
1

Mobile and Heterogeneous databases
Distributed Database System

Query Processing

A.R. Hurson
Computer Science

Missouri Science & Technology

Note, this unit will be covered in four
lectures. In case you finish it earlier, then
you have the following options:

1) Take the early test and start CS6302.module3
2) Study the supplement module

(supplement CS6302.module2)
3) Act as a helper to help other students in

studying CS6302.module2
Note, options 2 and 3 have extra credits as noted in course
outline.

Distributed Databases

2

Glossary of prerequisite topics

Familiar with the topics?
No Review CS6302 module2

background

Yes

Remedial action
Yes

No
Take the Module

Take Test

Pass?

Glossary of topics

Familiar with the topics?
Yes

Pass?

Take Test

Yes

Options

Lead a group of students in
this module (extra credits)?

Study more advanced related
topics (extra credits)?

Study next module?

No

{

Extra Curricular activities

Enforcement
of background

{Current
Module

At the end: take
exam, record the

score, impose
remedial action if not

successful

No

Distributed Databases

3

 You are expected to be familiar with:
 Centralized database configuration and query

processing and query optimization in a
centralized database environment.

 If not, you need to study
CS6302.module2.background

Distributed Databases

4

 In this module, we define:
 Distributed Databases
 Issues in distributed databases,
 Query processing in general
 Query optimization

 Optimization process
 Query transformation (equivalence rules)

 Distributed query processing

5

Distributed Databases

 From our discussion in the last module, one could
conclude that “distributed databases” is one form of
database organization to represent and process the data. It
is a natural extension of client-server and peer-to-peer
paradigms.

 We will look at the major issues in a distributed database
organization and then concentrate on query processing.

6

Distributed Databases

7

Distributed Databases

 Distributed Database Systems
 A distributed database in an environment in

which related data sources:
 Are residing on different geographically distributed

sites ─ data is closed to the application domain (s)
that uses it.

 Might be replicated ─ to improve performance.
 Are slit (Fragmented), horizontally and/or vertically,

and distributed among the sites ─ to balance the load
and improve performance.

8

Distributed Databases

 Data Distribution
 Data might be distributed to minimize

communication cost and/or response time.
 Data might be kept at the site where it was

created to allow higher control and security.

9

Distributed Databases

 Data Replication
 Data replication allows more availability (in the

event of failure ─ if one site is down, data can
be accessed from another site),

 Data replication increases the degree of
parallelism (reduce response time),

 Data replication increases overhead on update.

10

Distributed Databases

 Data Replication
 In general, data replication increases the performance of

read operations and increases the availability of the data
to read-only transactions.

 However, data replication incurs overhead for update
transactions, since all copies of the data must be
synchronized. In addition, controlling concurrent
updates by several transactions on replicated data is
becoming very complex.

11

Distributed Databases

 Data Fragmentation ─ Horizontal fragmentation

 In horizontal fragmentation, data set is
partitioned (broken) into subsets with the same
structure ─ original data set can be constructed
by taking the union of the subsets.

 Horizontal fragmentation keeps the subsets at
the sites where they are used the most.

 Horizontal fragmentation is lossless.

12

Distributed Databases

 Data Fragmentation ─ Horizontal fragmentation

T = ∪ Ti 1 ≤ i ≤ n

T1

T2

T5

T3

T4

13

Distributed Databases

 Data Fragmentation ─ Vertical fragmentation

 In vertical fragmentation, data set is
decomposed (broken) into subsets with
different attributes ─ Original data set is
constructed by performing join on the
fragments.

 Vertical fragmentation is also lossless.

14

Distributed Databases

 Data Fragmentation ─ Vertical fragmentation

Ti =ΠLi (T) 1 ≤ i ≤ n
T = T1 T2 … Tn

15

Distributed Databases

 Two types of applications access distributed
databases:
 Application that accesses data at the level of SQL

statements.
 Application that accesses data using only stored

procedures provided by the database management
system.

 Only applications of the first type can access data
directly and hence subject to employ query
optimization, concurrency control, … strategies.

16

Distributed Databases

 Issues in Distributed Database Systems ─
Data Distribution
 How should a distributed database be designed?
 How should the data be distributed?

17

Distributed Databases

 Issues in Distributed Database Systems ─
Transparency
 Distributed data should be managed

transparently ─ details regarding the location of
the data must be hidden. Transparency comes
in different types:
 Network transparency
 Replication transparency
 Fragmentation transparency

18

Distributed Databases

 Issues in Distributed Database Systems ─
Transparency
 Location transparency (Network transparency)
─ Freedom from operational details of the
network.

 Replication transparency ─ Unaware from the
existence of duplicated copies.

 Fragmentation transparency ─ Unaware from
the existence of fragments.

19

Distributed Databases

 Issues in Distributed Database Systems ─
Transparency
 The degree of transparency is a compromise

between:
 Ease of use and the difficulty, and
 The overhead cost of providing high levels of

performance.

20

Distributed Databases

 Issues in Distributed Database Systems ─
Keeping track of data
 Ability to keep track of the data distribution,

fragmentation, and replication.
 Application of catalog, meta-data,…

21

Distributed Databases

 Issues in Distributed Database Systems ─
Distributed Query processing
 The ability to access remote sites and

transmitting queries (sub-queries) and data
among different sites via the network:
 How should queries that access multiple databases

be processed?
 How do we improve query processing?

22

Distributed Databases

 Issues in Distributed Database Systems ─
Distributed Transaction management
 The ability to devise execution strategies for

queries and transactions that access data from
more than one site and to synchronize the
access to distributed data (efficiently) and
maintain integrity of the whole database.

23

Distributed Databases

 Issues in Distributed Database Systems ─
Replicated data management

 The ability to decide which copy of a replicated
data set to access, to maintain the consistency
of the replicated data, and to control number of
replica.

24

Distributed Databases

 Issues in Distributed Database Systems ─
Distributed database recovery
 The ability to recover from individual site

crashes and system failures.

25

Distributed Databases

 Issues in Distributed Database Systems ─
Security
 The ability to authenticate users, and enforce

authorization and access control.

 To appreciate the issue of query processing in
a distributed environment, one has to have a
good appreciation and understanding of query
processing in a centralized database
environment. This also brings out the issue of
query optimization, equivalency between
queries, and equivalence rules.

26

Distributed Databases

27

Distributed Databases

 Query processing
 A query processing involves three steps:

 Parsing and Translation
 Optimization
 Evaluation

28

Distributed Databases
 Query processing

Query Parser &
Translator

Internal
Representation

Execution
Plan

Query
Output

Optimizer

Statistics
about data

Execution
Engine

DATA BASE

29

Distributed Databases

 Query Optimization — A Simple Example
 Get names of suppliers who supply part P2:

SELECT DISTINCT Sname
FROM S, SP
WHERE S.S# = SP.S#
AND SP.P# = ‘P2’;

 Suppose that the cardinality of S and SP are 100
and 10,000, respectively. Furthermore, assume
50 tuples in SP are for part P2.

30

Distributed Databases

 Query Optimization — A Simple Example
 Without an optimizer, the system will:

 Generates Cartesian product of S and SP. This will
generate a relation of size 1,000,000 tuples — Too
large to be kept in the main memory.

 Restricts results of previous step as specified by
WHERE clause. This means reading 1,000,000
tuples of which 50 will be selected.

 Projects the result of previous step over Sname to
produce the final result.

31

Distributed Databases

 Query Optimization — A Simple Example
 An Optimizer on the other hand:

 Restricts SP to just the tuples for part P2. This will
involve reading 10,000 tuples, but produces a
relation with 50 tuples.

 Joins the result of the previous step with S relation
over S#. This involves the retrieval of only 100
tuples and the generation of a relation with at most
50 tuples.

 Projects the result of the last operation over Sname.

32

Distributed Databases

 Query Optimization — A Simple Example
 If the number of tuples I/O’s is used as the performance

measure, then it is clear that the second approach is far
faster that the first approach. In the first case we read
about 3,000,000 tuples and in the second case we read
about 10,000 tuples.

 So a simple policy — doing restriction and then join
instead of doing product and then a restriction sounds a
good heuristic.

33

Distributed Databases

 Optimization Process
 Cast the query into some internal representation

— Convert the query to some internal
representation that is more suitable for machine
manipulation, relational algebra.

 Now we can build a query tree very easily.

Π(Sname)(σP# = “P2”(S S.S# =SP.S#SP))

34

Distributed Databases

 Optimization Process

S SP

Join (S.S# = SP.S#)

Restrict (Sp.P# = ‘P2’

Project (Sname)

Result

35

Distributed Databases

 Optimization Process
 Choose candidate low-level procedure — After

transferring the query into more desirable form, the optimizer
must then decide how to evaluate the transformed query. At
this stage issues such as:
 existence of indexes or other access paths ─ To reduce I/O

cost,
 physical clustering of records ─ To reduce I/O cost,
 size of base relations,
 Selectivity factors,
•
•
•

comes into play.

36

Distributed Databases

 Optimization Process
 Choosing the cheapest plan, naturally, requires a

method for assigning a cost to any given plan —
This cost formula should estimate the number of
disk accesses, CPU utilization and execution time,
space utilization,….

37

Distributed Databases

 Query processing ─ An Example
 Factors such as number of accesses to the disks,

CPU time, Communication cost must be taken
into consideration to estimate cost of a plan.

 Techniques such as pipelining and parallelism
can be applied to execute basic operations.

 Different algorithms can be developed to
execute basic operations.

38

Distributed Databases

 Optimization Process
 There are two main techniques for query

optimization:
 Heuristic rules
 Systematically estimate

 In this course, we will talk about the heuristic
rules.

39

Distributed Databases

 Optimization Process ─ heuristic rules

 Reduce the search space,
 Reduce the size of intermediate results,
 Perform selection operations as early as

possible,
 Perform projections early,
 It is usually better to perform selections earlier

than projections,
 Convert Cartesian product to join.

40

Distributed Databases

 Optimization Process ─ heuristic rules

 Based on heuristic rules the optimizer uses
equivalence relationships to reorder operations
in a query for execution.

Distributed Databases

 Cost of Plan
 The cost associated with each plan needs to be

estimated. This will be accomplished by
estimating the cost of each operation.

 Factors such as: size of relation (s), underlying
architecture, buffer size, size of the memory,
“reduction factor” for each operation, … need
to be taken into consideration.

Distributed Databases

 Assume the following relations:
 Department (Dname, Dnumber, Mgr-ssn, …)
 Project (Pname, Pnumber, Plocation, Dnum)
 Employee (Fname, Lname, Ssn, Bdate, address, Dno, …)

43

Distributed Databases

 Query Optimization — An Example
SELECT Pnumber, Dnum, Lname, Bdate,

Address
FROM Project, Department, Employee
WHERE Dnum = Dnumber

AND MGRSSN = SSN
AND Plocation = ‘California’;

44

Distributed Databases

 Query Optimization — An Example

 The above query based on the schemas of
the relations can be translated into:

ΠPnumber,Dnum,Lname,Address,Bdate(((σPlocation=“california” (Project))
Dnum=Dnumber (Department)) MNGSSN=SSN (Employee))

45

Distributed Databases

 Query Optimization — An Example

Project

σPlocation=“california”

Employee

MNGSSN=SSN

ΠPnumber,Dnum,Lname,Address,Bdate

Department

Dnum=Dnumber

46

Distributed Databases

 Distributed Query processing
 In a distributed database system, relative to the

centralized database, several additional factors
complicate query processing. These includes:
 Data Transfer cost ─ size of data, communication cost,

communication reliability,
 The potential performance gain ─ data replication and

fragmentation,
 Potential parallelism ─ data replication and fragmentation,
 Security, and
 Processing capability and speed.

 Distributed Query processing
 Query translation must be done correctly

(same semantic as the original query) and
efficiently.

 In a centralized context, query execution
strategies can be well expressed in an
extension of relational algebra.

47

Distributed Databases

 Distributed Query processing
 In a distributed system, relational algebra is not

enough to express execution strategy. It must
be supplemented with operations for
exchanging data between sites. In addition, the
distributed query processor must also select the
best sites to process data and possibly the way
data should be transferred.

48

Distributed Databases

 Example
 Assume the following relations:

EMP(ENO, ENAME, TITLE) and
ASG(ENO, PNO, RESP, DUR)

 Find the names of employees who are managing a project
SELECT ENAME
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO ∧ RESP = “manager”

49

Distributed Databases

Π(ENAME)(EMP ENO (σRESP = “Manager” (ASG)))

 Example
 Assume that EMP and ASG are horizontally fragmented as

follows:
EMP1 = σENO ≤ “E3” (EMP) ASG1 = σENO < “E3” (ASG)

EMP2 = σENO < “E3” (EMP) ASG2 = σENO > “E3” (ASG)

 Fragments of ASG1, ASG2, EMP1, and EMP2 are stored at sites 1,
2, 3, 4, respectively and the result is expected at site 5.

50

Distributed Databases

 Example

51

Distributed Databases

ASG′
1 = σRESP < “Manager” (ASG1) ASG′

2 = σRESP < “Manager” (ASG2)
Site1 Site2

ASG′
1 ASG′

2

EMP′1 = EMP1 ENO ASG′
1 EMP′2 = EMP2 ENO ASG′

2

Site4Site3

Result = Π(ENAME)(EMP′1 ∪ EMP′2)
Site5

EMP′1
EMP′2

Strategy1

 Example

52

Distributed Databases

Result = Π(ENAME)(EMP1 ∪ EMP2) ENO (σRESP = “Manager” (ASG1 ∪ASG2)))
Site5

Site4Site3Site2Site1

EMP1 EMP2
ASG1 ASG2

Strategy2

 Example
 Assume tuple access (tupacc) is 1 unit and tuple

transfer (tuptrans) is 10 units, relations EMP and
ASG have 400 and 1000 tuples, respectively, and
there are 20 managers. Further assume data is
distributed uniformly among sites and ASG and
EMP are locally clustered on attributes RESP and
ENO.

53

Distributed Databases

 Example
Total cost of strategy1

1) Produce ASG′ (10 + 10)*tupacc = 20
2) Transfer ASG′ (10 + 10)*tuptrans = 200
3) Produce EMP′ (10 + 10)*tupacc*2 = 40
4) Transfer EMP′ (10 + 10)*tuptrans = 200

Total cost of strategy1
1) Transfer EMP 400*tuptrans = 4000
2) Transfer ASG 1000*tuptrans = 10000
3) Produce ASG′ 1000*tupacc = 1000
4) Join EMP and ASG′ 400*20*tupacc = 8000

Note: in strategy2, the access methods to EMP and ASG are lost because of the data
transfer.

54

Distributed Databases

 Distributed Query processing
 Types of optimizations:

 Exhaustive approach
 Heuristic approach

 Reduce search space at each site
 Reduce size of intermediate results
 Reduce communication cost

 Optimization Overhead
 Static optimization
 Dynamic optimization
 Hybrid

55

Distributed Databases

 Distributed Query processing
 Statistics: Effectiveness of optimization (specially static

optimization) relies on statistics on the databases.

 Decision sites: When static optimization is employed, either a
single site or multiple sites may participate in selection of the
strategy for query processing. Most system use the centralized
decision approach. Naturally, the centralized approach is easier to
implement, however, it requires knowledge of the entire
distributed databases. The distributed approach requires only local
information. One can employ a hybrid approach where one site
makes the major decisions and other sites can make local
decisions.

56

Distributed Databases

 Distributed Query processing
 Exploitation of the Network Topology

 Local area network
 Wide area network

 Exploitation of Replicated Fragments: Global query
expressed on global relations must be mapped into queries on
physical fragments of relations (localization)

 Use of Semijoins: A semijoin is of particular importance since
it improves the processing of distributed join operations by
reducing the size of data exchanged between sites. However,
semijoins may result in an increase in the number of messages and
local processing time.

57

Distributed Databases

58

Distributed Databases

Local Optimization

Global Optimization

Data Localization

Query Decomposition

Global query

Global schema

Algebraic query on distributed data

Fragment schema

Fragment query

Statistics on Fragment

Optimized fragment query with communication operations

Local schema

Optimized local queries

 Distributed Query processing
 Cost of an execution strategy can be expressed in terms

of either total execution time or the response time.
Total-exec.time = TCPU * #insts + TI/O * #I/Os + TMGS * #MSGs + TTR * #bytes

 TCPU * #insts + TI/O * #I/Os measures the local
processing time and TMGS * #MSGs + TTR * #bytes
represents the cost of communications.

59

Distributed Databases

 Distributed Query processing
 Size of intermediate result(s) is one of the

major factors affecting the cost:
Length(Ai) denotes length of attribute Ai in bytes
Card(ΠAi (R)) denotes the number of distinct values of Ai in R.
Card(dom [Ai]) denotes the cardinality of the domain Ai.
Card(R) denotes number the entities (tuples) in R.
Size(R) = Card(R) * Length(R) where Length(R) is the length of
each entity (tuple) in R.

60

Distributed Databases

 Distributed Query processing
Card(σF (R)) = SFS(F) * card(R) denotes the number of data entities
(tuples) responding to a selection condition.
SFS(F) is the selection factor which is dependent on selection formula and
can be determined as follows:

SFS(A = value) = 1/(Card(ΠAi (R)))
SFS(A > value) = (max(A) – value)/(max(A) – min(A))
SFS(A < value) = (value – min(A))/(max(A) – min(A))
SFS(p(Ai) ∧ p(Aj)) = SFS(p(Ai)) * SFS(p(Aj))
SFS(p(Ai) ∨ p(Aj)) = SFS(p(Ai)) + SFS(p(Aj)) – SFS(p(Ai)) * SFS(p(Aj))
SFS(A ε {value}) = SFS(A = value) * Card({value})
Where p(Ai) and p(Aj) are the predicates over respective attributes.

61

Distributed Databases

 Distributed Query processing
Join selectivity factor is defined as:
SFJ (R, S)= Card(R S) /(Card(R) * Card(S))
And hence Card(R S) = SFJ (R, S) * (Card(R) * Card(S))

For Cartesian product Card(R × S) = Card(R) * Card(S)

For projection Card(ΠA (R)) = card(R) if A contains a key

62

Distributed Databases

63

Distributed Databases

 Distributed Query processing ─ Query transformation
 Based on the query, location of data sets, size of the

data sets, communication cost, processing capability, …
a dynamic strategy should be laid out.

 According to the strategy, then the query is
decomposed into sub-queries.

 Sub-queries are sent to the designated sites for
execution.

64

Distributed Databases

 Distributed Query Processing
 In distributed systems, several additional

factors further complicate query processing:
 Cost of data transmission ─ this includes

intermediate data and the final result.
 Hence, the query optimization algorithm must

attempt to reduce the amount of data transfer.

65

Distributed Databases

 Distributed Query Processing
 Use of semijoin ─ the idea is to reduce the number

of tuples in a relation before transferring it to
another site.

R A=B S
 If A and B are domain compatible attributes of R

and S then we have

R S ≠ S R
 Note semijoin is not commutative:

 Questions
 Calculate selectivity factor of semijoin

operation and cardinality of semijoin operation?
 Calculate cardinality of Union and Difference

operations?

66

Distributed Databases

67

Distributed Databases
 Distributed Query Processing

 A query is decomposed into a set of sub-queries that
can be executed at the individual sites.

 A strategy for combining the results of the sub-queries
to form the query result must be generated:
 An estimate on the size of data transmission must be made to

minimize communication cost:
 In case of data replication and fragmentation attempt must be

made to choose the closest replica and/or fragments.
 If possible, semijoin operation should be performed to reduce

data transfer size.
 Where ever possible attempt must be made to enforce

heuristics and equivalence rules, at each site, to reduce the
execution cost.

68

Distributed Databases

 Distributed Query Processing ─ An example
 Assume the following queries on two relations:

Site1: EMPLOYEE

FNAME MINIT LNAME SSN BDATE ADDRESS SEX DNO• • •

10,000 records
Each record is 100 bytes
SSN field is 9 bytesFNAME field is 15 bytes
DNO field is 4 bytes LNAME field is 15 bytes

ΠFNAME,LNAME,DNAME ((EMPLOYEE) DNO=DNUMBER (DEPARTMENT))

69

Distributed Databases

 Distributed Query Processing ─ An example

100 records
Each record is 35 bytes
DNUMBER field is 4 bytes DNAME field is 10 bytes
MGRSSN field is 9bytes

Site2: DEPARTMENT

DNAME DNUMBER MGRSSN • • •MGRSTARTDATE

70

Distributed Databases

 Distributed Query Processing ─ An example
 The result of this query include 10,000 records,

each 40 bytes long.
 The query is generated at site3.

71

Distributed Databases

 Distributed Query Processing ─ An example
 Transfer both relations to site3 and process the request

there. Here we have to transfer 1,000,000+3500 bytes.
 Transfer employee relation to site2, process the request

at site2, and transfer the result to site3. Here we have to
transfer 400,000+1,000,000 bytes.

 Transfer department relation to site1, process the
request at site1, and transfer the result to site3. Here we
have to transfer 400,000+3500 bytes.

72

Distributed Databases

 Distributed Query Processing ─ An example
 Suppose we have the following query initiated at site3:

ΠFNAME,LNAME,DNAME ((DEPARTMENT) MGRSSN=SSN (EMPLOYEE))

 Note that this query generate 100 records.

73

Distributed Databases

 Distributed Query Processing ─ An example
 Transfer both relations to site3 and process the request

there. Here we have to transfer 1,000,000+3500 bytes.
 Transfer employee relation to site2, process the request

at site2, and transfer the result to site3. Here we have to
transfer 4000+1,000,000 bytes.

 Transfer department relation to site1, process the
request at site1, and transfer the result to site3. Here we
have to transfer 4000+3500 bytes.

74

Distributed Databases

 Question
 What is a semijoin Strategy?
 Apply equivalence relations to the aforementioned

examples, enumerate different strategies, and calculate
the data transfer accordingly.

 Apply semijoin operation to carry out the
aforementioned queries and calculate the data transfer
size.

 How can we perform database operations on a parallel
system (assume relational model)?

	Mobile and Heterogeneous databases �Distributed Database System�Query Processing
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases
	Distributed Databases

