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0. ABSTRACT 
 Since the dawn of computer technology the challenge of closing the computation gap—
i.e., the difference between computation power demanded by application areas and the 
computation power of the computer systems, has introduced some alternatives to the so called 
traditional von-Neumann concept.  These alternatives have proven their effectiveness in practice 
since the early days of computers.  However, in the information explosion era, there is always a 
demand for higher computation power.  For example, several projects currently exist with 
requirements of 109 instructions per second (e.g. 1nsec per instruction) balanced against 
technologies that are approaching the speed of light transmission limitation (e.g., 30 cm/nsec). 
 To cope with ever increasing demand to close the computation gap, the design of the 
computer systems has been advanced in several distinct but interrelated areas  
 • System software 
 • Technology and circuit design 
 • System architecture/organization 
 The major theme of this unit centers around the contribution of the last approach.  
However, due to the practical validity and importance of the other directions, the merit of each 
will also be discussed. 
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Table 1: The evolution of technology through the computer generation and its impact 
on computer elements. 

  Generation 
Technology First Second  Third Fourth 
 
Processor Vacuum Transistor  ICS LSI and VLSI 
Technology Tube 
 
Processor Uni- Multifunctional Multiprocessors Work Stations 
Structure Processor Units  Minicomputers Local area Networks 
     MIMD Extensive SIMD 
     SIMD Object Orientation 
 
Main Frame 5 * 104 5 * 10-2  1 5 
Speed 
 
Microprocessor -- --  1 10 
Speed 
 
Control Unit Hardwired Hardwired  Hardwired and Hardwired and 
     Microprogrammed Microprogrammed 
 
Primary  Vacuum Core  Semi Conductor Semi Conductor 
Memory Tubes    64K-256 K bit chips 
 
Memory size 5 * 10-3 5 * 10-2  1 10 
 
Secondary  Drum Channels and  Fixed head and Extended I/O Paths 
Memory and Tape Asynchronous I/O Moveable-arm optical disks 
I/O Paths  Processors  disks 
 
Memory -- Paging Systems Segmentation & I/O Caches 
Hierarchy  (experiments)  Paging Caches 
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1. CLOSING THE COMPUTATION GAP 
1.1 System Software  
 Since the early days of computers, the development of software support for 
maximizing hardware utility has stimulated much research.  Software systems are 
developed to tailor the embedded hardware features of a system to a specific application.  
System software includes areas such as data structures, compilers and translators, and 
operating systems.  For example, it has been learned that: 
 

1) By organizing data in proper fashion one can improve the performance.  
As a classical example we can talk about binary search algorithm over 
sorted data. 

 
2) A compiler equipped with an optimizer routine improves the performance 

during the run time by creating an efficient target language program.  
Extensive research reported in the literature has shown that a vectorizing 
compiler can enhance the performance by detecting the parallelism in an 
application program and rearranging the instructions in the object program 
to allow the simultaneous execution of independent instructions during the 
run time. 

 
3) Application of memory management routines as part of the operating 

systems has proven their effectiveness in improving the memory utilization 
and increasing the system throughput. 

 

 The first electronic computer, designed by Eckert and Mauchly at the University of 
Pennsylvania, consisted of 18,000 vacuum tubes and 15,000 relays, the U-shaped computer 
was 100 feet long and nearly 9 feet high and weighed over 30 tons.  By comparison, forty years 
later, vacuum tubes are things of the past replaced by smaller and more reliable units.  Today, 
with the strong emergence of advances in device and storage technology, an entire 32-bit 
microprocessor or a 1Mbit RAM memory can be incorporated on a single chip.  There is no 
doubt that advances in technology have placed an important role in the organization of 
computers.  Table 1 summarizes the effect of the technology on the main components of the 
computer system.  These advances, however, are not without any drawbacks.  For example, 
recent advances in device technology due to its high design and fabrication costs, and high 
density (hence the testability issue) at the chip level imposes specific architectural constraints on 
the designs.  A suitable architecture for hardware implementation should reduce communications 
as well as computation and be based on the replication of a few basic blocks in space or time.  

1.2 Technology and Circuit Design 
 During the past 40 years, transition from vacuum tubes to VLSI has increased the 
processor speed by more than four orders of magnitudes, and has reduced the logic circuit size 
and memory cell size by factors of 500 and 6400, respectively.  The current microelectronics 
technology has passed the mark of a million transistors per chip, and computer architects are 
facing the increasing challenge of ULSI—ultra large scale integration—technology.  It is 
anticipated that by the year 2,000, advances in technology will boast the capability of 50-100 
million transistors on a chip. 
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This implies localization, modularity, regularity and simplicity of the designs.  To fully utilize these 
advances one has to develop a design which is:  i) general enough for mass production, ii) 
simple, regular and modular at the chip level, and iii) localize to reduce inter-chip 
communications.  In addition, proper mechanism to improve the fabrication process and chip 
testability should be developed. 
 Performance improvement is one of the major challenges in the future advances in 
device technology.  Bipolar Junction Transistors (BJT) for faster speed, CMOS for lower 
power dissipation, Gallium Arsenide Gates (GaAS) for high electron mobility and optical 
technology for its speed have shown a promising future. 
 Wafer Scale Integration (WSI) has been seen as an alternative to VLSI.  WSI has the 
advantage of increasing system speed by eliminating off-chip driver delays and increasing 
reliability by reducing chip interconnections.  However, due to their low yield and power 
limitations, there are questions whether or not logic WSI can be competitive with ICs.  On the 
other hand, main memory WSI is a promising prospect.  First, its efficiency is very high.  Since 
all memory modules on the wafer can be identical and hence, global redundancy can be used.  
With a word-wide module, power is low since all but one module are in stand-by mode, in 
addition, pin outs are few.  Moreover, in WSI many fabrications steps such as scribing, dicing, 
sorting, lead bonding, IC insertion, soldering, board testing and reworking are eliminated.  All 
these considerations lead to easily produced wafer having inexpensive packaging. 
 Since the early 1970s, continued demands for high capacity and low cost storage media 
has allowed the: 

 1) Steady advances in magnetic recording technology, 

 2) Introduction of the so called "electronic disks" — i.e., charge coupled devices and 
magnetic bubble memory, and 

 3) Application of the optical storage devices in the memory hierarchy. 
 Unfortunately, the inability to mass produce the electronic disks made it impossible for 
competitive challenge in the market.  However, optical storage devices and parallel disks have 
shown a very promising future. 
 Advances in technology have directly affected the execution time of the basic functions.  
For example, in 1944 the MARK I (a pioneer computer using electromechanical components, 
i.e. relays) required 333 msec. to complete an addition.  In a few years, this was improved by a 
factor of more than a thousand (i.e. ENIAC which used vacuum tubes).  About 10 years later 
CDC 6600 was able to perform the addition in 300 nsec. 
 The reduction in the gate switching delay, wire length and miniaturization of circuits has a 
direct effect on the clock rate and hence, in closing the computation gap.  In addition, such a 
trend has increased the sophistication of the supporting software and the migration of the 
software functions into hardware. 
 In the late 1960's Moore predicted that, component density on a chip is quadrupling 
every three or four years.  This is partially due to the development of high resolution lithographic 
techniques, increases in the size of the silicon wafer, growth of the accumulated circuits and 
layout design experience, and better understanding of the system level design issues leading to 
an improved architecture capable to exploiting the technology.  However, as improvements in 
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technology approach the limit (the speed of light), Moore's law is no longer applicable and the 
emphasis is shifted in the direction of advances in system architecture/organization. 
 
1.3 System Architecture/Organization 
 Migration of the software functions into the hardware, combined with the advances in 
the technology's intrinsic speed, has reduced the computation gap.  However, there has always 
been the need for much more computer performance than is feasible with a simple straight 
forward design.  To overcome these limitations, computer designers have long been attracted to 
techniques that are classified under the general phrase of concurrent operations.  In a concurrent 
system the computer's hardware is simultaneously processing more than one basic operation at 
each instant of time.  Within this general category are several well recognized techniques such as 
parallelism, pipelining and multiprocessing.  Although these techniques have the same origin and 
are often hard to distinguish, in practice they are different in their general approach.  For 
example, in parallelism concurrency is achieved by replicating the hardware structure many 
times, while pipelining takes the approach of splitting the function to be performed into smaller 
pieces and allocating separate hardware to each piece (stage). 
 This unit is aimed at different proposals for closing the computation gap within the scope 
of the control flow environment.  Section 2 introduces some definitions and background which 
are used throughout the unit.  Section 3, addresses the class of concurrent systems based on the 
control flow concept.  It represents the so called parallel, pipelined, and multiprocessor systems.  
The programming issue of the control flow computation is the subject of Section 4.  Finally, the 
shortcoming of the control flow environment is discussed in Section 5. 
 
2. DEFINITIONS 
2.1 Concurrency 
 Concurrency is a generic term to define the ability of the computer hardware to 
simultaneously execute many actions at any instant.  In this general sense it implies parallelism, 
simultaneity, and pipelining.  Parallel events may occur in multiple resources during the same 
time interval; simultaneous events may occur at the same time instant and pipelined events may 
occur in overlapped time spans.  Within this framework, concurrent processing is an efficient 
form of information processing which emphasizes the exploitation of concurrent events in the 
computing process.  Therefore, one can define a concurrent processor as a system that 
emphasizes concurrent processing. 
 
2.2 System Utilization 
 For any computer there is a maximum number of bits or bit pairs that can be processed 
concurrently whether it is under single-instruction or multiple-instruction control.  This maximum 
degree of concurrency, or maximum concurrency, Cm is an indication of the computer 
processing capability.  The actual utilization of this capability is indicated by the average 
concurrency defined to be 
 
 
 
   (1) 

Ca
=

ΣCi ∆ t i

t iΣ∆
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where Ci is the concurrency at ∆ti.  If ∆ti is set to one time unit, then the average concurrency 
over a period of T time units is 
 
 
 
   (2) 
The average hardware utilization is then 
   
 
 
   (3) 
 
where ?i is the hardware utilization at time i.  While Cm is determined by the hardware design, 
Ca or µ is highly dependent on the software and applications.  A general-purpose computer 
should achieve a high µ for as many applications as possible, while a special-purpose computer 
would yield a high µ for at least the intended applications.  In either case, maximizing the value 
of µ for a computer design is important.  Equation (3) can also be used to evaluate the relative 
effectiveness of machine designs. 
 For a parallel processor the degree of concurrency is called the degree of parallelism.  
A similar discussion can be used to define the average hardware utilization of a parallel 
processor.  The maximum parallelism is then Pm and the average parallelism is: 
   
 
 
 
   (4) 
for T time units.  The average hardware utilization of a parallel processor becomes 
   
 
 
 
   (5) 
where ρ

i is the hardware utilization for the parallel processor at time i.  With appropriate 
instrumentation, the average hardware utilization of a system can be determined. 
 In practice, however, it is not always true that every bit or bit pair that is being 
processed results in productive information.  Some of the bits produced contain only repetitious 
(superfluous) or even meaningless results.  This happens more often and more severely in a 
parallel processor than in a word-sequential processor.  Consider, for example, performing a 
maximum search operation in a mesh connected parallel processor (such as ILLIAC IV).  For 
N operands it takes (N/2)log2N comparisons (N/2 comparisons for each log2N iterations) 
instead of the usual N-1 comparisons in word-sequential machines.  Thus, in effect there are 
 (N/2)log2N – (N-1) = (N/2)(log2N – 2) + 1  (6) 
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comparisons which are non-productive.  If we let ap~  be the effective parallelism over a period 

of T time units, andν~ , ip~  and iρ~  be the corresponding effective values, the effective 
hardware utilization is then 
 
 
 
   (7) 

A successful parallel processor design should yield a highν~ , as well as the required throughput 
for, at least, the intended applications.  This involves not only a proper hardware and software 
design, but also the development of efficient parallel algorithms for these applications. 
 Suppose Tu is the execution time of an application program using a conventional von-
Neumann machine, and Tc is the execution time of the same program using a concurrent system, 
then the speed up ratio is defined as: 
  S = Tu/Tc (8) 

Naturally for a specific concurrent organization the speed up ratio determines how well an 
application program can utilize the hardware resources.  Supporting software has a direct effect 
on the speed up ratio. 
 In case of pipeline organization, the literature has used other parameters to discuss the 
performance issues.  In a pipeline system the term Latency is used as a performance measure.  
Latency (L) is defined as the number of time units separating two successive initiations of events.  
Naturally, the lower the latency the higher the performance.  Latency could be any integer value 
including zero.  Then the average latency is defined as the average number of time unit 
between two initiations.  Based on the value of the   then one can define the initiation rate (I).  It 
is the average number of the initiations per clock unit: 
 
   
   (9) 

 
For stage Si, stage utilization (USi) indicates on the average how often Si has been used: 
  

USi = I * ni  (10) 

where ni represents the number of time Si is used in one initiation.  For a linear pipe, if δ i denotes 
the execution time of stage Si then: 
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2.3 Classifications of Concurrent Systems  
 System designers have long recognized the intrinsic limitation and vulnerability of the 
classical von-Neumann design, in which all system resources are clustered around a single 
central processing unit.  In this classical model, the arithmetic logic unit (ALU) can perform 
operations only on a bit or a bit pair (serial ALU).  Therefore, an operation on an M-bit 
operand or operand pair must be repeated bit serially M times.  In order to speed up the 
processing, a parallel ALU is usually used, so that all bits of an operand or operand pair can be 
operated on simultaneously.  This discussion can be extended to the cases in which either:  i) all 
the ith bits of n operands or operand pairs may be operated on simultaneously (i.e. bit slice-Bis), 
or ii) the operation is performed on n M-bit operands or operand pairs.  Points A, B, C and D 
in Figure 1 illustrate these four approaches, respectively.  This discussion represents Feng's 
classification, where the concurrent space is identified as a two dimensional space based on the 
bit and word multiplicities.  Figure 1 shows the allocation of some of the computer architectures 
in the Feng's concurrent space. 
 Since the early days of computer technology researchers have attempted to classify 
various proposed/designed computer architectures.  These efforts were directed to:  (i) 
generalize and identify the characteristics of different designs, (ii) formulate a systematic 
mechanism by which different designs can be analyzed and compared against each other, and 
(iii) define a systematic mechanism to transform the solutions from one design to other designs. 
 Flynn has classified the concurrent space according to the multiplicity of instruction and 
data streams: 
 I = {Single Instruction Stream (SI), Multiple Instruction Stream (MI)} 
 D = {Single Data Stream (SD), Multiple Data Stream (MD)} (11) 
The cartesian product of these two sets will define four different classes: 
 I*D = {SISD, SIMD, MISD, MIMD} (12) 
  SISD This class represents the classical von-Neumann architecture (with serial 

or parallel ALU) 
 SIMD This class represents the multiple ALU type architectures (e.g. array processor) 
 MISD This class is not found to be as practical as the other classes.  A database 

machine—search processor—represents a model in this class. 
 MIMD  This class represents the multiprocessor system (loosely or tightly coupled). 
Flynn's classification suffers from the fact that it does not uniquely identify a specific 
organization.  In addition, it does not address the interactions among the processing modules 
and the methods by which processing modules in a concurrent system are controlled.  In general 
a classification scheme should: 
 i) categorize all existing as well as foreseeable computer designs, 
 ii) differentiate essential processing elements, and 
 iii) assign an architecture to a unique class. 
 Handler has extended Feng's concurrent space by a third dimension, namely the number 
of control units.  Handler's space is defined as t = (k, d, w) in which: 
 k is the number of control units (CUs) interpreting a program, 
 d is the number of arithmetic and logic units (ALUs) controlled by a control unit, 

and 
 w is the word length or number of bits handled in one of the ALUs. 
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Figure 1. Feng's Classification. 

 
According to this classification a von-Neumann machine with serial/parallel ALUs is represented 
as (1, 1, 1), (1, 1, M), respectively.  Figure 2 depicts the position of some of the computer 
systems in the Handler space.  To represent pipelining at different levels (e.g. macro pipeline, 
instruction pipeline and arithmetic pipeline), and illustrate the diversity, sequentiality and 
flexibility/adaptability of an organization, the above triplet has been extended by 3 variables (e.g. 
k', d', w') and 3 operators (e.g. +, *, v) where: 
 k' represents the macro pipeline - the number of control units interpreting the tasks 

of a specific program, where the data flow through them is sequential. 
 d' represents instruction pipeline - the number of functional units managed by one 

control unit and working on one data stream. 
 w' represents arithmetic pipe - the number of stages. 
 + represents diversity - existence of more than one structure 
 * represents sequentiality - for sequentially ordered structures 
 v represents flexibility/adaptability - for reconfigurable organization 
According to this extension to Handler's notation, CDC 7600 and DAP are represented as: 
 (15*1, 1*1, 12*1)*(1*1, 1*9, 60*1) and 
 (1*1, 1*1, 32*1)*[(1*1, 128*1, 32*1) v (1*1, 4096*1, 1*1)], respectively. 
 These classifications suffer from the fact that either, they do not uniquely identify a 
specific organization, or, they can not thoroughly determine the interrelationships among different 
modules in an organization.  For example, Flynn's classification does not address the interactions 
among the processing modules and the methods in which processing modules in a concurrent 
system are controlled.  As a result, one can classify a pipeline computer and a uni-processor 
computer as SISD machines, since both instructions and data are provided sequentially.  And, 
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according to the Feng's classification a word organized array processor falls in the same region 
as a multiprocessor system.  In the following, we classify the conventional concurrent systems 
into three groups - namely, parallel SIMD, pipeline  and multiprocessors .  Our distinction is 
according to the exploitation of concurrency and the interrelationships among the control unit, 
processing elements and memory modules in each of the aforementioned groups.  As will be 
discussed later, each group is further divided into subsections.  Table 2 shows this taxonomy.  
By a close observation one can realize the progression trend in the development of the parallel 
and multiprocessor systems.  Practically, both techniques achieve concurrency as the result of 
hardware replication (e.g., redundancy).  However, in a multiprocessor system, the degree of 
freedom associated with the processors is much higher than the one in the parallel systems.  As 
a result, processors are more independent with respect to each other and the central control 
unit.  This independence naturally will introduce a degree of complexity on the dynamic 
communication capability among the processing elements.  In addition, this complexity will be 
reflected in the control structure and software supports which is needed for each approach in 
order to map application programs into the hardware features.  This discussion can be traced in 
the evolution the distributed systems, where the processing units are more independent from 
each other than the processing units in a multiprocessor system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Handler's Classification. 
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Table 2.   Classification of the Concurrent Systems. 
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2.4 Self Test Problems #1 
1) a) Define the term Technology Driven Architecture . 

 
b) Name and discuss two classes of the so called technology driven architectures (be 

sure to address the architectural features of each class and the characteristics of 
the underlying technology). 

 
2) Different researchers have attempted to classify computer organizations/ architectures: 
 

a) What are the motivations behind the classification of computer systems? 
 
b) What should be the goals of a classification scheme? 
 

3) Hardware utilization for a parallel system is defined as: 

  

 

γ  = P a 
P m 

   where P a  (average parallelism) = Σ P i ∆ t i 
Σ ∆ t i 

 = 
P iΣ 

i=1 

T 

T  
 Pi is the parallelism at time slice i and Pm is the maximum parallelism.  For a mesh 

connected parallel processor — i.e., ILLIAC IV type organization — calculate the 
hardware utilization when performing a maximum search operation. 
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3. CONTROL FLOW ORGANIZATION 
 As mentioned before, the classifications cited in Section 2 suffer from the fact that either 
they do not uniquely identify a specific organization or they can not determine the 
interrelationships among different modules in an organization.  In this Section, we classify the 
conventional (e.g. control flow) concurrent systems into three groups - namely, parallel, 
pipeline  and multiprocessors .  This distinction is due to the exploitation of concurrency and 
the interrelationships among the control unit, processing elements and memory modules in each 
group. 
 Despite our distinction, system designers in the 1960's witnessed the emergence of a 
new class of computer organizations known as multifunctional unit systems.  Although such a 
computational model is classified as an SISD organization in Flynn's classification, this concept 
was clearly made in response to closing the computation gap.  The CDC-6600, IBM 360/91, 
CDC 7600, CRAY, NEC SX-2, Fijitsu VP-200, and Hitachi S-810 are classical examples of 
this organization. 
 A block diagram of a multifunctional system is shown in Figure 3.  The system consists 
of a single control unit and a processor.  However, the processor unit is composed of several 
functional units.  Each functional unit has a set of local registers and all functional units share a 
set of global registers, which hold intra-functional operands and act as a buffer for memory 
units.  The global registers share a common bus and a switching network which together allow 
fast data transmission from point to point.  The primary memory should support a high 
processor bandwidth.  The control unit is responsible for the resolution of register and functional 
unit conflicts and scheduling of their operations.  Functional units work independently in 
asynchronous mode.  With equal probability of using all the functional units, the maximum speed 
up ratio of K (K the number of functional units) can be achieved.  However, it is very unlikely 
that all the K functional units will be used equally well.  The limitation of multifunctional systems 
is due to the complexity of the control unit which must detect the parallel execution of several 
operation during the execution time.  For programs with a lot of sequential data dependence, the 
efficiency is much diminished. 
 
3.1 Parallel Systems 
 Parallel systems are the natural extension of parallel ALU systems.  Point D in Feng's 
concurrent space (Figure 1) represents a parallel system.  In this organization concurrency is 
exploited through a collection of identical and independent processing elements controlled by 
the same control unit.  Thus, at any given moment all of the processors perform the same 
operation on different pieces of data.  In general, this approach is very scalable and offers a 
good degree of fault tolerance.  In this study, we distinguish three groups of parallel systems:  
Ensemble processors, Array processors and Associative processors. 
 
3.1.1 Ensemble Processors  
 Ensemble system is an extension of a conventional uni-processor system.  It is a 
collection of N processing elements (a processing element consists of an ALU, a set of local 
registers and very limited local control capability) and N memory modules, under the control of 
a single control unit.  Such a simple organization does not provide any direct communication 
paths among processing elements.  Moreover, it does not allow flexible interconnections among 
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processing elements and memory modules.  Such communications are done through the control 
unit. 
 As one can conclude, the organization is capable of executing up to N identical and 
independent jobs simultaneously.  However, due to the lack of direct inter-processor 
communications, this organization has very limited applications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 3. Block Diagram of Multifunctional Processor System. 

3.1.2 Array Processors  
 The schematic diagram of an array processor is shown in Figure 4.  The system is 
composed of N identical processing elements (PEs) under the control of a single control unit and 
a number of memory elements.  The processing elements and memory elements communicate 
with each other through an interconnection network.  This network usually provides a uniform 
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interconnection among processing elements on one hand and processing elements and memory 
modules on the other hand. 
 Two general organizations of array processors can be found in the literature.  In type 1 
organization (Figure 4), any processing element can access any memory elements through a 
complex and expensive interconnection network.  Thus, all the benefits of a shared memory 
system are present.  On the other hand, in a type 2 organization (Figure 5), each processing 
element is given a dedicated memory that only it can access directly.  Therefore, this 
organization requires a communication mechanism among the processing elements to provide 
data communication between them.  BSP and ILLIAC IV are two classical examples of Type 1 
and Type 2 array processors, respectively.  ILLIAC IV uses a mesh-structured network, while 
BSP uses a cross-bar network in order to establish the communication among processing 
elements and between the processing elements and memory elements.  Array processors can 
also be classified into coarse grained or fine grained based on the complexity of the 
processing elements.  In the coarse grained system the PEs are multi-bit processors.  These 
processors often have floating-point arithmetic capabilities.  However, due to the relative high 
cost of the PEs, fewer PEs are found in these types of systems.  Fine grained array processors, 
on the other hand, use PEs that are only single-bit processors.  As a result, any complex 
operations must be broken down into a series of single bit operations.  However, since fine 
grained PEs are much less expensive and simpler in structure than coarse grained PEs, many 
more PEs are connected together in a fine grained system.  ILLIAC IV and Connection 
Machine are classical examples of coarse grained and fine grained array processors, 
respectively. 
 In array processors the control unit is a computer with its own high speed registers, 
local memory and arithmetic unit.  As in conventional machines, the instructions are stored in the 
main memory together with data.  The main memory in this system is the collective memory in N 
processors.  Hence, the instructions are fetched from the processors' memory into an instruction 
buffer in the control unit.  If an instruction is either a control or scalar type instruction, it is 
executed entirely within the control unit.  However, in case of a vector instruction it is performed 
in the processing array.  The primary function of the control processor is to examine each 
instruction to be executed and to determine where the execution should take place.  Array 
processors can further be classified into two classes according to the capability of the 
processing elements in handling the data manipulation operations.  In the first case the 
processing elements are multi-bit processors, i.e., they operate on a word size that is several 
bits wide.  These processors often have floating point arithmetic capabilities.  However, since 
the cost of one of these processing elements is relatively expensive, fewer processing elements 
are found in these organizations.  BSP and ILLIAC IV are examples of multi-bit array 
processors.  On the other hand, the second class of array processors uses single-bit processing 
elements.  As a result, any complex operations must be broken down into a series of single bit 
operations; hence the majority of operations take longer to be executed in this group of array 
processors than in their multi-bit counterparts.  However, since single-bit processing elements 
are much less expensive and simpler in structure than multi-bit processing elements, a far greater 
number of processing elements can be connected together in a single-bit organization.  This 
increases the processing power of the array processor.  In addition, while multi-bit array 
processors can most efficiently process data elements of the same size, single-bit array 
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processors can easily operate on variable length data elements.  The DAP, MPP, and 
Connection Machine are examples of single-bit array processors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. An array of processor (Type 1). 
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Figure 5. An array of processor (Type 2). 
 
 An array processor is a synchronous parallel computer.  Processing elements are 
synchronized to perform in parallel the same function at the same time.  The problem of data 
structuring and detecting parallelism in a program is a major bottleneck, although the design of 
the control unit is simple and is most like the one in sequential systems.  In array processors an 
operation such as: 
 
 x(i) = A(i)*B(i) i = 1, 2, ..., N 
 
could be executed in parallel, if the elements of A and B arrays are distributed properly among 
the processors, e.g., the ith processor is assigned the task of computing x(i).  However, if we 
have to compute: 
 
 
 
 
the product terms are generated in parallel as discussed before.  Additions will be performed in 
log2N iterations, assuming that the intermediate operands are properly aligned and only a subset 
of processors which handle these operands become active at successive iterations.  Thus the 
speed up ratio becomes at the expense of a poor resource utilization. 
 
 
 
    (13) 
 
3.1.3 Associative Processor 
 Associative memories have been generally defined as a collection or assemblage of data 
storage elements which are accessed in parallel on the basis of data content rather than by 
specific address or location.  As a result, each associative cell should have hardware capability 
to store and search its contents against the data which is broadcast by the control unit.  With 
such a definition in mind one could conclude that, while read and write are the basic operations 
in the conventional random access memory (RAM), search is the basic operation for associative 
processing.  The typical components of an associative memory are depicted in Figure 6.  The 
Memory array provides storage to store the data.  The comparand register holds the data to be 
compared against the contents of the memory array.  However, by proper setting of the bit 
pattern in the mask register one can mask off portions of the data words from comparison and 
other operations.  A response bit indicates the success or failure of a search against the content 
of the corresponding associative word.  Finally, the multiple match resolver is used to narrow 
the result of a search to a specific word in case of multiple responses (e.g. matches). 

An associative processor is then defined as an associative memory capable of 
performing arithmetic and logic operations.  Usually, in such an organization, arithmetic and logic 

 

Y = A(i) * B(i) Σ 
i=1 

N 

 

S = 2N-1
1+ log 2 N

≈ N
log 2N
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operations are performed one bit at a time.  An associative computer then is defined as a system 
that uses an associative memory or processing as an essential component for storage or 
processing, respectively.  An obvious advantage of associative processing can be found in its 
application in non-numeric processing, radar signal tracking and processing, image processing, 
and simple arithmetic and logic operations on large sets of data.  The main motivation for the 
study of the associative systems centers around its capability in: 
 i) Reducing the existing semantic gap and bottleneck in the conventional systems, and 
 ii) Increasing the performance due to the parallel operations at the storage level and 

elimination of address computation. 
 The first electronic associative memory was introduced by Slade and McMahon who 
described the design of a cryogenic memory system.  Since then associative memories have 
been implemented using techniques such as tunnel diodes, evaporated organic diode arrays, 
magnetic cores, plated wires, semiconductors, bubble memory, integrated circuits, and recently 
optical technology.  Moreover, literature has addressed several modifications to the basic 
associative operations (e.g. Hybrid associative memory, read only associative memory).  
However, up to the last decade there was no wide spread general application of associative 
memories.  This was due to the hardware complexity and cost of associative cells in comparison 
with RAM cells, conservatism, and lack of suitable associative algorithms.  As a result, the 
statement such as "the superiority of the content addressable memory is implied not proven" was 
a true statement.  However, since the mid 1970s there is growing evidence that the above claim 
of an associative memory's superiority may be justified.  This is due to the advances in 
technology and its effect on cost and size of the hardware components, and the strong 
applications of associative processing in non-numeric operations, image processing and pattern 
recognition (Table 3). 
 Associative memories have been classified into four categories namely fully-parallel, bit-
serial, word-serial and block-oriented.  This classification is in accordance with the basic unit of 
data to which the search operation is applied, and reflects a compromise between speed and 
cost. 
 
a) Fully-Parallel:  In a fully parallel organization, each basic unit of information (e.g., bit) 
has its own search circuitry.  Therefore, the associative operation can be performed along two 
dimensions simultaneously.  Such a direction implies larger cell size and more expensive modules 
in comparison with a bit in the random access memory.  Point D in Figure 1 represents a fully 
parallel associative memory.  In practice, fully parallel associative memories have been realized 
as a two or one dimensional memory arrays.  In the two dimensional organization (word 
organized) memory is composed of fixed length entities called words.  In a one dimensional 
organization (distributed logic), memory is arranged as a string of search character cells where 
each cell communicates with its neighbors and the control unit.  Naturally fixed length record 
size is an obvious shortcoming of a word organized model.  This will limit/complicate the 
implementation of the variable length word applications.  However, one should remember that 
associative operations in a word organized memory are handled easier than the ones in a 
distributed logic organization. 
 
b) Bit-Serial:  This organization represents point C in Feng's concurrent space (Figure 1).  
Memory could be organized as a collection of circular shift registers in which search capability is 
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associated with a designated bit within each word (e.g. bit-slice).  To achieve efficiency at a 
reasonable cost, a variation of this organization (i.e. byte serial associative memory) has also 
been proposed in the literature.  In a byte serial model, byte search capability is associated with 
each associative word. 
 
c) Word-Serial:  In this class, search capability is associated with a word.  This will 
represent point B in Figure 1.  However, one should recognize the difference between this 
organization and word-parallel ALU systems, based on the fact that in word-serial organization 
operations are performed in associative fashion.  This organization represents a hardware 
realization of a simple program loop in linear search. 
 
d) Block-Oriented System:  In this class, associative capability is provided at the mass 
storage level (e.g. secondary storage).  This concept is an extension of fixed head rotating 
secondary storage technology.  However, the fixed read/write heads are extended as a small 
processor (i.e. logic per track).  As the data passes under the read/write heads, it will be 
investigated and marked for the later accesses.  During the 1970s, the concept of logic per 
track, originally proposed by Slotnick, was used as a guideline in the design of many database 
machines. 
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Figure 6. A Word Parallel Associative Memory. 
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Table 3. Developments in the Design of Associative Chip.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e) Application of Associative memory:  The use of CAMs to improve the performance 
of memory management is already well established.  Associative memories can be used to 
quickly execute the table entry look-up and modification operations used in memory 
management systems.  For this reason, CAMs are often used as translation look- aside buffers 
in virtual memory systems and as tag directories in fully-associative cache organizations.  For 
both these applications the CAM needs to perform equality searches on its contents. 
 Associative memories have often been used in the architecture of database machines 
(unit 4).  The parallel search capabilities of CAMs make these devices ideally suited for the 
database environments.  Typically, a CAM used for database operations should have at least 
maskable equality-search, maskable write, and multiple write capabilities.  However, many 
database applications often perform θ-searches (where θ is the element of the set {<, >, =, ≠, 
≤, ≥).  As a result, making an associative memory which can implement a θ-search directly in 
hardware is very desirable.  The concept of content addressable processing for handling 
character matching operations was proposed by Lee and Paull.  This bit parallel word serial 
organization was composed of an array of identical cells, each acting as a small finite state 
machine capable of communication with its left and right neighboring cells.  The system was 
proposed for text retrieval operations, but because of the hardware cost it was not possible to 
be used in practical applications.  Later on, a number of variations to this organization were 
proposed in the literature.  In the early 1970s some new hardware for handling databases using 
associative processors was designed.  Comparisons between an associative processor based 
architecture and a similar von-Neumann architecture have shown its superiority with respect to 
retrieval, update and storage operations.  DeFiore and Berra have shown that in a database 
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environment, associative processors need to use three to fifteen times less storage compared to 
a database system using inverted list organization and have a response time faster by an order of 
magnitude. 
 Associative memories are also being used in the design of the prolog machines for 
efficient handling of backtracking and unification operations.  It has been shown that a CAM 
with a maskable equality search, maskable write, and the garbage collection abilities can reduce 
the backtracking time to a small, constant value regardless of the number of bindings, also a 
CAM can be used to speed performance on unification through clause filtering.  Finally, we 
have recently witnessed a surge of interest in the application of associative memory and 
associative processing in the area of Computer Vision. 
 Despite the great advantages of associative operations in some applications, there are 
very few associative memories currently available in the market either as general purpose chips 
or as components in standard cell libraries for VLSI design.  One reason for this is that there 
exists a perceived belief that the cost of an associative memory is much too large to be practical.  
At first glance, this seems to be a valid concern.  After all, compared to a conventional RAM a 
fully parallel CAM suffers the additional cost of search circuitry at every bit position (a CAM 
also has more complex control circuitry to operate it, but in large CAMs this circuitry is 
overshadowed by the size of the storage elements and search circuitry).  In some cases, though, 
this size and cost increase should be acceptable.  For example, the equality-search bit cell 
contains only about twice as many transistors as a standard CMOS static RAM cell, a penalty 
more than offset by the increased functionality of the associative memory. 
 However, the perceived cost of a CAM might not be the only reason that CAM 
production has been discouraged.  As discussed earlier, applications which use CAMs to speed 
up their execution often require CAMs with varying degrees of functionality.  As a result, it 
would be nice to have a general CAM design which allows CAMs of different functionality to 
be built easily.  However, most of the proposed fully parallel CAM designs are for special 
purpose CAMs with a very specific set of functions.  While these CAM designs might be 
suitable for an application which requires those specific functions, the special purpose nature of 
the design may make it difficult to incorporate other types of functions into the CAM. 
 To help simplify the development of different types of CAMs, we believe that a general 
CAM organization suitable for creating CAMs of various degrees of functionality is needed.  
Ideally, this organization should contain a high-level CAM architecture composed of a set of 
mostly-independent modules and a list of common features shared by every CAM regardless of 
its functionality.  These common features are implemented by modules whose designs usually 
remain the same regardless of the type of CAM being developed.  A set of special-purpose 
features, different for each CAM implementation, determines the exact functionality of the 
CAM.  These features are implemented by special-purpose modules in the CAM.  Finally, one 
needs to develop proper tools for automatic design and fabrication of modular associative chips 
with various functionalities. 
 It is worthwhile to mention that, besides the above special purpose designs based on 
associative processors, there are some associative processors which are capable of performing 
general purpose operations.  STARAN is an example of such a system;  it is composed of an 
associative array processor (one to 32 modular associative processor) with an interface (custom 
interface unit) to the users.  It also has conventionally addressed control memory for program 
storage and data buffering.  Each associative processor is a matrix of 256 words by 256 bit, 
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with parallel access up to 256 bits at a time in the word, bit, or mixed direction.  Control signals 
generated by the control logic unit are fed to the processing elements in parallel, and all 
processing elements execute the instruction simultaneously.  The STARAN symbolic assembly 
language APPLE provides a flexible and convenient assembler for programming without 
complex and costly indexing, nested loops, and data manipulation constructions required in 
conventional systems.  Instruction execution time is dependent upon the number of bits in the 
operations involved in the instruction. 
 
3.2 Multiprocessor Systems  
 The attribute that characterizes a multiprocessing system is the sharing of a global 
memory by several independent processors making up the system.  Two arguments justify such 
an approach.  The first is that by assigning a different job to each processor, the total throughput 
of the system is increased.  This is due to the ability to overlap both computation intensive and 
I/O intensive jobs in the overall system.  The second argument for multiprocessors is that there 
exists a large class of problems where the problem can be split up into a number of independent 
tasks.  In a multiprocessor system, each task can be simultaneously run on a different processor.  
This reduces the execution time of the problem and hence increases the system's throughput.  
Figure 7 depicts the general organization of a multiprocessor system. 
 In general, a multiprocessor system can be characterized by the following features: 
 
 • The system contains two or more processors, each with its own control unit.  These 

processors can be homogeneous or non-homogeneous, but most currently 
developed systems use homogeneous processors.  Since it is generally required that 
the processors can perform general purpose operations, this rules out systems with a 
central processor and highly specialized I/O processors as multiprocessors.  Note 
that the execution performance of a single processor can vary dramatically between 
different systems.  For example, the Cm* multiprocessor system uses processors 
with the computing power of a PDP-11, while each processor in the S-1 
multiprocessor is about as powerful as a CRAY-1 computer. 

 
 • The processing elements share a main memory that usually consists of several 

independently accessible modules.  This memory holds common data needed by the 
various processors in the system.  The shared memory can be organized in one of 
two ways.  In the first organization, all of the shared memory modules are separated 
from the independent processors by an interconnection network or a multiport 
interface.  Hence the access time of the shared memory (assuming no conflicts) is 
independent of the module being accessed.  This type of system is known as a tightly 
coupled system.  In the second organization each processor has a local-public (as 
opposed to local-private) memory; the shared memory of the multiprocessor is the 
aggregate of all these memory modules.  Each processor can directly access its 
memory module, but all other accesses to non-local memory modules must be made 
through an interconnection network.  Note that in this organization, called a loosely 
coupled system, the access time to the shared memory depends upon whether the 
desired address is local to the processor.  The CRAY X-MP and the HEP are both 
examples of tightly coupled multiprocessor systems, while the Cm* is an example of 
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a loosely coupled system.  In both tightly and loosely coupled systems the access 
time to shared memory may be increased due to the memory contention — i.e. more 
than one processor accessing the same module at the same time. 

 
 • Each processor might also have a local-private memory in addition to the shared 

memory.  A programmer may or may not be able to directly reference this memory.  
In the first case, the memory can be used to store local variables and global values 
that would otherwise be frequently referenced from the shared memory.  In the 
second case, the memory is a hardware controlled cache which holds recently 
referenced data in the expectation that it will be referenced again soon.  Since private 
memories can potentially increase the overall performance of a system, recent 
multiprocessor designs are equipped with local-private memory modules.  In such an 
environment the issue of coherence problem with private memories has attracted 
many research efforts. 

 
 • Besides a common memory, the processors usually (but not always) share other 

resources such as I/O channels and devices.  This amortizes the costs of these 
resources over the several processors in the system.  This also allows the rest of the 
system to continue using I/O devices even though a processor may fail.  However, it 
is possible for processors to have private I/O devices in the multiprocessor system. 

 
 

• • • 

M 1 M 2 M k • • • 

C P U 
1 2 

n  

C P  U C P U 

L M L M L M 
1 2  

n 

Interconnection Network 

Figure 7.   Multiprocessor System. 

P P P 
1 2  n 

P :  Processor 

LM : Local Memory 
M :  Memory Module 

CPU : Central Processing Unit 

  
 
 • The whole multiprocessor is under the control of a single integrated operating system.  

This operating system provides the means of interaction among different modules in 
the system.  To help do this, it uses the unique hardware features of the system such 
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as an interprocessor communication mechanism, if any.  Note that some operating 
systems allow the processors to work on several different problems at the same time 
(multiprogramming) while others require that all the processors be dedicated to a 
single job. 

 Multiprocessors have several advantages over conventional computer systems.  First, as 
mentioned above, problems can often be solved faster if they are broken up into several 
concurrently executing tasks.  Second, multiprocessor systems are more reliable since failure in 
any one of the redundant components can be tolerated by reconfiguring the system.  Finally, 
multiprocessor systems are cost effective due to resource sharing among the processors in the 
system. 
 It is clear to see that multiprocessor systems naturally evolved from earlier systems.  
Like array processors, multiprocessor systems achieve concurrency through hardware 
replication (i.e. redundancy).  Thus it is reasonable to say that the multiprocessor organization is 
a logical extension of array processor organization.  The degree of freedom associated with the 
processor is much higher than in an array processor.  That is, the processors are more 
independent with respect to each other.  However, this independence of the processors and the 
sharing of resources among the processors, both desirable features, do not come without a 
price.  Instead, these features increase the complexity of a dynamic communication system 
between the processors and the shared resources (e.g., memory) and between themselves.  In 
addition, the operating system and other software supports must be more complex than their 
array processor counterparts in order to efficiently map application programs onto the hardware 
features. 
 If a multiprocessor has P processors, its throughput is certainly less than P times the 
throughput of a single processor.  This is due to several factors.  For example, I/O operations 
usually take longer in multiprocessor systems due to the overhead caused by software which 
resolves resource conflicts.  The performance of individual jobs can be degraded by the delays 
caused by interprocessor communication, the need for processor synchronization, and memory 
and other resource conflicts.  However, the number of resource conflicts can be reduced by 
scheduling a balanced mix of I/O intensive and computation intensive tasks.  In multiprocessor 
systems with 2 and 4 processors, typical values of throughput are 1.5 and 2.5, respectively. 
 
3.3 Pipeline Systems  
 The term pipelining refers to the design technique that introduces concurrency into a 
computer system by taking some basic function to be involved repeatedly in the system and 
partitioning it into several sub-functions with following properties: 
 
 • Evaluation of the basic function is equivalent to some sequential evaluation of the 

sub-functions. 
 
 • Other than the exchange of inputs and outputs, there are no interrelationships 

between sub-functions. 
 
 • Hardware may be developed to execute each sub-function. 
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 • The time required for these hardware units to perform their individual evaluations is 
usually approximately equal. 

Therefore, in a pipeline system a process is decomposed into a series of sequential sub-
processes.  Each sub-process is executed on a dedicated module called a stage or station.  In 
addition, since the logic that actually performs the sub-processes at each stage is without 
memory, the presentation of data to each stage usually demands some kind of storage (buffer) 
to be included at either the beginning or end of each stage.  This will help to synchronize the 
overall flow of data through out the pipe.  Thus, within a pipeline several partial operations can 
be in progress concurrently, which will result in an increase in throughput.  The concept of 
pipelining has been implemented in system such as:  Amdahl 470 V/8, CDC 7600, CDC 
STAR-100, Cray , Fijitsu VP-200, Hitachi S-810, IBM 360-91, NEC SX-2, and TI-ASC.  
 Suppose we want to compute the elements x(i) defined as: 
 x(i) = A(i)*B(i) i = 1, 2, ..., N. 
Assuming that the multiplier unit is a pipeline of 5 stages, then the overall execution time will be 
[(N-1)+5]∆t (∆t is the delay time due to operation in a stage) provided that a constant flow of 
data is always available to the pipeline and the system can store the x(i)s as fast as they are 
generated.  Now, suppose one has to calculate 
 
 
 
 
using the same pipe for addition.  The formation of products will take (N+4) stage delays.  Then 
the pipeline is drained out and set for addition operations.  Due to the data dependence, 
additions are performed in several passes.  After the first pass, the pipeline yield N/2 results, 
in the second pass it yields approximately N/4 results, ... etc.  Hence the total execution time 
would be 5+(N/2 - 1) + 5 + (N/4 - 1) + ... +5 + (1-1) = 4 log2N + N/2 + N/4 + ...= 4 
log2N+N stage delays.  Hence, the total execution time is =2N+4log2N+4 stage delays.  A 
serial process would have taken 5(2N-1)=10N-5 stage delays.  As a result the speed up ratio 
is equal to  
   
 
 
    (14) 
Pipelines can be classified according to their capabilities.  A unifunction pipeline is the one that 
is capable of only one kind of operation.  On the other hand, a multifunction pipeline  is the 
one that is capable of handling several different kinds of functional evaluation.  A multifunctional 
pipeline can be further grouped into statically configured and dynamically configured 
pipeline.  This classification is based on the frequency of changes in the functions they perform.  
A concept known as the hazard is a major concern in a pipeline architecture.  A hazard 
prevents the pipeline from accepting data at the maximum rate that the staging clock might 
support.  Hazards are the result of structural and data dependencies.  A structural hazard is one 
where two different pieces of data attempts to use the same stage at the same time (e.g., 
collisions).  Data dependent hazards occur when a pass through a stage is a function of the data 
value.  For statically configured pipelines, the designers could predict precisely when a structural 
hazard might occur and hence they can schedule the pipeline so that the collisions do not occur.  

 

Y = A(i) * B(i) Σ 
i=1 

n 

 

S = 5(2n-1)
2n+4 log 2 n+4

 ≈ 5   for large n
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Data dependent hazards are clearly system and usage dependent and are not as amenable to 
analytical study as are structural hazards. 
 Application of pipelining as a technique to improve the performance, and hence to 
reduce the computation gap, can be traced in the evolution of the CDC-6600.  In 1969 the 
CDC-7600, an upgraded version of the CDC-6600 was introduced.  The major innovation in 
the CDC-7600 was that all but one of the functional units of the CDC-6600 (i.e. divide unit) 
were replaced with pipelined functional units.  As a result, not only could all of the functional 
units operate concurrently, but most could also be operating on several pieces of data at the 
same time.  Following in this trend, the CRAY-1 was introduced in 1976.  Like the CDC-7600 
the CRAY-1 had pipelined functional units.  But it also had a more extensive register structure 
that better complements the pipelined functional unit design.  In 1982 the CRAY X-MP was 
released.  This supercomputer incorporated multiple independent CPUs (up to four by 1984) in 
its design to further increase the computer system's power.  In 1985 Cray research introduced 
the CRAY-2.  While much of its performance increase was due to technological factors, it was 
mainly a pipelined organization. 
 This trend in application of pipelining scheme produces two positive side effects.  First, 
the design of the control unit was made easier because pipelined functional units can accept a 
new operand (or pair of operands) every clock cycle and thus are never considered "busy".  
Second, the pipelining scheme made the ALU ideal for solving problems that are vector in 
nature.  It should be noted, however, that since the vector and scalar operations of this 
computers perform mainly large-scale arithmetic, some types of algorithms, such as sorting 
algorithms, can not use the vector capabilities very effectively. 
3.3.1 Hazard and Collision 
 As discussed earlier, to utilize a pipeline effectively we have to provide stream of data to 
the pipe.  Otherwise, hardware resources can not be overlapped and system throughput 
decreases.  In a linear pipeline the delivery of the data to the pipe (e.g., Latency) can be easily 
synchronized with the time delay of the slowest stage.  However, in a feedback pipe because of 
the internal conflicts, due to the collisions among different data set, such a simple synchronization 
scheme can not be employed.  Though the scheduling algorithm for a generalized pipeline is NP 
complete, but under some strict practical restrictions one could develop an optimum solution for 
such a hard problem.  The set of restrictive conditions well applicable to the practical operations 
are: 
 
 • The execution time of all stages is a multiple of some basic unit. 
 
 • Once an activation is started, its time pattern of stage utilization is fixed and defined 
 The first condition can be easily enforced and the second condition excludes the class of 
dynamic pipelines.  The time-pattern of stage utilization can be defined by a two dimensional 
table called reservation table, in which rows represent stages of the pipeline and columns 
represent the time slots.  The reservation table shows at each time instant which stage of pipeline 
in this table is in used by the computation.  A reservation table represents exactly one pattern 
taken by one input data set.  A mark in the entry (i,j) of the reservation table indicates that for 
that pipeline stage i is needed j time units after its initiation.  Therefore, the compute time of the 
table is defined by the number of columns in the reservation table.  Existence of several marks in 
one row represents the fact that the corresponding stage is utilized several times during one 
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initiation.  Moreover, consecutive marks in a row indicate that the execution of the stage is a 
multiple of basic time unit. 
 Figure 8 depicts a pipeline and its reservation table.  Note that the pipeline has seven 
stages and a compute time of 9.  It should be noted that each operation with respect to a 
pipeline system has a unique reservation table..   However, a reservation table might represent 
several pipelines. 
 According to the definition of the reservation table, then one can make the following 
conclusions:  A pipeline is statically configured if the same reservation table is used by all 
activations.  A multifuntion pipeline has several reservation tables.  Finally, in a dynamic pipeline 
the computation does not have a predetermined reservation table.  From Figure 8 it can be 
concluded that two initiations which are four time units apart will collide at stage S1.  Moreover, 
no collision will occur if two initiations are two time units apart.  Therefore, one has to design a 
control mechanism which allows the data to be delivered in a time pattern which prevents any 
possible collisions in the future with the previously initiated computations. 
 According to our discussion so far we can conclude that, two computations should not 
be initiated if they are l time units apart and l is the distance between two marks in the same 
row.  Such a time distance is called a forbidden latency.  From the definition of forbidden 
latency, then one can determine the forbidden list (L) which is the collection of all the 
forbidden latencies in a pipeline. 
  L = (l1, l2, ... lk) (15) 
the collision vector (C) in then defined as a binary vector of length K 
 C = (CK CK-1...C2 C1)  where  Ci = 1   iff         i ε L 
    Ci = 0    otherwise (16) 
The bit pattern of a collision vector determines the forbidden latencies of the pipeline.  
Therefore, by investigating such a pattern one can initiate two computations without any 
collisions.  For the pipeline of Figure 8 then, 
  L = (1,4) and C = (1001) 
As a result, a new collision free computation can be started only after 2 and 3 time units after 
the initiation of the first computation.  A simple logical shift register can be used to control the 
initiation of a new computation.  Upon the activation of the pipeline for the first computation, the 
collision vector is loaded into the shift register.  The register is shifted right one position at a 
time.  A collision free computation is allowed at time instant t+i if and only if a bit 0 is being 
shifted out of the register after i shifts from the time t. 
 After the initiation of the second computation then the collective collision vector of the 
pipeline for two initiations should be calculated.  This collective collision vectors should then be 
investigated to determine the initiation of the next computation.  The collective collision vector is 
calculated by oring the contents of the shift register with the initial collision vector.  In general, 
after initiation of a new operation, the contents of the shift register should be modified to 
represent the overall status of the pipeline. 
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S5        X  
S6         X 

Figure 8. An Example of a pipeline and its Reservation Table. 
 
 As far as Figure 8 is concerned, suppose the second computation is initiated after two-
time units, the content of the shift register is: 
 Ct2 = Ct1 ∨  C = (0010) ∨  (1001) = 1011. 
Now, the third computation can be initiated at time 3, this gives a collision vector of: 
 (0001) ∨  (1001) = 1011 
which is a transition to the initial state. 
 This gives rise to the idea of a state graph, representing all the collision free transitions 
in the pipeline.  Cycles in the state diagram correspond to the possible cycles of collision free 
initiations of the computations.  Every cycle has an average latency which is the average of the 
latencies of its constituent edges.  An optimum cycle is the one that has the minimum average 
latency.  After determination of the proper optimum cycle then one can design a simple finite 
state machine which can control the new collision free initiation of new computations. 
 
4. PROGRAMMING CONTROL FLOW COMPUTERS 
 In the preceding sections we examined the architectures of some pipelined and parallel 
computers.  Through advancement in technology and architectural innovations, each system is 
characterized by a very high peak processing rate for numerical computation.  However, only a 
very limited subset of instructions available on these computers can execute at these peak rates.  
Since most non-trivial applications use a wide mix of instructions, the processing rates of these 
applications are often much less than the theoretical performance of the system. 
 From the programming point of view, we may state that a supercomputer is merely a 
computer with some added features allowing it, under certain conditions, to perform groups of 
operations at high speed.  The key to designing programs that execute quickly on these 
machines is to learn how to utilize the resources of the supercomputer effectively for a given 
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application.  This section surveys some techniques to improve the resource utilization of the 
aforementioned organizations. 
 
4.1 Array Processor 
 An array processor can be classified as having a shared memory (i.e., BSP) or private 
(i.e., ILLIAC IV) memory organization.  In a shared memory organization each processing 
element can access any memory module, while in a private memory architecture each processor 
has its own private memory module.  In a shared memory organization (as long as array 
elements are distributed uniformly across a collection of prime memory modules) most common 
array operations can be performed without any memory contention.  Since the representation of 
vector instructions in a shared memory array processor is similar to that in a piplined processor, 
much of the discussion that applies to pipelined organizations applies to this organization as well.  
For this reason, only private memory models are discussed in this section and the word "array 
processor" will refer to this model of computation. 
 In general, a private memory array processor has the following features: 
 • It contains a finite number of processors (natural parallelism) that execute the same 

operation in lockstep on different operands. 
 • Each processor in the array has a private memory which it can access very quickly. 
 • The processors in the array can exchange information via an interconnection 

network which has a particular topology.  While only topological neighbors can 
directly communicate with each other, any two processors can communicate 
indirectly by passing values through a finite number of intermediate processors. 

 • At any given moment, all data passing through the interconnection network is 
traveling in the same topological direction. 

 Computationally, an array processor algorithm should try to perform the same 
operations on many independent sets of data.  Often during the course of an algorithm, though, 
processors need the results calculated in other processors before another operation can be 
performed.  This requires that data be shifted through the interconnection network.  The 
communication complexity of an algorithm is defined as the number of data routings needed on a 
particular array processor to implement the data flow between processors that is specified by 
the algorithm.  Since a data route operation often takes the same amount of time as other 
processors operations, the communication complexity of an algorithm cannot be ignored. 
 To reduce the communication complexity of an algorithm, communication should be 
limited to processors that are as topologically close together as possible.  Ideally, processors 
should communicate only with direct topological neighbors.  This implies that the optimal 
algorithm for an array processor is a strong function of the topology of the interconnection 
network.  For example, an array processor with an interconnection network that can efficiently 
implement a tree-like communication network (such as hypercube interconnection network) can 
add N numbers in 0(log2N) time using a tree structured cascade sum algorithm.  However, an 
optimal summing algorithm for a mesh connected array processor takes 0(sqrt(N)) time and has 
a substantially different data flow than a tree structured cascade sum algorithm. 
 In many cases it is not possible to distribute data in the processor memories such that all 
processors need to communicate with their direct topological neighbors.  For these situations, it 
may be beneficial to break up the processors into several clusters where the processors in each 
cluster are topologically close together.  Data is distributed among all the processors such that 
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the majority of communication occurs between the processor in a cluster and not between 
different clusters.  By localizing most of the communication to inside the clusters, the overall 
communication cost of an algorithm might be reduced. 
 In general, it is not wise to have an algorithm where any processor can be connected to 
any other processor.  Such a connection scheme requires each piece of data that is sent through 
the interconnection network to have a processor destination address associated with it.  The 
routing algorithm used in the array processor would have to examine the destination address of 
that piece of data and determine where to route it so that it eventually arrives at its destination.  
For most array processors, the overhead for such a routing algorithm would be self-defeating.  
However, on the Connection Machine this routing algorithm is performed in hardware 
concurrently with the instruction execution of the processors.  This makes the implementation of 
any logical connection structure much more feasible than in most other array processors, which 
do not have such routing algorithms implemented in hardware. 
 
4.2 Multiprocessor Systems  
 There are three general classes of parallel algorithms that can be applied towards 
multiprocessor systems.  They are synchronized algorithms, asynchronous algorithms, and semi-
synchronized algorithms. 
 A synchronized algorithm is conceptually the easiest of the three classes of algorithms to 
understand.  In a synchronized algorithm, a processor must wait for a synchronization signal 
from another processor before it can execute a certain portion of its program.  Because process 
synchronization is a costly operation, synchronization calls should be avoided as much as 
possible.  This introduces the concept of granularity to synchronized algorithms.  Granularity can 
be defined as the time spent executing concurrent code between processor synchronizations.   
To reduce the total percentage of time spent synchronizing the processors, the grain size of an 
algorithm should be made as large as possible. The amount of time that characterizes a large 
grain application varies between different computers.  For example, a granularity on the order of 
milliseconds is considered large for the CRAY X-MP.  Sometimes, however, it is necessary to 
execute small grain algorithms on a multiprocessor.  In such cases, the direct use of hardware 
instead of operating systems calls for synchronizations can significantly reduce the execution 
times of these algorithms.  The advantage of synchronized algorithms is that they are relatively 
easy to design and analyze. 
 Synchronized algorithms can be further subdivided into two types of algorithms:  
partitioned and pipelined algorithms.  In a partitioned algorithm, a task is divided into several 
subtasks, each hopefully of the same size.  Each processor is assigned one or more of the 
subtasks to execute, and all of the processors begin executing their subtasks at the same time.  
Synchronization points are inserted inside a subtask only when interactions between subtasks 
are needed.  Whenever a processor finishes executing its subtask(s), it synchronizes itself with 
the remaining processors.  After the synchronization, the results which were generated by the 
individual subtasks can then be combined to solve the original problem. 
 A pipelined algorithm, like its hardware counterpart, consists of several independent 
stages (subtasks) where each stage accepts input data from the preceding stage in the pipe and 
sends its output to the next stage of the pipeline.  The input to the algorithm is given to the first 
stage of the pipeline, and the output of the last stage is the output of the algorithm.  Each stage in 
the pipeline is assigned to a processor, and all the processors have to be synchronized before 
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data is passed between the stages.  Pipelined algorithms are sometimes called macro-pipelined 
algorithms to distinguish them from hardware pipelining. 
 The second general class of multiprocessor algorithms is the asynchronous algorithm.  In 
this type of algorithm, several processors are cooperating to solve a particular problem.  
However, communication between processes is accomplished by accessing global data and 
shared variables instead of processor synchronization.  Each process works in stages.  At the 
beginning of a stage, the process reads data from the global variables and determines whether 
the desired goal of the algorithm has been reached.  If not, it calculates some new values based 
on the current values found in the global variables.  These newly calculated values are usually 
stored into the global variables, but even this action may depend on the current values of other 
global variables.  Since updating global variables is almost always performed in critical sections, 
processor idling occurs only when two or more processes try to update the same global variable 
at the same time.  This updating takes a small amount of time, so even an idled processor would 
not be stopped for long.  After updating the global variables, the process then repeats the stage.  
Note that the computations performed in a stage are designed to bring the whole system closer 
to the solution of the problem. 
 Asynchronous algorithms have several advantages over synchronous algorithms.  First, 
the large synchronization overhead found in synchronous algorithms is non-existent in 
asynchronous algorithms.  In addition, asynchronous algorithms are more reliable than their 
synchronous counterparts since it is guaranteed that at least one non-blocked processor will be 
working toward the solution of the problem.  Another benefit of asynchronous algorithms is that 
they can take advantage of fluctuations in processor speeds due to factors such as memory 
conflicts, etc.  Asynchronous algorithms do have some tradeoffs, though.  If processor speeds 
do not fluctuate much in the system, processors which perform the same computations in their 
stages may end up redundantly performing the same operations on the global data.  The data in 
the global variables also become inconsistent due to several asynchronous processes updating 
them at the same time.  This makes it hard to analyze how fast an asynchronous algorithm 
converges in on a solution.  Despite these disadvantages, asynchronous algorithms can be 
competitive with synchronous algorithms, especially if the system contains many processors and 
the fluctuations in speed of these processors are large. 
 The third class of multiprocessor algorithms is the semi-synchronized algorithms.  This 
type of algorithm may be thought of as an asynchronous algorithm with an additional feature:  if 
one processor gets "too far in front of" or "too close to" the calculations of another processor, it 
is blocked (synchronized) until the blocking condition no longer applies.  Under most 
circumstances this blocking rarely occurs; thus the algorithm has the asynchronous algorithm's 
advantage of a low synchronization overhead.  The exact blocking conditions for a semi-
synchronized algorithm are determined by the special features of the problem to be solved.  
These blocking conditions are chosen to guarantee favorable rates of convergence for the 
algorithm, a feature not always possible in pure asynchronous algorithms.  Thus semi-
synchronous algorithms have the advantages of both synchronous and asynchronous algorithms.  
Unfortunately, favorable blocking conditions for a particular problem are not always easy to 
determine. 
 
4.3 Pipeline Processors  
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 Pipelined processors used pipelined functional units to perform operations on large 
vectors of data much quicker than could be done using scalar operations.  Basically, a vector 
instruction can be thought of as a hardware implemented DO loop which takes one or two 
independent input vectors, performs an operation on them, and produces a single output vector.  
For example, the software loop 
  DO I = 1, 100 
   A(I) = A(I) + B(I+1) 
  ENDDO 
can be represented by a single vector instruction 

A(1:100) = A(1:00) + B(2:101) 
The key to designing high performance algorithms on pipelined processors is to utilize these 
vector operations as efficiently as possible.  It is important to recognize that pipelined 
supercomputers are similar to conventional computers in many respects.  Thus many of the rules 
that can help to speed up programs for conventional systems may be generalized to pipelined 
processors.  One such rule is that values often used in a program should be kept in internal 
registers for quick access.  For pipelined supercomputers with vector registers, an additional 
rule can be stated:  perform as many operations on an input vector as possible before storing the 
result vector back in the main memory.  Note, however, that these two rules are probably more 
suitable for a compiler to implement since most algorithms are not initially designed with register 
usage in mind. 
 Whenever a vector operation is executed, some overhead time is needed to initially fill 
the functional pipeline being used.  Thus the total execution time T of a vector instruction 
operating on an N-element vector is 

T = [s + (N-1)] ∆t 
where s * ∆t is the startup time of the pipe.  Since the startup time is amortized over the N 
elements of the vector, the best average processing rates occur for the largest values of N.  
Depending upon the architecture of the computer, however, the largest value for N may have 
some limitations placed upon it.  For this reason two classes of pipelined computers, memory-
to-memory (i.e. STAR-100) and register-to-register (i.e. CRAY-1) pipelined computers, are 
discussed separately.  Memory-to-memory pipelined supercomputers have virtually no limit 
placed upon N.  Thus the size of the vectors used in an algorithm should be as large as possible 
to achieve the highest processing rates.  There are several basic ways to increase the vector size 
in an algorithm.  Since only inner loops can be vectorized, the first is to make the innermost loop 
of a multiple-nested loop as large as possible.  This can sometimes be accomplished by 
changing the nesting order of the loop.  For example, the code fragment 
  DO I = 1,100 
   A(I,1:60) = 0 
  ENDDO 
can be rewritten as 
  DO J = 1,60 
   A(1:100,J) = 0 
  ENDDO 
since both forms are functionally equivalent.  Note that the vector size of the innermost loop is 
now 100 instead of 60.  The second method is to convert multi-dimensional arrays into one-
dimensional arrays, if possible.  For example, the same code fragment above can be written as 
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  A(1:6000) = 0 
without changing its meaning (this assumes the elements of the two-dimensional array are stored 
contiguously in memory).  The third technique is to rearrange data into unconventional forms so 
that several smaller vectors may be combined into a single larger vector.  For example, 
successive over-relaxation (SOR) methods for solving finite differential equations appear to be 
non-vectorizable due to an abundance of short vectors.  However, as mentioned in, clever 
reordering of the grid blocks used in SOR techniques can substantially increase the length of 
vectors in the algorithm. 
 In a register-to-register pipelined computer, the maximum vector size that can be 
processed is limited by the size of the vector registers, NVR.  The size of NVR is relatively small 
(e.g. NVR = 64 for the CRAY-1) and for most supercomputer applications vectors of size N > 
NVR need to be processed.  In this case, the vector must be sectioned into several smaller 
vectors of length NVR plus perhaps a final remainder vector with a length less than NVR.  The 
best average execution time occurs whenever N is a multiple of NVR.  In some instances, the 
nesting of loops can be rearranged to make the vector length of the innermost loop a multiple of 
NVR.  In many instances, though, one of the indices in a nested loop structure is not a multiple of 
NVR.  In these situations, the total startup time must be checked and the case with the smallest 
overall startup time should then be chosen.  Finally, as mentioned for memory-to-memory 
computers, multidimensional array should be collapsed to one-dimensional arrays if possible. 
 All pipelined computers, whether memory-to-memory or register-to-register, use an 
interleaved main memory.  By storing sequential elements of a vector in different memory banks, 
consecutive elements of a vector can be accessed quickly.  Almost all pipelined computers 
allow accesses to vectors with any constant stride between the elements.  However, some 
constant strides can cause the same memory bank to be accessed before its memory cycle is 
complete.  This causes memory conflicts and slows the performance of the computer.  For 
example, accessing every eighth element of a vector on a CRAY-1, which has 16 interleaved 
memory banks, can cause memory conflicts.  Thus, the memory layout of data in an algorithm 
should be designed to minimize memory bank conflicts.  This can sometimes be done by adding 
dummy rows and columns to an array.  Random accesses to the main memory should also be 
avoided. 
 Another feature shared by all pipelined computers is the ability to use a bit vector, also 
called a control vector, to control the execution of a vector operation.  A control vector for an 
N-element vector operation is an N-bit vector where the ith bit of the vector is set if the ith pair 
of elements in the input vectors are to be operated upon.  Control vectors can be used to 
vectorize conditional statements within a DO loop.  For example, the code 
  DO I = 1,64 
   IF (A(I).GT.0)    A(I) = A(I) + B(I) 
  ENDDO 
can be vectorized into 
  L(1:64) = A(1:64).GT.0 
  WHERE L(I) A(1:64) = A(1:64) + B(1:64) 
Note, however, that whenever a control vector is used to control a vector operation, all 
elements of the input vector must be fetched even if an operation will not be performed upon 
them.  Thus if a control vector is relatively sparse then much of the time spent during a 
controlled vector operation is wasted in fetching operands that are not needed.  One way to 



 34 

speed up the performance of a conditional vector operation is to collect all of the input elements 
that are going to be operated upon into a single, smaller vector, performing the desired 
operations upon this smaller vector, and then returning the output elements to their proper 
positions in the larger vector. 
 Finally, most DO loops found in algorithms contain more than one array assignment 
statement.  There are many techniques used to transform multi-statement DO loops into a series 
of vector statements, most of which can be used by vectorizing compilers.  It should be noted 
that among the aforementioned techniques to increase the performance of the algorithms for 
pipelined organizations, some can be used when designing an algorithm, while others can be 
used by an intelligent compiler to vectorize an already existing program. 
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4.4 Self Test Problems #2 
1) Compare and Contrast: 
 

a) Single-bit and Multi-bit array processor organizations against each other. 
 
b) Global-memory and Dedicated-memory array processor organizations against 

each other. 
 

2) True or false:  In a database environment associative memory (associative processing) 
can improve the memory utilization (justify your answer). 

 
3) The following pipeline organization is assumed: 

 
 
 where  δ i = ∆t  0 = i = 6 and δ i = 2∆t for i = 3.  Determine the list of the forbidden 

latencies, the collision vector, and the state diagram. 
 
4) For a fully parallel word organized associative memory, write an algorithm to find the 

greatest value stored in the memory.  Assume numbers are all positive and each word 
contains one number. 
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5. ISSUES IN CONTROL FLOW CONCURRENT SYSTEMS 
5.1 Parallelism vs. Pipelining 
 The theme of this section is two-fold:  First, the general characteristics of parallel and 
pipeline systems are compared.  Our comparison is intended to clarify the existing ambiguity 
between pipelining and parallelism.  However, one can extend such a general discussion for 
other classes of concurrent systems.  Second, the shortcomings of the conventional concurrent 
systems are addressed to motivate our discussion in the next section of this article. 
 Based on our earlier discussion, both parallelism and pipelining attempt to increase the 
performance of some functions by increasing the number of simultaneously operating hardware 
modules.  For a conveniently designed module to perform some generic function, either 
technique can be used to derive a new design running up to N times faster.  However, 
parallelism is achieved through the replication of the basic hardware unit N times, with all 
replicated units running simultaneously, while pipelining is the result of staging the hardware unit 
into a sequence of N subunits.  The difference between pipelining and parallelism also shows up 
in memory organization and bandwidth, internal interconnection of modules, and control.  For 
example, in a pipeline system, memory organization should support a constant and smooth flow 
of data to the pipeline.  On the other hand, in a parallel system, accesses to the memory system 
are not smooth, and each processor could initiate an access to any memory module.  This 
implies a complex and dynamic interconnection network between processing modules and 
memory modules.  Such a network should provide simultaneous accesses to the memory 
modules where one access does not block other accesses to the memory modules.  Since, a 
pipeline can not be broken up into an arbitrary number of stages, one can conclude that parallel 
systems are more expandable than pipeline systems.  Reliability is another feature which 
separates these two techniques.  In general, parallelism offers a more reliable system.  This is 
due to the fact that in a parallel system, the task of any faulty module can be distributed among 
other replicated modules; this can not be done in a pipeline system.  Architectural analysis of the 
so called supercomputers reveals a trend in the design of concurrent systems, which can be 
classified as parallel pipelined systems. 
 
5.2 Shortcomings of the Conventional Concurrent Systems  
 The class of concurrent systems and its successor (e.g., supercomputers) have shown 
their effectiveness in many real time applications.  These computers by their very nature are 
more complex than their predecessor architectures.  This complexity is mainly due to the 
simultaneous competition/cooperation of several modules over common resources, which leads 
to more complexity and sophistication at the: 
 
 i) Control structure, in order to manage the flow of data and operations within the 

system's modules. 
 
 ii) Interconnection network, to allow simultaneous interactions among the system's 

modules. 
While the growth in complexity could result in higher cost, lower resource utilization, and 
performance degradation, the major disadvantage of these systems is associated with two 
interrelated factors, namely specialization and the semantic gap. 
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 In contrast to the conventional von-Neumann architectures, concurrent systems are 
specialized architectures.  For example, while concurrent systems are superior in handling 
computation bound applications, they offer low performance in I/O bound applications such as 
database systems.  In addition, these machines demand specific domain(s) to guarantee the 
performance improvement.  Studies on ILLIAC-IV type architecture have shown that the 
allocation of data within the memory modules has drastic effect on the performance.  
Experiences on the CRAY computers have proven that vector operations for small vectors 
demonstrate performance degradation over scalar operations.  These examples reflect the fact 
that conventional concurrent systems require specialized and sometimes different programming 
skills for efficient resource utilization.  As a result, in a multi-functional unit system a mixed 
sequence of instructions increases the performance, while in a pipeline system a uniform 
sequence of instructions increases the performance.  Therefore, we can conclude that 
conventional concurrent systems introduce a wider semantic gap than conventional systems in 
handling general purpose applications.  Thus, they require an extensive software support to 
determine the inherent parallelism in an application program. 
 The performance improvement of concurrent systems is greatly dependent on the 
proper utilization of the hardware resources.   However, it has been shown in practice that in 
many applications such a performance improvement has not been achieved.  This problem is 
contributed to the:  i) lack of suitable "parallel" algorithms for various applications,  ii) lack of 
suitable "parallel" high level languages which enables the programmer to express the inherent 
parallelism explicitly in the problem being encoded, iii) lack of suitable compilation techniques to 
detect embedded "parallelism" in a sequential program, and iv) lack of suitable control 
algorithms to distribute hardware resources among concurrently running programs. 
 High level languages rooted in the 1950's have been developed as programming tools to 
increase the machine's independence and productivity.  Naturally, these languages reflect the 
structure of the conventional uni-processor systems - i.e., the existence of a primitive set of 
arithmetic operations which are carried out sequentially on data stored in some form of memory 
device.  However, for a concurrent system there is a need to express the "concurrency" in an 
algorithm for parallel execution.  This goal can be achieved either through the definition of new 
parallel languages or the addition of parallel constructs in the definition of the conventional 
sequential high level languages.  Since the introduction of concurrent systems, there has been a 
surge to design and develop parallel languages to facilitate the utilization and performance of 
these computers.  The so called Parallel Fortran (P-FOR) proposed for PEPE architecture, 
TRANQUIL for ILLIAC IV, and APPLE for STARAN are among the pioneer efforts in this 
area. 
 Generation of parallelism from sequential constructs (e.g., vectorization) requires an 
extensive analysis of the sequential programs.  This analysis must check that the ordering is in 
fact arbitrary and that there are no sequential dependencies in the process.  This approach is a 
means to increase the adaptability of the parallel systems and to protect the previous 
investments of the users.  Naturally, this direction requires the development of sophisticated 
compilers (e.g. vectoring compilers) to generate parallel machine instructions from sequences of 
operations without violating the program semantics.  This means more sophisticated compilation 
techniques, more complex operating systems, and more advanced program development tools.  
The growth of the software overhead and its by-products in the concurrent systems is the 
source of our discussion in the upcoming units. 
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Glossary 
 
Address accessible A storage unit in which an storage element is accessed by  
memory means of its address. 
 
Array Processors  A collection of synchronous processing elements under the 

control of a single control unit. 
 
Associative Memory A memory organization in which storage elements are accessed 

in parallel on the basis of data contents. 
 
Associative Processor An associative memory capable of performing arithmetic and 

logic operations. 
 
CDC Control Data Corporation. 
 
CMOS Complementary Metal Oxide Silicon. 
 
Computation Gap The difference between computational power demanded by 

application areas and the computation power of the computer 
systems. 

 
Concurrency Ability of the computer hardware to simultaneously execute 

many actions at any instant. 
 
Content addressable See associative memory. 
Memory 
 
Control flow model of A computation model in which the execution of an  
computation instruction activates the execution of the next instruction. 
 
DAP Distributed Array Processor. 
 
Data flow computation A computation model in which the availability of the data 

activates the execution of the next instruction(s). 
 
Data dependent hazard A pass through a pipeline stage is a function of the data value. 
 
ENIAC A pioneer computer organization (1948). 
 
Greedy Cycle For a pipeline organization, a greedy cycle is a cycle which 

allows the new activation at the earliest possible instant. 
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MIMD Multiple Instruction stream, Multiple Data stream. 
 
MISD Multiple Instruction stream, Single Data stream. 
 
Multiprocessor system A collection of asynchronous processing units under the control 

of a shared operating system. 
 
Parallelism Ability to achieve concurrency via duplication/replication of 

hardware units. 
 
RAM Random Access Memory. 
 
Pipelining Ability to achieve concurrency via staging the hardware units. 
 
Semantic gap The difference between the features in the high level languages 

and the hardware features of the underlying architecture. 
 
SIMD Single Instruction stream, Multiple Data stream. 
 
SISD Single Instruction stream, Single Data stream. 
 
Structural hazard Is the one when two different pieces of data attempt to use the 

same pipeline stage at the same time. 
 
TI Texas Instrument 
 
Θ-search associative An associative memory organization which allows memory 

elements to be accessed based on Θ � {=,<,>,=,=,ð} 
relationship. 

 
ULSI Ultra Large Scale Integration. 
 
VLSI Very Large Scale Integration. 
 
WSI Wafer Scale Integration. 


