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Course Objective:
Mathematical way of thinking in order to

solve problems
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Variable: A variable is simply a place
holder.
One of the most important use of variables

is that it gives one the ability to refer to
quantities unambiguously through out a
lengthy mathematical discussion while not
restricting one to consider only specific
values for that.
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Examples
Is there a number such that doubling it and

adding 3 be equal to its square?

Are there numbers such that sum of their
square is equal to the square of their sum?
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2x + 3 = x2 ⇒ x2 – 2x – 3 = 0 ⇒ (x + 1) (x – 3) = 0 ⇒
(x + 1) = 0  and (x – 3) = 0 ⇒
x = -1 and x = 3

a2 + b2 = (a + b)2 = a2 + b2 + 2ab ⇒ 2ab = 0 ⇒ ab = 0 ⇒
a = 0 or b = 0
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Universal Statement: A universal statement
expresses a certain property that is true for all
elements in a set.
Note, universal statements contain some

variation of the word “for all”.
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Example:  All dogs are mammal



Conditional Statement: A Conditional statement
expresses that if one thing is true then some other thing
also is true.

Note, conditional statements contain some
variation of the word “if-then”.
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Example: If an animal is a dog, then animal is a mammal
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Universal Conditional Statement: A
universal conditional statement is a
statement that is both universal and
conditional.

Note, universal conditional statements can
be written in different ways as pure
universal or pure conditional statements.
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Example:  For all animals a, if a is a dog, then a is a mammal
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For example the statement

Can be written as:
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For all animals a, if a is a dog, then a is a mammal

If a is a dog, then a is a mammal, or
If an animal is a dog, then animal is a mammal

All dogs are mammals, or
For all dogs a, a is a mammal

Pure conditional

Pure universal
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Existential Statement: Existential statement
is a statement that there is at least one thing
for which the property is true.
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Example:  There exist a prime number that is even
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Universal Existential Statement: is a
statement that is universal since its first part
is universal (i.e., certain property is true for
all objects of a given type) and it is
existential since its second part asserts the
existence of something.
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Example:  Every real number has an additive inverse

Implies universality Asserts existence of something
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Existential Universal Statement: is a
statement that is existential since its first
part asserts that a certain object exist and it
is universal since its second part says that
the object satisfies property for all things of
a certain kind.
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Example:  There is a positive integer that is less than or 
equal to every positive integer



Fall 2009

Note, the statement

can be rewritten in several ways:
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There is a positive integer that is less than or equal to 
every positive integer

There is a positive integer m that is less than or equal to 
every positive integer, or
There is a positive integer m that every positive integer 
is greater than or equal to m, or
There is a positive integer m with the property that all 
positive integer n, m ≤ n, or
∃ m > 0, such that ∀ n > 0, m ≤ n



Fall 2009

Set: A set is a collection of objects
(elements) with some common
characteristics.

A set is represented by a capital letter: set S.
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Example:  set of all integers
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Set membership: if S is a set then the
notation x ∈ S represents x as a member of
S.
Similarly the notation x ∉ S means that x is

not a member of S.
A set can be represented using self-roster

notation (i.e., by writing all of its elements
between braces:
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Example:  {1, 2, 3} is a set whose members are 1, 2, and 3.
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Note, in a set the order of elements is
immaterial. In addition, duplication of
elements does not change a set (axiom of
extension).

Note, an element of a set could be a set
itself.
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Example:  {1, {2}}
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Some common sets:
R set of real numbers
Z set of integers
Q set of rational numbers
N set of natural numbers
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Some conventions:
R+ denotes set of positive real numbers
R- denotes set of negative real numbers
Znonneg denotes set of non-negative integers
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Real number line
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Real number line shows a continuity (no
holes). This is in contrast to the notion of
discrete mathematics.

19

Math Preliminaries

0
• • ••

1
•

2
•

3
•

-3
•

-2
•

-1
•

Example:  Set of integers are



Fall 2009

Formal definition of a set: Let S be a set
and let P(x) be a property that elements of S
satisfy (i.e., a predicate that is true), then S
is defined as:

Cardinality of S denoted as |S| is the
number of elements of S.
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S = {x ∈ S | P(x)}  or in short {x | P(x)} 
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Subset: Assume A and B are two set, then
A is called a subset of B if every element of
A is an element of B.

A is contained in B or B contains A.
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A ⊆ B ⇒for all x such that x ∈A ⇒ x ∈ B 
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Proper subset: A is proper subset of B, if
every element of A is an element of B and
there exist an element of B which is not an
element of A
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A ⊂ B ⇒ (every x ∈ A ⇒ x ∈ B) and ∃ (y ∈ B ∧ y ∉A) 

A B ⇒ there exist x such that x ∈A and x ∉ B ⊆

⊆♦ Similarly A       B indicates that A is not a 
subset of B.
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Ordered Pair: Given elements a and b, the
symbol (a, b) shows that a is the first
element and b is the second one. Hence

Note
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(a, b) ≠ (b, a)

(a, b) = (c,d) iff a = c and b = d
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Set Operators:
Cartesian Product: Given two sets A and B, the 

Cartesian product of A and B denoted as A X B 
is a set of all ordered pair (a, b) such that a is an 
element of A and b is an element of B.
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A X B ⇒{ (a, b) | a ∈A ∧ b ∈ B}
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Set Operators:
Set Union: Given two sets A and B, the set 

union of A and B denoted as A ∪ B is:
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A ∪ B ⇒{ x | x ∈A or x ∈ B}
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Set Union:
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A ∪ B
Set A

Set B
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Set Operators:
Set intersection: Given two sets A and B, set 

intersection of A and B denoted as A ∩ B is:
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A ∩ B ⇒{ x | x ∈A and x ∈ B}
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Set intersection:
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A ∩ B

Set A
Set B
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Set Operators:
Set difference: Given two sets A and B, the set 

difference of A and B denoted as A - B is:

Note A – B ≠ B – A

29

Math Preliminaries

A - B ⇒{ x | x ∈ A and x ∉ B}
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Set Difference:
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A - B

Set A
Set B



Fall 2009

Some observations:
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Relations: Let A and B be two sets. We define a
relation R from A to B as a subset of AXB such
that any pair (x, y) ∈ A X B satisfy R (i.e., x is
related to y by R denoted as x R y). A is called the
domain and B is called the co-domain.

Symbolically:
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x R y ⇒ (x, y) ∈ R
x    y ⇒ (x, y) ∉ RR
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Assume A = {0, 1, 2} and B = {1, 2, 3} and let us
define the following relationship between
elements of A and B: x ∈ A is related to y ∈ B if
x<y, then we have:
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A X B ⇒{(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3)
(2, 1), (2, 2), (2, 3)}

Ordered element of A X B related based on < are:
{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}
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A relation can be graphically represented as an
arrow diagram in which:

1) each set is represented as a region with its
elements as a point, and

2) there is a directed edge from each element
of the domain to its corresponding element
of co-domain that satisfy the relation.
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Assume A = {0, 1, 2} and B = {1, 2, 3} and let us
define the following relationship between elements
of A and B: x ∈ A is related to y ∈ B if x<y, then
arrow diagram representation of R is:
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Function: A function F from a set A to a set
B is a relation that satisfies the following
two properties:

1: for each element x ∈ A ∃ y ∈ B such
that (x, y) ∈ F, and

2: for all elements x ∈ A and y, z ∈ B,
if (x, y) ∈ F and (x, z) ∈ F then y = z.
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