CS 1200 Discrete Math Math Preliminaries

A.R. Hurson
323 CS Building,
Missouri S\&T
hurson@mst.edu

Course Objective:

* Mathematical way of thinking in order to solve problems

Math Preliminaries

\checkmark Variable: A variable is simply a place holder.
One of the most important use of variables is that it gives one the ability to refer to quantities unambiguously through out a lengthy mathematical discussion while not restricting one to consider only specific values for that.

Math Preliminaries

Examples

* Is there a number such that doubling it and adding 3 be equal to its square?

$$
\begin{aligned}
2 x+3=x^{2} \Rightarrow & x^{2}-2 x-3=0 \Rightarrow(x+1)(x-3)=0 \Rightarrow \\
& (x+1)=0 \text { and }(x-3)=0 \Rightarrow \\
& x=-1 \text { and } x=3
\end{aligned}
$$

* Are there numbers such that sum of their square is equal to the square of their sum?

$$
\begin{aligned}
\mathrm{a}^{2}+\mathrm{b}^{2} & =(\mathrm{a}+\mathrm{b})^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab} \Rightarrow 2 \mathrm{ab}=0 \Rightarrow \mathrm{ab}=0 \Rightarrow \\
\mathrm{a} & =0 \text { or } \mathrm{b}=0
\end{aligned}
$$

Math Preliminaries

>Universal Statement: A universal statement expresses a certain property that is true for all elements in a set.
Note, universal statements contain some variation of the word "for all".

Example: All dogs are mammal

Math Preliminaries

>Conditional Statement: A Conditional statement expresses that if one thing is true then some other thing also is true.
Note, conditional statements contain some variation of the word "if-then".

Example: If an animal is a dog, then animal is a mammal

Math Preliminaries

- Universal Conditional Statement: A universal conditional statement is a statement that is both universal and conditional.

Example: For all animals a, if a is a dog, then a is a mammal
-Note, universal conditional statements can be written in different ways as pure universal or pure conditional statements.

Math Preliminaries

For example the statement
For all animals a, if a is a dog, then a is a mammal
Can be written as:
If a is a dog, then a is a mammal, or
If an animal is a dog, then animal is a mammal

Pure universal

All dogs are mammals, or For all dogs a, a is a mammal

Math Preliminaries

> Existential Statement: Existential statement is a statement that there is at least one thing for which the property is true.

Example: There exist a prime number that is even

Math Preliminaries

- Universal Existential Statement: is a statement that is universal since its first part is universal (i.e., certain property is true for all objects of a given type) and it is existential since its second part asserts the existence of something.

Example: Every real number has an additive inverse

Math Preliminaries

Existential Universal Statement: is a statement that is existential since its first part asserts that a certain object exist and it is universal since its second part says that the object satisfies property for all things of a certain kind.

Example: There is a positive integer that is less than or equal to every positive integer

Math Preliminaries

Note, the statement

There is a positive integer that is less than or equal to every positive integer

can be rewritten in several ways:

There is a positive integer m that is less than or equal to every positive integer, or
There is a positive integer m that every positive integer is greater than or equal to m, or
There is a positive integer m with the property that all positive integer $n, m \leq n$, or
$\exists m>0$, such that $\forall n>0, m \leq n$

Math Preliminaries

Set: A set is a collection of objects (elements) with some common characteristics.

Example: set of all integers
A set is represented by a capital letter: set S.

Math Preliminaries

Set membership: if S is a set then the notation $x \in S$ represents x as a member of S.

Similarly the notation $x \notin S$ means that x is not a member of S.
A set can be represented using self-roster notation (i.e., by writing all of its elements between braces:
Example: $\{1,2,3\}$ is a set whose members are 1,2 , and 3 .

Math Preliminaries

Note, in a set the order of elements is immaterial. In addition, duplication of elements does not change a set (axiom of extension).

Note, an element of a set could be a set itself.

Example: $\{1,\{2\}\}$

Math Preliminaries

-Some common sets:
R set of real numbers
Z set of integers
Q set of rational numbers
N set of natural numbers

Math Preliminaries

Some conventions:
R^{+}denotes set of positive real numbers
R^{-}denotes set of negative real numbers
$Z^{\text {nomneg }} \quad$ denotes set of non-negative integers

Math Preliminaries

Real number line

Math Preliminaries

Real number line shows a continuity (no holes). This is in contrast to the notion of discrete mathematics.

Example: Set of integers are

Math Preliminaries

Formal definition of a set: Let S be a set and let $P(x)$ be a property that elements of S satisfy (i.e., a predicate that is true), then S is defined as:

$$
S=\{x \in S \mid P(x)\} \text { or in short }\{x \mid P(x)\}
$$

Cardinality of S denoted as $|S|$ is the number of elements of S.

Math Preliminaries

- Subset: Assume A and B are two set, then A is called a subset of B if every element of A is an element of B.
$\mathrm{A} \subseteq \mathrm{B} \Rightarrow$ for all x such that $\mathrm{x} \in \mathrm{A} \Rightarrow \mathrm{x} \in \mathrm{B}$
A is contained in B or B contains A.

Math Preliminaries

- Similarly $\mathrm{A} \Phi \mathrm{B}$ indicates that A is not a subset of B.
$\mathrm{A} \nsubseteq \mathrm{B} \Rightarrow$ there exist x such that $\mathrm{x} \in \mathrm{A}$ and $\mathrm{x} \notin \mathrm{B}$
Proper subset: A is proper subset of B, if every element of A is an element of B and there exist an element of B which is not an element of A
$A \subset B \Rightarrow($ every $x \in A \Rightarrow x \in B)$ and $\exists(y \in B \wedge y \notin A)$

Math Preliminaries

Ordered Pair: Given elements a and b, the symbol (a, b) shows that a is the first element and b is the second one. Hence

$$
(a, b) \neq(b, a)
$$

- Note

$$
(\mathrm{a}, \mathrm{~b})=(\mathrm{c}, \mathrm{~d}) \text { iff } \mathrm{a}=\mathrm{c} \text { and } \mathrm{b}=\mathrm{d}
$$

Math Preliminaries

- Set Operators:
*. Cartesian Product: Given two sets A and B, the Cartesian product of A and B denoted as A X B is a set of all ordered pair (a, b) such that a is an element of A and b is an element of B.

$$
\mathrm{A} X \mathrm{~B} \Rightarrow\{(\mathrm{a}, \mathrm{~b}) \mid \mathrm{a} \in \mathrm{~A} \wedge \mathrm{~b} \in \mathrm{~B}\}
$$

Math Preliminaries

-Set Operators:

* Set Union: Given two sets A and B, the set union of A and B denoted as $A \cup B$ is:

$$
A \cup B \Rightarrow\{x \mid x \in A \text { or } x \in B\}
$$

Math Preliminaries

$A \cup B$

Math Preliminaries

- Set Operators:
* Set intersection: Given two sets A and B, set intersection of A and B denoted as $A \cap B$ is:

$$
A \cap B \Rightarrow\{x \mid x \in A \text { and } x \in B\}
$$

Math Preliminaries

Set intersection:

$A \cap B$

Math Preliminaries

- Set Operators:
* Set difference: Given two sets A and B, the set difference of A and B denoted as $\mathrm{A}-\mathrm{B}$ is:
$\mathrm{A}-\mathrm{B} \Rightarrow\{\mathrm{x} \mid \mathrm{x} \in \mathrm{A}$ and $\mathrm{x} \notin \mathrm{B}\}$
Note A - B = B - A

Math Preliminaries

Set Difference:

Math Preliminaries

Some observations:

$$
\begin{aligned}
& \bar{A}=\{\mathrm{x} \mid \mathrm{x} \in \mathrm{U} \text { and } \mathrm{x} \notin \mathrm{~A}\} \\
& \mathrm{A} \cup \emptyset=\mathrm{A} \\
& \mathrm{~A} \cap \emptyset=\emptyset \\
& \mathrm{A}-\emptyset=\mathrm{A} \\
& \bar{\emptyset}=\mathrm{U} \\
& \overline{\bar{A}}=\mathrm{A}
\end{aligned}
$$

Math Preliminaries

Power set: Assume S is a set, then the power set of S has $2^{|S|}$ elements:

Example: Assume S is $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
Then the power set of S denoted as $\mathrm{P}(\mathrm{S})$ is: $\mathrm{P}(\mathrm{S})=\{\varnothing, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{ab}, \mathrm{ac}, \mathrm{bc}, \mathrm{abc}\}$

Math Preliminaries

Relations: Let A and B be two sets. We define a relation R from A to B as a subset of AXB such that any pair (x, y) $\in \mathrm{A} \mathrm{X}$ B satisfy R (i.e., x is related to y by R denoted as $x R y$). A is called the domain and B is called the co-domain.
Symbolically:

$$
\begin{aligned}
& \mathrm{x} R \mathrm{y} \Rightarrow(\mathrm{x}, \mathrm{y}) \in \mathrm{R} \\
& \mathrm{x} \not \mathrm{R} \mathrm{y} \Rightarrow(\mathrm{x}, \mathrm{y}) \notin \mathrm{R} \\
& \hline
\end{aligned}
$$

Math Preliminaries

Assume $\mathrm{A}=\{0,1,2\}$ and $\mathrm{B}=\{1,2,3\}$ and let us define the following relationship between elements of A and $B: x \in A$ is related to $y \in B$ if $\mathrm{x}<\mathrm{y}$, then we have:
$A X B \Rightarrow\{(0,1),(0,2),(0,3),(1,1),(1,2),(1,3)$
$(2,1),(2,2),(2,3)\}$
Ordered element of A X B related based on < are:

$$
\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}
$$

Math Preliminaries

A relation can be graphically represented as an arrow diagram in which:

1) each set is represented as a region with its elements as a point, and
2) there is a directed edge from each element of the domain to its corresponding element of co-domain that satisfy the relation.

Math Preliminaries

Assume $\mathrm{A}=\{0,1,2\}$ and $\mathrm{B}=\{1,2,3\}$ and let us define the following relationship between elements of A and $B: x \in A$ is related to $y \in B$ if $\mathrm{x}<\mathrm{y}$, then arrow diagram representation of R is:

Math Preliminaries

Function: A function F from a set A to a set B is a relation that satisfies the following two properties:

1: for each element $x \in A \exists y \in B$ such that $(\mathrm{x}, \mathrm{y}) \in \mathrm{F}$, and
2: for all elements $x \in A$ and $y, z \in B$, if $(\mathrm{x}, \mathrm{y}) \in \mathrm{F}$ and $(\mathrm{x}, \mathrm{z}) \in \mathrm{F}$ then $\mathrm{y}=\mathrm{z}$.

