
Computer Organization
Register Transfer Logic

Number System

Department of Computer Science
Missouri University of Science & Technology

hurson@mst.edu

1

Decimal Numbers: Base 10

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Example:
3271 =
(3x103) + (2x102) + (7x101) + (1x100)

Numbers: positional notation

Number Base B => B symbols per digit:
 Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Base 2 (Binary): 0, 1

Number representation:
 d31d30 ... d2d1d0 is a 32-digit number
 value = d31x B31 + d30 x B30 + ... + d2 x B2 + d1 x B1 + d0 x B0

Binary: 0,1
 1011010 = 1x26 + 0x25 + 1x24 + 1x23 + 0x22 + 1x21 + 0x20

= 64 + 16 + 8 + 2 = 90
 Notice that a 7-digit binary number converts into a 2-digit decimal

number
Which base(s) convert(s) to binary easily?

Hexadecimal Numbers: Base 16

Example (convert hex to decimal):
B28F0DD = (Bx166) + (2x165) + (8x164) +

(Fx163) + (0x162) + (Dx161) + (Dx160)
= (11x166) + (2x165) + (8x164) +

(15x163) + (0x162) + (13x161) + (13x160)
= 187232477 decimal

Notice that a 7-digit hex number is
converted to a 9-digit decimal number

Decimal vs. Hexadecimal vs.Binary

Examples:
1010 1100 0101 (binary)

= AC5 (hex)

10111 (binary)
= 0001 0111 (binary)
= 17 (hex)

3F9(hex)
= 0011 1111 1001 (binary)

00 0 0000
01 1 0001
02 2 0010
03 3 0011
04 4 0100
05 5 0101
06 6 0110
07 7 0111
08 8 1000
09 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

Hex to Binary Conversion

HEX is a more compact representation of binary.
Each hex digit represents 16 decimal values.
Four binary digits represent 16 decimal values.
Therefore, each hex digit can replace four binary

digits.
Example:

0011 1011 1001 1010 1100 1010 0000 0000 binary
3 b 9 a c a 0 0 hex

Which Base Should We Use?

Decimal: Great for humans; most
arithmetic is done with this base.
Binary: This is what computers use, so get

used to them. Become familiar with how to
do basic arithmetic with them (+,-,*,/).
Hex: Terrible for arithmetic; but if we are

looking at long strings of binary numbers, it
is much easier to convert them to hex and
look at four bits at a time.

 y
representations of numbers?

Everything we can do with decimal numbers.
Addition
Subtraction
Multiplication
Division
Comparison

Example: 10 + 7 = 17

so simple to add in binary that we can build circuits to do
it
subtraction also just as in decimal

1 0 1 0

+ 0 1 1 1

1 0 0 0 1

11

Signed-magnitude representation

In decimal: +98, -10, +0, -0
In binary, the Most Significant Bit (MSB)

(leftmost bit) is dedicated as the sign bit.
MSB = 0 for positive numbers
MSB = 1 for negative numbers
8-bit examples: 01010101 = + 85(10)

11010101 = - 85(10)

Range: -(2n-1 – 1) through +(2n-1 – 1)
With 8 bits: -127 through +127

Two representations of zero

Complement number systems

Assumptions are the following:
Fixed number of digits: n
Radix is r
Integers of form: D = dn-1 dn-2 …d1 d0

If the result of an operation produces a number
that needs more than n digits, we discard the
higher-order digits

If D is complemented twice, the result is D
- (-D) = D

Radix-complement notation

Complement of n-digit D is -D = rn – D
If 1 ≤ D ≤ 2n – 1, then 1 ≤ -D ≤ 2n – 1
0’ = 2n, which is n+1 bits long: 100000000
Per convention, we discard the MSB
Results in only one representation of 0

2’s-complement notation

-D = 2n – D = ((2n-1)–D)+1

2n-1 has the form 11111111
1-1 = 0; 1-0 = 1 toggles each bit

Toggle every bit to get ((2n-1)–D)
Add 1 to result to get 2’s complement

A number is negative iff its MSB is 1
When converting to decimal, everything is the

same, except weight of MSB for a negative
number is -(2n-1) instead of +(2n-1)

Range: -(2n-1) through +(2n-1 – 1)
For 8 bits: -128 through 127

15

2’s-complement notation

Examples

 85(10) = 01010101; toggle bits:

10101010
+1 add 1;

10101011 = - 85(10)

 Check: -128 + 32 + 8 + 2 + 1 = -85

 -99(10) = 10011101; toggle bits:

01100010
______+1; add 1
01100011 = 99(10)

 Check: 64 + 32 + 2 + 1 = 99

2’s complement addition

Just like decimal, but per convention, ignore
carry out of MSB

Result will be correct unless range is exceeded
(overflow)

Overflow only happens when two numbers being
added have the same sign

Recall that range for 8 bits: -128 through
127

01111111 = 127(10)
+00000001 =
10000000 = -128(10) incorrect result

We expected 128, which cannot be
represented with 8 digits (out of range)

18

2’s complement addition

Overflow

10000000 = -128(10
+ 11111111 = -1(10)
1 01111111 = 127(10) incorrect result

We expected -129, which cannot be represented with 8
digits (out of range)

Check for overflow
Do both addends have the same sign?
If no, overflow is impossible.
If yes, does the sum have the same sign as them? If it

does not, then overflow.
Other method:
If carry into MSB ≠ carry out of MSB; then overflow

20

Overflow

 Turn it into an addition by negating the subtrahend
(+4) – (+3) = (+4) + (-3) = +1

0100
+ 1101
1 0001

(+3) – (+4) = (+3) + (-4) = -1

0011
+ 1100

1111

2’s complement subtraction

0011
+ 1011

1111

1

0100
+ 1100
1 0001

1

Shortcut: To negate the second number, we
toggle the bits and add 1 to the result. Since
we will eventually be adding two numbers,
we can combine this addition with the final
one.
Toggle bits of the second number

(minuend), and add to the first, with a carry-
in of 1.

22

2’s complement subtraction

Overflow detection

For overflow detection, check the signs of the two
numbers being added, and the sign of the result.
This is exactly the same as before.

Or: If carry into MSB ≠ carry out of MSB; then
overflow

(-8)-(+1) = -9 overflow is expected
1000

+ 1111
1 0111

2’s complement of a non-integer

Definition is the same as for integers:
Complement of n-digit D is -D = rn – D
Here, n refers to the number of digits to the left of the

decimal point (integer digits)
Example: D = 010.11
Number of integer digits = n = 3
-D = 2n – D = 23 – D = 1000 – 010.11

1000.00
+ 010.11

101.01

Decimal codes

Binary numbers are most appropriate for internal
operations of a computer.

External interfaces (I/O) may read or display
decimal, for the benefit of humans.

Logical conclusion is that we need an easy way of
representing decimal numbers with bits.

A coded representation of the 10 digits of the
decimal number system (0-9) is known as a
binary-coded decimal (BCD) representation.

Some definitions

Code: a set of n-bit strings, where each string
represents a different number, letter, or other thing.

Code word: one such n-bit string.
A legal, or valid code word, is one that is actually

used to represent something.
With n bits, we can have 2n code words, but not all of these

are necessarily used to represent something. Some of them
may be unused.

Example: A BCD code needs to represent 10 digits (0-9)
At least 4 bits are needed to represent 10 things
 4 bits give us 16 possible code words
 10 of these 16 are legal code words
 6 are unused

Binary coded decimal (BCD)

Most natural representation is to use 4-bit
strings, where each decimal digit is
represented its binary representation
0000 through 1001 is used to represent the

decimal digits 0 through 9, respectively.
This is the 8421 BCD scheme, which is a

weighted code.
To convert from decimal to BCD, replace

each decimal digit with its BCD 4-bit string.

Binary coded decimal (BCD)

Keep in mind that this BCD number is NOT the same as
you would get if converting decimal to binary the usual
way.

Example: BCD string for 16 is 0001 0110.
Binary equivalent of 16 is 0001 0000.

2 BCD digits (one byte) can represent 0 through 99.
A normal byte can represent 0 to 255 (unsigned), or -128

to 127 (signed).
We will not discuss BCD representation of signed

numbers.
We may come back to BCD arithmetic later in the course.

Unit-distance codes

Useful for when an analog quantity needs
to be converted to digital.
Only one bit can change as successive

integers are coded.
Gray code is a common example.

4-bit Gray code
Decimal number Gray code
0 0000
1 0001
2 0011
3 0010
4 0110
5 0111
6 0101
7 0100
8 1100
9 1101
10 1111
11 1110
12 1010
13 1011
14 1001
15 1000

Why is it useful?

Assume that the position of a shaft, which
is an analog quantity, needs to be digitally
represented.
A positional encoder wheel is attached to

the shaft.
Accuracy provided by 4 binary digits is

sufficient.

Alphanumeric codes

Alphabetic information also needs to be handled by digital
systems.

Need to represent letters of the alphabet in upper and
lowercase, numbers, punctuation marks, symbols such as $
and @, and control operations such as Backspace and
Carriage Return.

The best known alphanumeric code is the 7-bit American
Standard Code for Information Exchange (ASCII).

A more recent code, the Unicode Standard, uses 16-bit
strings and codes characters from foreign languages as
well. Also includes codes for math symbols, etc.

	Computer Organization�Register Transfer Logic�Number System
	Decimal Numbers: Base 10
	Numbers: positional notation
	Hexadecimal Numbers: Base 16
	Decimal vs. Hexadecimal vs.Binary
	Hex to Binary Conversion
	Which Base Should We Use?
	What can we do with binary representations of numbers?
	Slide Number 9
	Slide Number 10
	Signed-magnitude representation
	Complement number systems
	Radix-complement notation
	2’s-complement notation
	2’s-complement notation
	Examples
	2’s complement addition
	2’s complement addition
	Overflow
	Overflow
	2’s complement subtraction
	2’s complement subtraction
	Overflow detection
	2’s complement of a non-integer
	Decimal codes
	Some definitions
	Binary coded decimal (BCD)
	Binary coded decimal (BCD)
	Unit-distance codes
	4-bit Gray code
	Why is it useful?
	Alphanumeric codes

