                                             14
                                                          1110
                                                    \mathbf{E}
                                             15
                                                          1111
                                                    Ŀ
```

Hex to Binary Conversion

- ◆HEX is a more compact representation of binary.
- Each hex digit represents 16 decimal values.
- ◆Four binary digits represent 16 decimal values.
- ◆Therefore, each hex digit can replace four binary digits.
- **♦**Example:

Which Base Should We Use?

- ◆Decimal: Great for humans; most arithmetic is done with this base.
- ◆Binary: This is what computers use, so get used to them. Become familiar with how to do basic arithmetic with them (+,-,*,/).
- ◆Hex: Terrible for arithmetic; but if we are looking at long strings of binary numbers, it is much easier to convert them to hex and look at four bits at a time.

representations of numbers?

- Everything we can do with decimal numbers.
 - *Addition
 - *****Subtraction
 - *****Multiplication
 - *****Division
 - *****Comparison
- **Example:** 10 + 7 = 17

1 1

1 0 1 0

+ 0 1 1 1

1 0 0 0 1

- *so simple to add in binary that we can build circuits to do it
- *subtraction also just as in decimal

				×	
Binary	Decimal	Octal	3-Bit String	Hexadecimal	4-Bit String
0	0	0	000	0	0000
1	1	1	001	1	0001
10	2	2	010	2	0010
11	3	3	011	3	0011
100	4	4	100	4	0100
101	5	5	101	5	0101
110	6	6	110	6	0110
111	7	7	111	7	0111
1000	8	10	_	8	1000
1001	9	11	_	9	1001
1010	10	12	_	A	1010
1011	11	13	_	В	1011
1100	12	14	_	C	1100
1101	13	15	_	D	1101
1110	14	16	_	E	1110
1111	15	17		F	1111

Table 2-1 Binary, decimal, octal, and hexadecimal numbers.

Conversion	on Method	Example	
Binary to			
Octal	Substitution	$10111011001_2 = 10 \ 111 \ 011 \ 001_2 = 2731_8$	
★ Hexadeci	mal Substitution	$10111011001_2 = 101 \ 1101 \ 1001_2 = 5D9_{16}$	
Decimal	Summation	$10111011001_2 = 1 \cdot 1024 + 0 \cdot 512 + 1 \cdot 256 + 1 \cdot 128 + 1 \cdot 64 + 0 \cdot 32 + 1 \cdot 16 + 1 \cdot 8 + 0 \cdot 4 + 0 \cdot 2 + 1 \cdot 1 = 1497_{10}$	
Octal to			
Binary	Substitution	$1234_8 = 001 \ 010 \ 011 \ 100_2$	
Hexadeci	mal Substitution	$1234_8 = 001 \ 010 \ 011 \ 100_2 = 0010 \ 1001 \ 1100_2 = 29C_{16}$	
Decimal	Summation	$1234_8 = 1 \cdot 512 + 2 \cdot 64 + 3 \cdot 8 + 4 \cdot 1 = 668_{10}$	
Hexadecima	al to		
★ Binary	Substitution	$C0DE_{16} = 1100\ 0000\ 1101\ 1110_2$	
Octal	Substitution	$CODE_{16} = 1100\ 0000\ 1101\ 1110_2 = 1\ 100\ 000\ 011\ 011\ 110_2 = 140336_8$	
Decimal	Summation	$CODE_{16} = 12 \cdot 4096 + 0 \cdot 256 + 13 \cdot 16 + 14 \cdot 1 = 49374_{10}$	
Decimal to			
★ Binary	Division	$108_{10} \div 2 = 54 \text{ remainder } 0 \text{(LSB)}$ $\div 2 = 27 \text{ remainder } 0$ $\div 2 = 13 \text{ remainder } 1$ $\div 2 = 6 \text{ remainder } 1$ $\div 2 = 3 \text{ remainder } 0$ $\div 2 = 1 \text{ remainder } 1$ $\div 2 = 0 \text{ remainder } 1 \text{(MSB)}$	
		$108_{10} = 1101100_2$	
Octal	Division	$108_{10} \div 8 = 13$ remainder 4 (least significant digit) $\div 8 = 1$ remainder 5 $\div 8 = 0$ remainder 1 (most significant digit) $108_{10} = 154_8$	
★ Hexadeci	mal Division	108_{10} ÷16 = 6 remainder 12 (least significant digit) ÷16 = 0 remainder 6 (most significant digit) $108_{10} = 6C_{16}$	

Table 2-2

Conversion methods for common radices.

From *Digital Design: Principles and Practices*, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Signed-magnitude representation

- ◆In decimal: +98, -10, +0, -0
- ◆In binary, the Most Significant Bit (MSB) (leftmost bit) is dedicated as the sign bit.
 - \star MSB = 0 for positive numbers
 - **★**MSB = 1 for negative numbers
 - *8-bit examples: $01010101 = +85_{(10)}$ $11010101 = -85_{(10)}$
 - *Range: $-(2^{n-1}-1)$ through $+(2^{n-1}-1)$
 - With 8 bits: -127 through +127
 - **★**Two representations of zero

Complement number systems

- ◆Assumptions are the following:
- ◆Fixed number of digits: *n*
- lackRadix is r
- ♦ Integers of form: $D = d_{n-1} d_{n-2} ... d_1 d_0$
- lacklosh If the result of an operation produces a number that needs more than n digits, we discard the higher-order digits
- lacktriangle If D is complemented twice, the result is D

$$*$$
 - $(-D) = D$

Radix-complement notation

- igoplus Complement of *n*-digit *D* is $-D = r^n D$
- ◆If $1 \le D \le 2^n 1$, then $1 \le -D \le 2^n 1$
- •0' = 2^n , which is n+1 bits long: 100000000
 - *Per convention, we discard the MSB
 - *Results in only one representation of 0

2's-complement notation

$$-D = 2^n - D = ((2^n-1)-D)+1$$

- ♦ 2^n -1 has the form 111111111 ★ 1-1 = 0; 1-0 = 1 toggles each bit
- ♦ Toggle every bit to get $((2^n-1)-D)$
- ◆Add 1 to result to get 2's complement

2's-complement notation

- ◆A number is negative iff its MSB is 1
- ♦ When converting to decimal, everything is the same, except weight of MSB for a negative number is $-(2^{n-1})$ instead of $+(2^{n-1})$
- ◆Range: $-(2^{n-1})$ through $+(2^{n-1}-1)$ *For 8 bits: -128 through 127

Examples

• Check:
$$-128 + 32 + 8 + 2 + 1 = -85$$

$$\bullet$$
 -99₍₁₀₎ = 10011101; toggle bits:

01100010

$$+1$$
; add 1
 $01100011 = 99_{(10)}$

 \bullet Check: 64 + 32 + 2 + 1 = 99

2's complement addition

- ◆Just like decimal, but per convention, ignore carry out of MSB
- Result will be correct unless range is exceeded (overflow)
- Overflow only happens when two numbers being added have the same sign

2's complement addition

◆Recall that range for 8 bits: -128 through 127

```
011111111 = 127_{(10)}
+00000001 =
10000000 = -128_{(10)} incorrect result
```

We expected 128, which cannot be represented with 8 digits (out of range)

Overflow

$$10000000 = -128_{(10)}$$

 $+ 111111111 = -1_{(10)}$
 $1 011111111 = 127_{(10)}$ incorrect result

We expected -129, which cannot be represented with 8 digits (out of range)

Overflow

- Check for overflow
 - **★** Do both addends have the same sign?
 - **★** If no, overflow is impossible.
 - *If yes, does the sum have the same sign as them? If it does not, then overflow.
- Other method:
 - ***** If carry into MSB \neq carry out of MSB; then overflow

2's complement subtraction

♦ Turn it into an addition by negating the subtrahend (+4) - (+3) = (+4) + (-3) = +1

$$\begin{array}{c}
0100 \\
+ 1101 \\
\hline
1 0001
\end{array}$$

$$\begin{array}{c}
1 \\
0100 \\
+ 1100 \\
\hline
1 0001
\end{array}$$

$$(+3) - (+4) = (+3) + (-4) = -1$$

$$\begin{array}{c}
0011 \\
+1100 \\
1111
\end{array}$$
1
1
1111

2's complement subtraction

- ◆ Shortcut: To negate the second number, we toggle the bits and add 1 to the result. Since we will eventually be adding two numbers, we can combine this addition with the final one.
- ◆Toggle bits of the second number (minuend), and add to the first, with a carryin of 1.

Overflow detection

- ◆For overflow detection, check the signs of the two numbers being added, and the sign of the result. This is exactly the same as before.
- ◆Or: If carry into MSB ≠ carry out of MSB; then overflow
- ♦ (-8)-(+1) = -9 overflow is expected 1000 + 1111 1 0111

2's complement of a non-integer

- ◆Definition is the same as for integers:
 - *Complement of *n*-digit *D* is $-D = r^n D$
 - *Here, n refers to the number of digits to the left of the decimal point (integer digits)
- igoplus Example: D = 010.11
 - *Number of integer digits = n = 3

*-
$$D = 2^n - D = 2^3 - D = 1000 - 010.11$$

$$\begin{array}{r}
 1000.00 \\
 + 010.11 \\
 \hline
 101.01
 \end{array}$$

Decimal codes

- ◆Binary numbers are most appropriate for internal operations of a computer.
- ◆External interfaces (I/O) may read or display decimal, for the benefit of humans.
- ◆Logical conclusion is that we need an easy way of representing decimal numbers with bits.
- ◆A coded representation of the 10 digits of the decimal number system (0-9) is known as a binary-coded decimal (BCD) representation.

Some definitions

- igspaceCode: a set of *n*-bit strings, where each string represents a different number, letter, or other thing.
- igspace Code word: one such *n*-bit string.
- ◆A legal, or valid code word, is one that is actually used to represent something.
 - *With n bits, we can have 2^n code words, but not all of these are necessarily used to represent something. Some of them may be unused.
 - *Example: A BCD code needs to represent 10 digits (0-9)
 - At least 4 bits are needed to represent 10 things
 - 4 bits give us 16 possible code words
 - 10 of these 16 are legal code words
 - 6 are unused

Binary coded decimal (BCD)

- ◆Most natural representation is to use 4-bit strings, where each decimal digit is represented its binary representation
 - *0000 through 1001 is used to represent the decimal digits 0 through 9, respectively.
 - *This is the 8421 BCD scheme, which is a weighted code.
- ◆To convert from decimal to BCD, replace each decimal digit with its BCD 4-bit string.

Binary coded decimal (BCD)

- ♦ Keep in mind that this BCD number is NOT the same as you would get if converting decimal to binary the usual way.
- ◆ Example: BCD string for 16 is 0001 0110.Binary equivalent of 16 is 0001 0000.
- ◆ 2 BCD digits (one byte) can represent 0 through 99.
- ◆ A normal byte can represent 0 to 255 (unsigned), or -128 to 127 (signed).
- ♦ We will not discuss BCD representation of signed numbers.
- We may come back to BCD arithmetic later in the course.

Unit-distance codes

- ◆Useful for when an analog quantity needs to be converted to digital.
- Only one bit can change as successive integers are coded.
- Gray code is a common example.

4-bit Gray code

Decimal number	Gray code
0	0000
1	0001
2	0011
3	0010
4	0110
5	0111
6	0101
7	0100
8	1100
9	1101
10	1111
11	1110
12	1010
13	1011
14	1001
15	1000

Why is it useful?

- ◆Assume that the position of a shaft, which is an analog quantity, needs to be digitally represented.
- ◆A positional encoder wheel is attached to the shaft.
- ◆Accuracy provided by 4 binary digits is sufficient.

Alphanumeric codes

- ◆ Alphabetic information also needs to be handled by digital systems.
- ◆ Need to represent letters of the alphabet in upper and lowercase, numbers, punctuation marks, symbols such as \$ and @, and control operations such as Backspace and Carriage Return.
- ◆ The best known alphanumeric code is the 7-bit American Standard Code for Information Exchange (ASCII).
- ◆ A more recent code, the Unicode Standard, uses 16-bit strings and codes characters from foreign languages as well. Also includes codes for math symbols, etc.

