
A.R. Hurson
323 CS Building
hurson@mst.edu

Query Processing and Query Optimization
in

Centralized Database Systems

Query processing is defined as the activities
involved in parsing, validation, translation,
optimization, and execution of a query.

The aims of query processing process are to
transform a query written in a high-level
language, SQL, into a correct and efficient
execution strategy expressed in low-level
language, and to execute the strategy to
generate the result.

Database Systems

6

3

Query processing
A query processing involves three steps:
Parsing, validation, and Translation
Optimization
Evaluation (execution)

Database Systems

4

Query processing
Query Parser &

Translator
Internal

Representation

Execution
Plan

Query
Output

Optimizer

Statistics
about data

Execution
Engine

DATA BASE

Database Systems

5

Query processing ─ An Example

Select balance
From account
Where balance < 2,500

Database Systems

6

Query processing ─ An Example
σbalance <2500 (Πbalance (account))

or
Πbalance(σbalance <2500 (account))

 Note there might be different ways to define and execute a query.
It is the role of optimizer to select an efficient way to execute a
query. Therefore, the optimizer needs to determine different
ways (plans) that one can execute a query, determine the
execution cost of each plan, and then choose the most cost
effective plan for execution.

Database Systems

7

Query processing ─ An Example
Factors such as number of accesses to the disks

and CPU time must be taken into consideration
to estimate cost of a plan.
In large databases, however, disk accesses (the

number of data block transfers) are usually the
most dominating cost factor. Hence, it can be
used as a cost metric.

Database Systems

Query processing ─ An Example
To simplify the cost estimation, we can assume

that all block transfers cost the same (i.e.,
variances in rotational latency and seek time are
ignored).
For more accurate measure, one also need to

distinguish the difference between sequential
I/O and random I/O as well.

Database Systems

8

Query processing ─ An Example
One also needs to distinguish between the

number of data blocks being read and written.
Techniques such as pipelining and parallelism,

if possible, depending on the underlying
platform, can be applied to execute basic
operations.
Different algorithms can be developed to

execute basic operations.

Database Systems

9

10

Query processing ─ An Example

Account

Πbalance

σbalance <2500

Database Systems

Query optimization is the activity of
choosing an efficient execution strategy for
processing a query.
Query optimization can be done in two

fashion: Static or dynamic

Database Systems

15

There are two choices in carrying the first
phases (i.e., parsing, validation, translation, and
optimization) of query processing.

One option is to dynamically carry out the
decomposition and optimization every time the
query is run.

Alternative is static query optimization where
the query is parsed, validated, and optimized
once.

16

Database Systems

13

Query Optimization
In general, optimization is required in such a

system if the system is expected to achieve
acceptable objectives (e.g., performance).
It is one of the strength of relational algebra

that optimization can be done automatically,
since relational expression are at a sufficiently
high semantic level.

Database Systems

14

Query Optimization
The overall goal of an optimization is to choose

an efficient strategy for evaluation of a given
relational expression (i.e., a query).
An optimizer might actually do better than a

human programmer since:

Database Systems

15

Query Optimization
An optimizer will have a wealth of information

available to it that human programmers typically
do not have.
If the data base statistics changes drastically,

then an optimizer may choose a different
strategy.
Optimizer can potentially considers several

strategies for a given request.
Optimizer is written by an expert.

Database Systems
Query Parser &

Translator
Internal

Representation

Execution
Plan

Query
Output

Optimizer

Statistics
about data

Execution
Engine

DATA BASE

Running Example

16

Database Systems

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

EMPLOYEE

DEPARTMENT

Dname Dnumber Mgr_ssn Mgr_start_date Dnumber Dlocation

DEPT_Location

Pname Pnumber Plocation Dnum

PROJECT
Essn Pno Hours

WORKS_ON

DEPENDENT
Essn Dependent_name Sex Bdate Relationship

Query Optimization — Running Example
Find the last name of employees born after 1957 and working

on a project named “Aquarius”.

SELECT Lname
FROM EMPLOYEE, WORKS_ON, PROJECT

WHERE Pname = ‘Aquarius’ AND Pnumber = Pno AND Essn
= Ssn AND Bdate > ‘1957-12-31’;

Database Systems

17

Query Optimization — Running Example

Database Systems

18

ΠLname

Employee Works_on

× Project

×

σPname = ‘Aquarius’ ∧ Pnumber = Pnno ∧ Essn = Ssn ∧ Bdate > ‘1957-12-31’

Query Optimization — An Example

Execution of the previous query tree generates a
very large relation because of performing Cartesian
products on input relations.
It makes sense to perform some Select operations

on base relations before performing the Cartesian
products.

Database Systems

19

Query Optimization — Running Example

Database Systems

20

ΠLname

Works_on

×

Employee

σBdate > ‘1957-12-31’

×
σEssn = Ssn

Project

σPname = ‘Aquarius’

σPnumber = Pnno

Query Optimization — Running Example

By closer observation, one should realize that just
one tuple from the Project will be involved with the
query. So it makes sense to switch the order of
operations on input relations.

Database Systems

21

Query Optimization — Running Example

Database Systems

22

ΠLname

×

Employee

σBdate > ‘1957-12-31’

Project

σPname = ‘Aquarius’

σEssn = Ssn

Works_on

×

σPnumber = Pno

Query Optimization — Running Example

It also makes sense to replace any Cartesian
product followed by a Select operation with a
Join operation.

Database Systems

23

Query Optimization — Running Example

Database Systems

24

ΠLname

Employee

σBdate > ‘1957-12-31’

Project

σPname = ‘Aquarius’
Works_on

Pnumber = Pno

Essn = Ssn

Query Optimization — Running Example

It also makes sense to reduce the size of
intermediate results by keeping just attributes
that are needed for correct execution of this
query.

Database Systems

25

Query Optimization — Running Example

Database Systems

26

ΠLname

Employee

σBdate > ‘1957-12-31’

Project

σPname = ‘Aquarius’

Pnumber = Pno

Essn = Ssn

ΠEssn,LnameΠSsn

Works_on

ΠEssn,Pno
ΠPnumber

ΠLname

Employee Works_on

× Project

×

σPname = ‘Aquarius’ ∧ Pnumber = Pnno ∧ Essn = Ssn ∧ Bdate > ‘1957-12-31’

ΠLname

Employee

σBdate > ‘1957-12-31’

Project

σPname = ‘Aquarius’

Pnumber = Pno

Essn = Ssn

ΠEssn,LnameΠSsn

Works_on

ΠEssn,Pno
ΠPnumber

31

Database Systems
System CatalogQuery

Decomposition

Query
Optimization Database Statics

Code
Generation

Runtime
Execution

Result

Database

Relational Algebra
Expression

Execution Plan

Query

28

Query Optimization — A Simple Example

S# Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

S
S# P# QTY
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
•
•
•

SP

Database Systems

		S#

		Sname

		Status

		City

		S1

		Smith

		20

		London

		S2

		Jones

		10

		Paris

		S3

		Blake

		30

		Paris

		S4

		Clark

		20

		London

		S5

		Adams

		30

		Athens

		S#

		P#

		QTY

		S1

		P1

		300

		S1

		P2

		200

		S1

		P3

		400

		S1

		P4

		200

		S1

		P5

		100

		S1

		P6

		100

		(

		

		

		(

		

		

		(

		

		

29

Query Optimization — A Simple Example
Get names of suppliers who supply part P2:

SELECT DISTINCT Sname
FROM S, SP
WHERE S.S# = SP.S#
AND SP.P# = ‘P2’;

Suppose that the cardinality of S and SP are 100
and 10,000, respectively. Furthermore, assume
50 tuples in SP are for part P2.

Database Systems

Query Optimization — A Simple Example

Database Systems

30

S SP

×

σ(S.S# = SP.S# ∧ SP.P# = ‘P2’)

ΠSname

31

Query Optimization — A Simple Example

S# Sname Status S.City S# P# QTY
S1 Smith 20 London S1 P1 300
S1 Smith 20 London S1 P2 200
S1 Smith 20 London S1 P3 400
S1 Smith 20 London S1 P4 200
S1 Smith 20 London S1 P5 100
S1 Smith 20 London S1 P6 100
S2 Jones 10 Paris S2 P1 300
S2 Jones 10 Paris S2 P2 400
•
•

A S.S#=SP.S# B

Database Systems

		S#

		Sname

		Status

		S.City

		S#

		P#

		QTY

		S1

		Smith

		20

		London

		S1

		P1

		300

		S1

		Smith

		20

		London

		S1

		P2

		200

		S1

		Smith

		20

		London

		S1

		P3

		400

		S1

		Smith

		20

		London

		S1

		P4

		200

		S1

		Smith

		20

		London

		S1

		P5

		100

		S1

		Smith

		20

		London

		S1

		P6

		100

		S2

		Jones

		10

		Paris

		S2

		P1

		300

		S2

		Jones

		10

		Paris

		S2

		P2

		400

		(

		

		

		

		

		

		

		(

		

		

		

		

		

		

32

Query Optimization — A Simple Example
Without an optimizer, the system will:
Generates Cartesian product of S and SP. This will

generate a relation of size 1,000,000 tuples — Too
large to be kept in the main memory.
Restricts results of previous step as specified by

WHERE clause. This means reading 1,000,000
tuples of which 50 will be selected.
Projects the result of previous step over Sname to

produce the final result.

Database Systems

33

Query Optimization — A Simple Example
An Optimizer on the other hand:
Restricts SP to just the tuples for part P2. This will

involve reading 10,000 tuples, but produces a
relation with 50 tuples.
Joins the result of the previous step with S relation

over S#. This involves the retrieval of only 100
tuples and the generation of a relation with at most
50 tuples.
Projects the result of the last operation over Sname.

Database Systems

Query Optimization — A Simple Example

SP

σ (SP.P# = ‘P2’)

Database Systems

S.S# = SP.S#

S

ΠSname

35

Query Optimization — A Simple Example
If the number of tuples I/O’s is used as the performance

measure, then it is clear that the second approach is far
faster that the first approach. In the first case we
read/write about 3,000,000 tuples and in the second
case we read about 10,000 tuples.

So a simple policy — doing restriction and then join
instead of doing product and then a restriction sounds a
good heuristic.

Database Systems

36

Optimization Process
Cast the query into some internal representation

— Convert the query to some internal
representation that is more suitable for machine
manipulation, relational algebra.

Now we can build a query tree very easily.
Π(Sname)(σP# = “P2”(S S.S# =SP.S#SP))

Database Systems

37

Optimization Process

S SP

Join (S.S# = SP.S#)

Restrict (Sp.P# = ‘P2’)

Project (Sname)

Result

Database Systems

38

Optimization Process
Convert the result of the previous step into a

canonical form — during this phase, optimizer
performs a number of optimization that are
“guaranteed to be good” regardless of the actual
data value and the access paths. For Example:

Database Systems

39

Optimization Process
(A Join B) WHERE restriction-on-B
can be transformed into
(A Join (B WHERE restriction-on-B))

(A Join B) WHERE restriction-on-A AND restriction-on-B
can be transformed into
(A WHERE restriction-on-A) Join (B WHERE restriction-on-
B))

Database Systems

40

Optimization Process
General rule: It is a good idea to perform

the restriction before the join, because:
It reduces the size of the input to the join

operation,
It reduces the size of the output from the join.

Database Systems

41

Optimization Process

WHERE p OR (q AND r)
can be converted into
WHERE (p OR q) AND (p OR r)

Database Systems

42

Optimization Process
General rule: Transform restriction condition

into an equivalent condition in conjunctive
normal form, because:
A condition that is in conjunctive normal form

evaluates to “true” only if every conjunct evaluates
to “true”. Consequently, it evaluates to “false” if
any conjunct evaluates to “false”. This is specially
useful in the domain of parallel systems where
conjuncts can be evaluated in parallel.

Database Systems

43

Optimization Process
(A WHERE restriction-1) WHERE restriction-2
can be converted into
A WHERE restriction-1 AND restriction-2

Database Systems

44

Optimization Process
General rule: A sequence of restrictions can be

combined into a single restriction.

Database Systems

45

Optimization Process
(A [projection-1]) [projection-2]
can be converted into
A [projection-2]

Database Systems

Optimization Process
General rule: A sequence of projections can be

transferred into a single projection.

46

Database Systems

47

Optimization Process
General rule: A restriction and projection can

be converted into a projection and restriction.

Database Systems

48

Optimization Process
Finally, consider the following query:
Get the supplier numbers who supply at least

one part;
(SP Join P) [S#]

However, we know that P# is the foreign key in
SP, therefore the above query is semantically
equivalent to:

SP [S#]

Database Systems

49

Optimization Process
An equivalence rule says that expressions in different

forms are equivalent. In another words, an expression
in one form can be replaced by its equivalent
expression.

Since the computational cost of equivalent relations
may vary, the optimizer can use equivalence rules to
transform expression while satisfying performance
metrics.

Database Systems

50

Optimization Process
Rule 1: Conjunctive selection operations

(cascade of selections) can be deconstructed
into a sequence of individual selections:

σθ1∧θ2(E) = σθ1(σθ2(E))

Database Systems

51

Optimization Process
Rule 2: Selection operation is commutative:

σθ1(σθ2(E)) = σθ2(σθ1(E))

Database Systems

52

Optimization Process
Rule 3: A sequence of projections is the

same as the last projection operation
(cascade of projections):

ΠL1(ΠL2(… (ΠLn(E))…)) = ΠL1(E)

Database Systems

53

Optimization Process
Rule 4: A combination of selection and

Cartesian product operations is
equivalent to theta join operation:

This can be extended to:
σθ (E1 X E2) = E1 θ E2

σθ1 (E1 θ2 E2) = E1 θ1∧θ2 E2

Database Systems

54

Optimization Process
Rule 5: Theta join operation is

commutative:

E1 θ E2 = E2 θ E1 θ

E1 E2

θ

E2 E1

Database Systems

55

Optimization Process
Rule 6: Natural join is associative:

(E1 E2) E3 = E1 (E2 E3)

E1 E2

E3

E3E2

E1

Database Systems

56

Optimization Process
Rule 7: Theta join is associative in the

following manner:
(E1 θ1 E2) θ2∧θ3 E3 = E1 θ1∧θ3(E2 θ2 E3)

Where θ2 involves attributes from only E2 and E3.

Database Systems

Definition
Selectivity is defined as the ratio of the number of

tuples that satisfy the equality condition to the
cardinality of the relation.

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
#𝑜𝑜𝑜𝑜 𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡

|𝑠𝑠(𝑅𝑅)|
Selectivity is used to estimate size of intermediate

relation and hence number of accesses.

Database Systems

57

In practice selectivities of all conditions is
not available so we use estimated
selectivity as part of statistical data to aid
query optimization.

Database Systems

58

Selectivity on key attribute and search on
equality then:

𝑠𝑠 =
1

|𝑠𝑠(𝑅𝑅)�

Database Systems

59

Selectivity on an attribute with i distinct
values is:

𝑠𝑠 = ��
|𝑠𝑠(𝑅𝑅)�

𝑠𝑠
|𝑠𝑠(𝑅𝑅)�

Hence the number of tuples that satisfy an
equality search is:

1
𝑖𝑖

* |r(R)|

Database Systems

60

61

Optimization Process
Rule 8: Selection operation distribute

over the theta join under the following
conditions:
When all attributes in selection condition θ0

involve only the attributes of one relation (E1
in this case):

σθ0 (E1 θ E2) = (σθ0 (E1)) θ E2

Database Systems

62

Optimization Process
Rule 8:

σθ0 (E1 θ E2) = (σθ0 (E1)) θ E2

σθ0

θ

E1 E2

θ

σθ0 E2

E1

Database Systems

63

Optimization Process
Rule 9: The projection operation

distributes over theta-join under the
following condition:
Join condition θ only involves attributes in

L1 ∪ L2:

ΠL1∪ L2 (E1 θ E2) = (ΠL1(E1)) θ (ΠL2(E2))

Database Systems

64

Optimization Process
Rule 10: Set union and set intersection

operations are commutative:

Note, set difference is not commutative.

(E1 ∪ E2) = (E2 ∪ E1)
(E1 ∩ E2) = (E2 ∩ E1)

Database Systems

65

Optimization Process
Rule 11: Set union and set intersection

operations are associative:
(E1 ∪ E2) ∪ E3 = E1 ∪ (E2 ∪ E3)

(E1 ∩ E2) ∩ E3 = E1 ∩ (E2 ∩ E3)

Database Systems

66

Optimization Process
Rule 12: Selection operation distributes over

the set union, set intersection, and set difference
operations:

σp (E1 ─ E2) = σp (E1) ─ σp (E2)
σp (E1 ─ E2) = σp (E1) ─ (E2)

Database Systems

67

Optimization Process
Rule 12

σp (E1 ∪ E2) = σp (E1) ∪ σp (E2)
σp (E1 ∪ E2) ≠ σp (E1) ∪ (E2)

Database Systems

68

Optimization Process
Rule 12

σp (E1 ∩ E2) = σp (E1) ∩ σp (E2)
σp (E1 ∩ E2) = σp (E1) ∩ (E2)

Database Systems

69

Optimization Process
Rule 13: Projection operation distributes over

the set union, set intersection?, and set
difference operations?:

ΠL (E1 ─ E2) = (ΠL (E1)) ─ (ΠL (E2))?
ΠL (E1 ∪ E2) = ΠL (E1) ∪ ΠL (E2)
ΠL (E1 ∩ E2) = ΠL (E1) ∩ ΠL (E2)?

Database Systems

70

Optimization Process
Choose candidate low-level procedure — After

transferring the query into more desirable form, the
optimizer must then decide how to evaluate the transformed
query. At this stage issues such as:
existence of indexes or other access paths ─ To reduce

I/O cost, and
physical clustering of records ─ To reduce I/O cost, …

comes into play.

Database Systems

71

Optimization Process
So, in short:
after scanning and parsing,
the query will be translated into an equivalent

representation, this internal representation is in the
form of a query tree or query graph,
an execution strategy will be chosen. The execution

strategy is a plan for accessing the data, executing
the query, and storing the intermediate results.

Database Systems

72

Optimization Process
Generate query plans — The final stage of

optimization involve the construction of a set of
candidate query plans and the choice of “the best of
these plans”.
Choosing the cheapest plan, naturally, requires a

method for assigning a cost to any given plan —
This cost formula should estimate the number of
disk accesses, CPU utilization and execution time,
space utilization,….

Database Systems

73

Optimization Process
There are two main techniques for query

optimization:
Heuristic rules
Systematic estimation approach

In this course, as noted before, we will talk
about the heuristic rules.

Database Systems

74

Optimization Process ─ heuristic rules

Perform selection operations as early as
possible.
Perform projections early.
It is usually better to perform selections earlier

than projections.

Database Systems

75

Optimization Process ─ heuristic rules

Based on heuristic rules the optimizer uses
equivalence relationships to reorder operations
in a query for execution.

Database Systems

Definition:
Materialized evaluation: Generation of

intermediate result (relation).
Pipeline evaluation: Combining several

operations.

76

Database Systems

Assume we want to perform:

77

Πa1, a2 (r s)

We can perform the join operation, materialize the resultant,
and then apply projection.

Alternatively, we can do the following: When the join
operation generates a tuple, it will be passes directly to
the project operation for processing.

Database Systems

Assume the following relations:
S (Sid: integer, Sname: string, rating: integer, age: real)
R (Sid: integer, bid: integer, day: dates, rname: string)

Further assume the following query:
SELECT S.Sname

FROM R, S
WHERE R.Sid = S.Sid

AND R.bid = 100 AND S.rating > 5

Database Systems

ΠSname (σbid = 100 AND rating > 5 (R Sid=Sid S))

σbid = 100 ∧ rating > 5

Sid = Sid

R S

ΠSname

Database Systems

ΠSname ((σbid = 100 R) Sid=Sid (σrating > 5 S))

σrating > 5

Sid = Sid

R S

ΠSname

σbid = 100

Database Systems

Assume the underlying platform can
perform the basic relational operations in
“pipeline” fashion – i.e., result of one
operation is fed to another operation.
In this case, articulate the way the previous

query is going to be executed?

Database Systems

σbid = 100 ∧ rating > 5

Sid = Sid

R S

ΠSname

On the fly

On the fly

σrating > 5

Sid = Sid

R S

ΠSname

σbid = 100

On the fly

Database Systems

Cost of Plan
The cost associated with each plan needs to be

estimated. This will be accomplished by
estimating the cost of each operation.

Factors such as: size of relation (s), underlying
architecture, buffer size, size of the memory,
“reduction factor” for each operation, … need
to be taken into consideration.

Database Systems

83

Optimization Process — Search methods
for Selection
General Philosophy: Make effort to reduce the search

space.

84

Database Systems

85

Optimization Process — Search methods for
Selection
Linear search: Retrieve every records in the file

and test whether or not its attribute values satisfy
the selection condition (In this case, data is not
organized and no meta data is available).
Binary search: Use binary search method if the

selection condition involves an equality comparison
on a key attribute on which the file is ordered.

Database Systems

86

Optimization Process — Search methods for
Selection
Using a primary index or hash key to retrieve a

single record: Use the primary index or hash key to
retrieve the record if the selection condition
involves an equality comparison on a key attribute
with a primary index or hash key (note in this case
at most one record is retrieved).

σSSN = 123456789(EMPLOYEE)

Database Systems

87

Optimization Process — Search methods for
Selection
Using a primary index or hash key to retrieve

multiple records: If the comparison condition is >,
<, ≤, ≥ on a key field with a primary index, use the
index to find the record satisfying the
corresponding equality condition and then retrieve
all the subsequent records in the file (note in this
case, data is also sorted).

σDNUMBER > 5(DEPARTMENT)

Database Systems

88

Query Optimization — Search methods for Selection

Using a clustering index to retrieve multiple
records: If the selection condition involves an
equality comparison on a non-key attribute with
clustering index, use the clustering index to retrieve
all the records satisfying the selection condition
(clustered data).

σDNO = 5(EMPLOYEE)

Database Systems

Query Optimization — Search methods for Selection

Conjunctive selection: conjunctive selection is
of the following form;

σθ1∧θ2∧ …. ∧θn (r)
Disjunctive selection: disjunctive selection is of

the following form;
σθ1∨θ2∨ …. ∨θn (r)

Database Systems

89

90

Query Optimization — Search methods for Selection

Conjunctive selection: If an attribute involved in
any single simple condition in the conjunctive
condition has an access path that allows the use of
any aforementioned techniques, use that condition
to retrieve the records and then apply the rest of the
conditions.

Database Systems

Query Optimization — Search methods for Selection
Disjunctive selection by union of record pointers: If access

path exists for all the attributes involved in disjunctive
selection then each index is scanned for pointers to tuples
that satisfy individual condition.

The union of all the retrieved pointers yields the set of
pointers to tuples satisfying the disjunctive condition.

Note, even if one of the conditions does not have an access
path, we will have to perform a linear scan of the relation.

Database Systems

91

92

Query Optimization — JOIN Operation

Nested loop: For each record t ∈ R (outer loop),
retrieve every record of s ∈ S (inner loop) and then
check the join condition t[A] = s[B].

R A=B S

Database Systems

Query Optimization — JOIN Operation (nested loop)

Suppose we want to perform

A and B are attributes or set of attributes (i.e.,
join attributes) of relations r and s. Further
assume nr = | r | and ns = | s | are the cardinality
of the relations. Finally assume br and bs are
the number of blocks of each relation.

Database Systems

r r.A Θ s.B s

93

Query Optimization — JOIN Operation (nested loop)

The following algorithm performs the nested
loop join operation:

For each tr ε r do begin
For each ts ε s do begin

If r.A Θ s.B true then add tr || ts to the result
end

end

Database Systems

94

Query Optimization — JOIN Operation (nested loop)

Cost of nested loop algorithm is nr * ns.
In best case scenario, both relations fit into the

physical space and hence we need bs + br block
accesses.

Database Systems

95

Query Optimization — JOIN Operation (nested loop)

If one of the relations fits in the physical space
then bs + br block accesses will be the cost.

Database Systems

96

Query Optimization — JOIN Operation (block nested
loop)

If the buffer is too small to hold either relation,
entirely, we can still obtain a major saving in
the number of block accesses.

Database Systems

97

Query Optimization — JOIN Operation (block nested loop)

For each block Br of r do begin
For each block Bs of s do begin

For each tr ε Br do begin
For each ts ε Bs do begin

If r.A Θ s.B true then add tr || ts to the result
end

end
end

end

Database Systems

98

Query Optimization — JOIN Operation (block nested
loop)

Cost of block nested loop in term of number
of block accesses is br * bs + br.

How can we improve block nested loop?

Database Systems

99

100

Query Optimization — JOIN Operation

Use of access structure to retrieve the matching
record(s): If an index or hash key exists for one of
the join attributes, say B of s, retrieve each record tr
∈ r, one at a time, and then use the access structure
to retrieve all the matching records ts ∈ S that
satisfy tr[A] = ts[B].

r A=B s

Database Systems

101

Query Optimization — JOIN Operation

Sort-merge: If the records of r and s are physically
sorted by the value of the join attributes, then this
technique can be applied by scanning r and s
linearly.

Database Systems

Query Optimization — JOIN Operation (Merge)
1 pointer, initially pointing to the first tuple, is assigned to

each relation. As the algorithm proceeds, the pointers move
through the relations.

Since the relations are sorted, each tuple is accessed once
and hence the number of block accesses is:

bs + br
Assuming that the set of all tuples with the same value for
the join attributes fit in the main memory.

Database Systems

102

103

Query Optimization — JOIN Operation

hash-join: The records of both files r and s are
hashed to the same hash file using the same hashing
function. A single pass through each file hashes
the records to the hash file buckets. Each bucket is
then examined for records from r and s with
matching join attribute values to produce a possible
result for the join operation.

Database Systems

Query Optimization — Complex JOIN Operation

Nested loop join can be used regardless of the
join condition. The other join techniques,
though more efficient than nested loop, can
handle simple join conditions.
Join with complex join conditions (i. e.,

conjunctive and disjunctive conditions) can be
implemented using techniques discussed for
conjunctive and disjunctive selections.

Database Systems

104

Query Optimization — Complex JOIN Operation

Consider the following join operation

One or more of the join techniques may be
applicable for joins on individual conditions.
We can perform the overall join by first computing

one of the simpler joins, say . The result of
complete join consists of those tuples in the
intermediate result that satisfy the remaining
conditions.

Database Systems

105

r θ1∧θ2∧ …. ∧θn s

r θ1 s

Query Optimization — Complex JOIN Operation
Now consider the following join operation

The join can be performed as the union of the tuples in
individual joins .

Database Systems

106

r θ1∨θ2∨ …. ∨θn s

r θi s

107

Query Optimization — Project Operation

A project operation Π<attribute-list>(R) is
straightforward to implement if <attribute list>
includes a key of relation R.
If <attribute list> does not include a key, then we

may end up with duplicates. Duplicates can be
eliminated by sorting the result and then
eliminating the duplicate or by using hashing
technique.

Database Systems

108

Query Optimization — Set Operations

Cartesian product is very expensive operation to
perform. Hence, it is important to avoid it as much
as possible.
The other set operations can be implemented by

sorting the relations and then a single scan through
each relation is sufficient to generate the result.
Hashing technique is another way to implement

Union, intersection, and difference operations.

Database Systems

Questions
Devise algorithms to perform variation of outer

join operations.
Devise algorithms to perform aggregate

operations.

Database Systems

109

Query Optimization — An Example
Assume the following relations:
Department (Dname, Dnumber, Mgr-ssn, …)
Project (Pname, Pnumber, Plocation, Dnum)
Employee (Fname, Lname, Ssn, Bdate, address, Dno, …)

Database Systems

111

Query Optimization — An Example
SELECT Pnumber, Dnum, Lname, Bdate,

Address
FROM Project, Department, Employee
WHERE Dnum = Dnumber

AND MGRSSN = SSN
AND Plocation = ‘California’;

Database Systems

Query Optimization — An Example

The above query can be translated into:

ΠPnumber,Dnum,Lname,Address,Bdate(σPlocation=“california” ∧ Dnum=Dnumber ∧

MNGSSN=SSN (Project × (Department × Employee)))

Database Systems

112

Query Optimization — An Example

Database Systems

ΠPnumber,Dnum,Lname,Address,Bdate

Project

σPlocation=“california” ∧ Dnum=Dnumber ∧ MNGSSN=SSN

Employee

Department

×

×

113

Database Systems

Query Optimization — An Example

The previous scenario will result in an inefficient
query processing. Assume Project, Department,
and Employee relations had tuples sizes of 100, 50,
and 150 bytes, and contained 100, 20, and 5,000
tuples, respectively. Then the Cartesian products
would generate a relation of 10 million tuples each
of 300 bytes.

Database Systems

114

115

Query Optimization — An Example

However, the above query based on the
schemas of the relations can be translated
into:

Database Systems

ΠPnumber,Dnum,Lname,Address,Bdate(((σPlocation=“california” (Project))
Dnum=Dnumber (Department)) MNGSSN=SSN (Employee))

116

Query Optimization — An Example

ΠPnumber,Dnum,Lname,Address,Bdate

Project

σPlocation=“california”

Employee

MNGSSN=SSN

Dnum=Dnumber

Department

Database Systems

	��Query Processing and Query Optimization in �Centralized Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems
	 Database Systems

