0. ABSTRACT

Since the dawn of computer technology the chalenge of closing the computation gap—
i.e, the difference between computation power demanded by application areas and the
computation power of the computer systems, has introduced some dternatives to the so caled
traditional von-Neumann concept. These dternatives have proven their effectivenessin practice
since the early days of computers. However, in the information explosion era, there isdways a
demand for higher computation power. For example, severd projects currently exist with
requirements of 10° ingructions per second (eg. 1nsec per indruction) baanced aganst
technologies that are gpproaching the speed of light transmisson limitation (e.g., 30 cm/nsec).

To cope with ever increasing demand to close the computation gap, the design of the
computer systems has been advanced in severd distinct but interrelated areas

. System software
. Technology and circuit design
. System architecture/organization

The mgor theme of this unit centers around the contribution of the last gpproach.
However, due to the practical vaidity and importance of the other directions, the merit of each
will dso be discussed.

Tablel: Theevolution of technology through the computer generation and itsimpact
on computer elements.

Generation
Technology First Second Third Fourth
Processor Vacuum Trangstor ICS LSl and VLS
Technology Tube
Processor Uni- Multifunctiona Multiprocessors Work Stations
Structure Processor Units Minicomputers Loca area Networks
MIMD Extensve SMD
SIMD Object Orientation
ManFrame 5* 10 5* 10? 1 5
Speed
Microprocessor -- -- 1 10
Speed
Control Unit Hardwired Hardwired Hardwired and Hardwired and
Microprogrammed Microprogrammed
Primary Vacuum Core Semi Conductor Semi Conductor
Memory Tubes 64K -256 K bit chips
Memarysze 5* 10° 5* 10° 1 10
Secondary Drum Channdls and Fixed head and Extended /O Peths
Memory and Tape Asynchronous1/0O Movesgble-arm optica disks
1/O Peths Processors disks
Memory -- Paging Systems Segmentation & I/O Caches
Hierarchy (experiments) Paging Caches

1. CLOSING THE COMPUTATION GAP
11 System Software

Since the early days of computers, the development of software support for
maximizing hardware utility has stimulated much research. Software systems are
developed to tailor the embedded hardware festures of a system to a specific gpplication.
System software includes areas such as data structures, compilers and trandators, and
operating systems. For example, it has been learned that:

1) By organizing data in proper fashion one can improve the performance.
As a dassca example we can tak about binary search dgorithm over
sorted data.

2) A compiler equipped with an optimizer routine improves the performance
during the run time by creating an efficient target language program.
Extensive research reported in the literature has shown that a vectorizing
compiler can enhance the performance by detecting the pardldism in an
gpplication program and rearranging the ingructions in the object program
to alow the smultaneous execution of independent ingtructions during the
run time.

3) Application of memory management routines as part of the operating
systems has proven ther effectiveness in improving the memory utilization
and increasing the system throughpt.

1.2 Technology and Circuit Design

During the past 40 years, trangtion from vacuum tubes to VLSl has increased the
processor speed by more than four orders of magnitudes, and has reduced the logic circuit sze
and memory cell sze by factors of 500 and 6400, respectively. The current microelectronics
technology has passed the mark of a million transstors per chip, and computer architects are
facing the increasing chdlenge of ULS—ultra large scae integration—technology. It is
anticipated that by the year 2,000, advances in technology will boast the capability of 50-100
million trangstors on a chip.

The firgt dectronic computer, desgned by Eckert and Mauchly a the University of
Pennsylvania, consisted of 18,000 vacuum tubes and 15,000 relays, the U-shaped computer
was 100 feet long and nearly 9 feet high and weighed over 30 tons. By comparison, forty years
later, vacuum tubes are things of the past replaced by smdler and more religble units. Today,
with the strong emergence of advances in device and storage technology, an entire 32-hbit
microprocessor or a IMbit RAM memory can be incorporated on a single chip. There is no
doubt that advances in technology have placed an important role in the organization of
computers. Table 1 summarizes the effect of the technology on the main components of the
computer system. These advances, however, are not without any drawbacks. For example,
recent advances in device technology due to its high design and fabrication cogts, and high
dengty (hence the tetability issue) at the chip level imposes specific architecturd congraints on
the designs. A auitable architecture for hardware implementation should reduce communications
as well as computation and be based on the replication of afew basic blocks in space or time.

Thisimplies locdlization, modularity, regularity and smplicity of the desgns. To fully utilize these
advances one has to develop a design which is. i) generd enough for mass production, ii)
ample, regular and modular a the chip levd, and iii) locdize to reduce inter-chip
communications. In addition, proper mechanism to improve the fabrication process and chip
testability should be developed.

Performance improvement is one of he mgor chalenges in the future advances in
device technology. Bipolar Junction Transstors (BJT) for faster speed, CMOS for lower
power dissipation, Galium Arsenide Gates (GaAS) for high dectron mobility and optica
technology for its speed have shown apromising future.

Wafer Scae Integration (WSI) has been seen as an dternative to VLS. WSl has the
advantage of increesing system speed by diminating off-chip driver delays and increasing
reliability by reducing chip interconnections. However, due to their low yidd and power
limitations, there are questions whether or not logic WSl can be compstitive with ICs. On the
other hand, main memory WSl is a promising progpect. Firg, its efficiency is very high. Since
al memory modules on the wafer can be identical and hence, globa redundancy can be used.
With a word-wide module, power is low since al but one module are in stand-by mode, in
addition, pin outs are few. Moreover, in WS many fabrications steps such as scribing, dicing,
sorting, lead bonding, IC insertion, soldering, board testing and reworking are iminated. All
these congderations lead to easily produced wafer having inexpensive packaging.

Since the early 1970s, continued demands for high capacity and low cost Sorage media
has dlowed the:

1) Seady advancesin magnetic recording technology,

2) Introduction of the so called "dectronic disks' — i.e., charge coupled devices and
meagnetic bubble memory, and

3) Application of the opticd storage devicesin the memory hierarchy.

Unfortunatdly, the inability to mass produce the dectronic disks made it impossble for
competitive chalenge in the market. However, optica storage devices and pardld disks have
shown avery promisng future.

Advances in technology have directly affected the execution time of the basic functions.
For example, in 1944 the MARK | (a pioneer computer using electromechanical components,
i.e. relays) required 333 msec. to complete an addition. In afew years, this was improved by a
factor of more than athousand (i.e. ENIAC which used vacuum tubes). About 10 years later
CDC 6600 was able to perform the addition in 300 nsec.

The reduction in the gate switching delay, wire length and miniaturization of circuits hasa
direct effect on the clock rate and hence, in closing the computation gap. In addition, such a
trend has increased the sophigtication of the supporting software and the migration of the
software functions into hardware.

In the late 1960's Moore predicted that, component density on a chip is quadrupling
every three or four years. Thisis partialy due to the development of high resolution lithographic
techniques, increases in the sze of the slicon wafer, growth of the accumulated circuits and
layout desgn experience, and better understanding of the system leve design issues leading to
an improved architecture capable to exploiting the technology. However, as improvements in

technology approach the limit (the speed of light), Moore's law is no longer gpplicable and the
emphadsis shifted in the direction of advances in system architecture/organization.

1.3 System Architecture/Organization

Migration of the software functions into the hardware, combined with the advances in
the technology's intrinsic speed, has reduced the computation gap. However, there has aways
been the need for much more computer performance than is feasible with a smple sraight
forward design. To overcome these limitations, computer designers have long been attracted to
techniques that are classfied under the generd phrase of concurrent operations. In a concurrent
system the computer's hardware is Smultaneoudy processing more than one basic operation at
each ingant of time. Within this generd category are severd well recognized techniques such as
pardldism, pipdining and multiprocessing. Although these techniques have the same origin and
are often hard to distinguish, in practice they are different in their generd gpproach. For
example, in pardldism concurrency is achieved by replicating the hardware structure many
times, while pipdining takes the gpproach of splitting the function to be performed into smaller
pieces and allocating separate hardware to each piece (stage).

Thisunitisamed at different proposds for closing the computation gap within the scope
of the control flow environment. Section 2 introduces some definitions and background which
are used throughout the unit. Section 3, addresses the class of concurrent systems based on the
control flow concept. It represents the so cdled pardld, pipeined, and multiprocessor systems.
The programming issue of the control flow computation is the subject of Section 4. Findly, the
shortcoming of the control flow environment is discussed in Section 5.

2. DEFINITIONS
2.1 Concurrency

Concurrency is a generic term to define the ability of the computer hardware to
smultaneoudy execute many actions & any indant. In this generd sense it implies pardldism,
amultanety, and pipdining. Pardle events may occur in multiple resources during the same
time interval; Smultaneous events may occur a the same time ingtant and pipelined events may
occur in overlgpped time spans. Within this framework, concurrent processing is an efficient
form of information processing which emphasizes the exploitation of concurrent events in the
computing process. Therefore, one can define a concurrent processor as a sysem that
emphasizes concurrent processing.

2.2 System Utilization

For any computer there is a maximum number of bits or bit pairs that can be processed
concurrently whether it is under single-indruction or multiple-ingtruction control. This maximum
degree of concurrency, or maximum concurrency, C, is an indication of the computer
processing cgpability. The actud utilization of this capability is indicated by the average
concurrency defined to be

SG Dy
C=———
a SDti D

where G isthe concurrency a Dt. If Dt is set to one time unit, then the average concurrency
over aperiod of T timeunitsis

4C
Ca — =1
T ®)

The aver age hardwar e utilization isthen

_c._4&c ot _ aG 1
C. C. abt ¢, T T

where 7 is the hardware Utilization a time i. While G, is determined by the hardware design,
C, or u is highly dependent on the software and gpplications. A generd-purpose computer
should achieve a high p for as many applications as possible, while a specid- purpose computer
would yidd a high p for at least the intended applications. In ather case, maximizing the vaue
of u for a computer design is important. Equation (3) can dso be used to evaduate the rdative
effectiveness of machine designs.

For a pardld processor the degree of concurrency is caled the degree of pardldism.
A smilar discusson can be used to define the average hardware utilization of a pardld
processor. The maximum parallelismisthen P, and the average parallelism is

d, 3

I\ Qo

ap oy _aP

TR
(4)
for T timeunits The average hardwar e utilization of aparallel processor becomes
J
_P._aP’'Dot _ apb _13 r
P, P &0t P, T T
©)

where ', is the hardware utilization for the pardlel processor at time i. With appropriate
ingrumentation, the average hardware utilization of a system can be determined.

In practice, however, it is not dways true that every bit or bit par that is being
processed results in productive information. Some of the bits produced contain only repetitious
(superfluous) or even meaningless results. This happens more often and more severdly in a
parald processor than in a word-sequential processor. Consder, for example, performing a
maximum search operation in a mesh connected parald processor (such as ILLIAC V). For
N operands it takes (N/2)logN comparisons (N/2 comparisons for each logN iterations)
instead of the usua N-1 comparisons in word-sequentid machines. Thus, in effect there are

(N/2)logN — (N-1) = (N/2)(logN —2) + 1 (6)

comparisons which are non-productive. If we let ﬁa be the effective pardlelism over a period

of T time units andN , P and [be the corresponding effective vaues, the effective
hardware utilizetion is then

~ ~ é ~_, Dt, é ~. 1 c'l)' ~
u:Pa: ,Plo D — |:1,P-II_:?ar
Pm Pm a ti Pm i=1 i (7)

A successful pardld processor design should yied a higm~ , aswd| as the required throughput
for, a least, the intended gpplications. This involves not only a proper hardware and software
design, but aso the development of efficient pardle dgorithms for these applications.

Suppose T, is the execution time of an application program using a conventiona von
Neumann machine, and T, isthe execution time of the same program using a concurrent system,
then the speed up ratio is defined as.

S=TJT. (8)
Naturdly for a specific concurrent organization the speed up ratio determines how well an
gpplication program can utilize the hardware resources. Supporting software has a direct effect
on the speed up ratio.

In case of pipeine organization, the literature has used other parameters to discuss the
performance issues. In a pipeline system the term L atency isused as a performance measure.
Latency (L) is defined as the number of time units separating two successive initiations of events.
Naturdly, the lower the latency the higher the performance. Latency could be any integer value
incduding zero. Then the average latency is defined as the average number of time unit
between two initiations. Based on the value of the then one can define theinitiation rate (1). It
isthe average number of the initiations per clock unit:

=2
- 9
(L) ©)
For stage S stage utilization (“S) indicates on the average how often S has been used:
U
S=1*n (10)

where n; represents the number of time Sisused in oneinitiation. For alinear pipe, if d; denotes
the execution time of stage S then:

(E):MAX(di) 1£i £k
=1
MAX (d:)

1

USi = @@
MAX (d!

2.3 Clasdfications of Concurrent Systems

Sysem designers have long recognized the intringc limitation and vulnerability of the
classcd von-Neumann design, in which al system resources are clustered around a single
central processing unit. In this dlassca modd, the arithmetic logic unit (ALU) can perform
operations only on a bit or a bit pair (serid ALU). Therefore, an operation on an M-hit
operand or operand pair must be repeated bit seridly M times. In order to speed up the
processing, aparale ALU isusudly used, so that dl bits of an operand or operand pair can be
operated on smultaneoudly. This discussion can be extended to the casesin which ether: i) all
the " bits of n operands or operand pairs may be operated on smultaneoudly (i.e. bit dice-Bis),
or ii) the operation is performed on n M-bit operands or operand pairs. Points A, B, Cand D
in Figure 1 illustrate these four approaches, respectively. This discussion represents Feng's
classfication, where the concurrent space is identified as a two dimensiona pace based on the
bit and word multiplicities. Figure 1 shows the alocation of some of the computer architectures
in the Feng's concurrent space.

Since the early days of computer technology researchers have atempted to classify
various proposed/designed computer architectures. These efforts were directed to: (i)
generdize and identify the characteristics of different designs, (i) formulate a systematic
mechanism by which different designs can be anayzed and compared againgt each other, and
(i) define a systematic mechaniam to transform the solutions from one design to other designs.

Hynn has classfied the concurrent space according to the multiplicity of indruction and
data streams.

| = {Single Ingtruction Stream (S1), Multiple Ingtruction Stream (M1)}

D = {Single Data Stream (SD), Multiple Data Stream (MD)} (1)
The cartesian product of these two sets will define four different classes:
I*D ={SISD, SIMD, MISD, MIMD} (12
SISD Thisclass represents the classca von-Neumann architecture (with serid
or pardld ALU)

SIMD This class represents the multiple ALU type architectures (e.g. array processor)
MISD This class is not found to be as practica as the other classes. A database
meachine—search processor—represents amodd in this class.

MIMD This class represents the multiprocessor system (loosdly or tightly coupled).
Flynn's cdassfication suffers from the fact that it does not uniquely identify a spedfic
organization. In addition, it does not address the interactions among the processng modules
and the methods by which processng modules in a concurrent system are controlled. In generd
a classfication scheme should:

i) categorize dl existing aswell as foreseegble computer designs,

i) differentiate essentid processing eements, and

i) assgn an architecture to a unique class.

Handler has extended Feng's concurrent space by a third dimension, namely the number
of contral units. Handler's space is defined ast = (k, d, w) in which:

k isthe number of control units (CUs) interpreting a program,

d isthe number of aithmetic and logic units (ALUs) controlled by a contral unit,

and
w istheword length or number of bits handled in one of the ALUs

AN MP
(1,16384)
Staran
Wo (1,256)
rd
Mu
Itip et ¢ DMN
licit
y Hliac IV
(64,64)
Cmmp
16 (16,16)
! IBM360 | Cray-1
A ! S TE—
S22 [32.1) (64,2)
1 16 32 Bit -

Figurel. Feng'sClassification.

According to this classfication a von-Neumann machine with serid/pardle ALUS s represented
a1, 1 1), (1, 1, M), respectively. Figure 2 depicts the position of some of the computer
gystems in the Handler space. To represent pipdining a different levels (e.g. macro pipeline,
indruction pipeine and aithmetic pipdine), and illudrate the diversty, sequentidity and
flexibility/adaptability of an organization, the above triplet has been extended by 3 variables (e.g.
k', d, w') and 3 operators (e.g. +, *, v) where:

k' represents the macro pipeline - the number of control units interpreting the tasks

of a specific program, where the data flow through them is sequentid.

d represents ingdruction pipeline - the number of functiond units managed by one
control unit and working on one data stream.
represents arithmetic pipe - the number of stages.
represents diversity - existence of more than one structure
represents sequentidity - for sequentialy ordered structures

v representsflexibility/adaptability - for reconfigurable organization
According to this extension to Handler's notation, CDC 7600 and DAP are represented as.

(15*1, 1*1, 12*1)*(1*1, 1*9, 60* 1) and

(1*1, 1*1, 32*1)*[(1*1, 128*1, 32*1) v (1*1, 4096* 1, 1* 1)], respectively.

These classfications suffer from the fact that ether, they do not uniquely identify a
specific organization, or, they can not thoroughly determine the interrel ationships among different
modules in an organization. For example, Hynn's classification does not address the interactions
among the processng modules and the methods in which processng modules in a concurrent
system are controlled. As a result, one can classfy a pipeline computer and a uni-processor
computer as SISD machines, since both instructions and data are provided sequentidly. And,

* + =

according to the Feng's classfication a word organized array processor fadls in the same region
as a multiprocessor system. In the following, we classify the conventional concurrent systems
into three groups - namdy, parallel SIMD, pipeline and multiprocessors. Our didtinction is
according to the exploitation of concurrency and the interrdationships among the contral unit,
processing dements and memory modules in each of the aforementioned groups. As will be
discussed later, each group is further divided into subsections. Table 2 shows this taxonomy.
By a close observation one can redlize the progression trend in the development of the pardld
and multiprocessor systems. Practicaly, both techniques achieve concurrency as the result of
hardware replication (e.g., redundancy). However, in a multiprocessor system, the degree of
freedom associated with the processors is much higher than the one in the pardle systems. As
a result, processors are more independent with respect to each other and the centra control
unit. This independence naturdly will introduce a degree of complexity on the dynamic
communication capability among the processng dements. In addition, this complexity will be
reflected in the control structure and software supports which is needed for each gpproach in
order to map application programs into the hardware features. This discussion can betraced in
the evolution the digtributed systems, where the processng units are more independent from
each other than the processing units in a multiprocessor sy#tem.
A Number of CUs

16 |
Cmmp
® (16116

IBM 360/91
64

64

N ILLIAC IV*

Figure2. Handler'sClassification.

10

Table2. Classfication of the Concurrent Systems.

Ensemble Processor
Parallel Systems { SIMD Array Processc
Associative Processor

L oosely Coupled

Contr Multipr ocessor Tightly Coupled
Flow Systems °
o L inear/Feedback
Concurren Pipelined Systems Unifunction/M ultifun
Systems Static/Dynamic
Static
DataDriv
Data Systems Dynamic
Flow

Demand Driven
Systems

11

2.4
1

2)

3)

12

Self Test Problems#1
a) Dedfinetheterm Technology Driven Architecture.

b) Nameand discusstwo classes of the so caled technology driven architectures (be
sure to address the architectura festures of each class and the characteristics of
the underlying technology).

Different researchers have attempted to classfy computer organizations/ architectures:
a) What are the motivations behind the classfication of computer systems?
b) Wha should be the gods of a classfication scheme?

Hardware utilization for apardld system is defined as

T
or S F
g= Pa whereP; (average parallelism) SADY _ &

Pm SD'[i T
P, is the pardldism a time dice i and R, is the maximum pardldism. For a mesh
connected parald processor — i.e, ILLIAC IV type organization — cdculate the

hardware utilization when performing a maximum search operation.

3. CONTROL FLOW ORGANIZATION

As mentioned before, the classifications cited in Section 2 suffer from the fact that ether
they do not uniqudy identify a specific organization or they can not determine the
interrdaionships among different modules in an organization. In this Section, we classfy the
conventional (e.g. control flow) concurrent systems into three groups - namey, parallél,
pipeline and multiprocessors. This digtinction is due to the exploitation of concurrency and
the interreationships among the control unit, processing dements and memory modules in each
group.

Despite our digtinction, system designers in the 1960's witnhessed the emergence of a
new class of computer organizations known as multifunctiond unit sysems. Although such a
computational modd is classified as an SISD organization in Flynn's classfication, this concept
was clearly made in response to closing the computation gap. The CDC-6600, IBM 360/91,
CDC 7600, CRAY, NEC SX-2, Fijitsu VP-200, and Hitachi S-810 are classica examples of
this organization.

A block diagram of a multifunctional system is shown in Figure 3. The system congsts
of a single control unit and a processor. However, the processor unit is composed of severd
functiond units. Each functiond unit has a set of locd registers and dl functiona units share a
st of globd regigers, which hold intra-functional operands and act as a buffer for memory
units. The globd registers share a common bus and a switching network which together alow
fast data transmisson from point to point. The primary memory should support a high
processor bandwidth. The control unit is responsible for the resolution of register and functiona
unit conflicts and scheduling of their operations. Functiond units work independently in
asynchronous mode. With equd probability of usng dl the functiona units, the maximum speed
up ratio of K (K the number of functiona units) can be achieved. However, it is very unlikely
that dl the K functiond units will be used equdly wel. The limitation of multifunctiond sysems
is due to the complexity of the control unit which must detect the paralld execution of severd
operation during the execution time. For programs with alot of sequentia data dependence, the
efficdency is much diminished.

3.1 Paralld Sysems

Pardld sysems are the naturd extenson of pardle ALU systems. Point D in Feng's
concurrent space (Figure 1) represents a paralel system. In this organization concurrency is
exploited through a collection of identica and independent processing elements controlled by
the same control unit. Thus, a any given moment dl of the processors perform the same
operation on different pieces of data. In generd, this approach is very scaable ad offers a
good degree of fault tolerance. In this study, we distinguish three groups of pardld sysems
Ensemble processors, Array processors and Associative processors.

3.1.1 Ensemble Processors

Ensamble sysem is an extenson of a conventiond uni-processor system. It is a
collection of N processng dements (a processing eement condsts of an ALU, a st of locd
registers and very limited local control capability) and N memory modules, under the control of
a sngle control unit. Such a smple aganization does not provide any direct communication
paths among processing dements. Moreover, it does not alow flexible interconnections among

13

processing dements and memory modules. Such communications are done through the control
unit.

As one can conclude, the organization is capable of executing up to N identicd and
independent jobs smultaneousy. However, due to the lack of direct inter-processor
communications, this organization has very limited gpplications.

Control Unit
‘ I \ ’
Operand Operand Operand
Reg. 1 Reg. 2 Reg. k

i

Global
Registers

Comon DataBus

Primary
Memory

F; : Functiona Unit /0

Figure3. Block Diagram of Multifunctional Processor System.
3.1.2 Array Processors
The schematic diagram of an array processor is shown in Figure 4. The system is
composed of N identical processing eements (PES) under the control of a single control unit and
a number of memory eements. The processng eements and memory eements communicate
with each other through an interconnection network. This network usualy provides a uniform

14

interconnection among processing e ements on one hand and processing eements and memory
modules on the other hand.

Two generd organizations of array processors can be found in the literature. In type 1
organization (Figure 4), any processng dement can access any memory eements through a
complex and expensive intercomection network. Thus, dl the benefits of a shared memory
system are present. On the other hand, in a type 2 organization (Figure 5), each processing
element is given a dedicated memory that only it can access directly. Therefore, this
organization requires a communication mechanism among the processing eements to provide
data communication between them. BSP and ILLIAC IV aretwo classicd examplesof Type 1
and Type 2 array processors, respectively. ILLIAC IV uses a mesh-structured network, while
BSP uses a cross-bar network in order to establish the communication among processing
elements and between the processng eements and memory eements. Array processors can
adso be dassfied into coarse grained or fine grained based on the complexity of the
processing eements. In the coarse grained system the PEs are multi-bit processors. These
processors often have floating-point arithmetic capabilities. However, due to the relaive high
cost of the PES, fewer PEs are found in these types of systems. Fine grained array processors,
on the other hand, use PEs that are only single-bit processors. As a result, any complex
operations must be broken down into a series of single bit operations. However, since fine
grained PEs are much less expensive and smpler in structure than coarse grained PES, many
more PEs are connected together in a fine grained sysem. ILLIAC IV and Connection
Machine are classcd examples of coarse grained and fine grained array processors,
respectively.

In array processors the control unit is a computer with its own high speed registers,
locd memory and arithmetic unit. Asin conventional machines, the ingructions are sored in the
man memory together with data. The main memory in this sysem is the collective memory in N
processors. Hence, the ingructions are fetched from the processors memory into an ingtruction
buffer in the control unit. If an indruction is ether a control or scdar type indruction, it is
executed entirdy within the control unit. However, in case of avector ingruction it is performed
in the processng aray. The primary function of the control processor is to examine esch
ingruction to be executed and to determine where the execution should take place. Array
processors can further be classfied into two classes according to the capability of the
processing eements in handling the data manipulation operations. In the fird case the
processng dements are multi-bit processors, i.e., they operate on a word size that is severd
bits wide. These processors often have floating point arithmetic capabilities. However, snce
the cogt of one of these processing dements is relatively expensive, fewer processing dements
ae found in these organizations. BSP and ILLIAC IV are examples of multi-bit array
processors. On the other hand, the second class of array processors uses single-bit processing
eements. As areault, any complex operations must be broken down into a series of single bit
operations, hence the mgority of operations take longer to be executed in this group of array
processors than in their multi-bit counterparts. However, since single-bit processing eements
are much less expensve and smpler in structure than multi- bit processng elements, afar greater
number of processng elements can be connected together in a Sngle-bit organization. This
increases the processing power of the array processor. In addition, while multi-bit array
processors can mogt efficiently process data dements of the same sze, sngle-bit array

15

processors can easly operate on variable length data ements. The DAP, MPP, and
Connection Machine are examples of Sngle-bit array processors.

ﬁﬁ

{
]

'

{
F .
{

Glohal Memorv Oraanization

Figure4. Anarray of processor (Typel).

_—

Ml ambmdl Ml amcamci d Muumimial —adl ~a

16

Figure5. Anarray of processor (Type 2).

An aray processor is a synchronous paralle computer. Processing eements are
synchronized to perform in parale the same function at the same time. The problem of data
sructuring and detecting pardldism in a program is a mgor bottleneck, athough the design of
the control unit is smple and is most like the one in sequential systlems. In array processors an
operation such as.

x() =AG*B@)i=1,2, .., N

could be executed in pardld, if the dements of A and B arrays are distributed properly among
the processors, e.g., the i processor is assigned the task of computing x(i). However, if we
have to compute:

Y = g A(i) * B(i)

the product terms are generated in parald as discussed before. Additions will be performed in
logN iterations, assuming that the intermediate operands are properly digned and only a subset
of processors which handle these operands become active at successive iterations. Thus the
gpeed up ratio becomes at the expense of a poor resource utilization.

S = 2N-1 N N
1+log 2N |og ,N

(13)

3.1.3 Associative Processor

Associative memories have been generaly defined as a collection or assemblage of data
gorage dements which are accessed in pardle on the basis of data content rather than by
gpecific address or location. As a result, each associative cdl should have hardware capability
to store and search its contents againgt the data which is broadcast by the control unit. With
such a definition in mind one could conclude that, while read and write are the basic operations
in the conventional random access memory (RAM), search is the basic operation for associative
processing. The typica components of an associaive memory are depicted in Figure 6. The
Memory array provides storage to store the data. The comparand register holds the data to be
compared againgt the contents of the memory array. However, by proper setting of the bit
pattern in the mask register one can mask off portions of the data words from comparison and
other operations. A response bit indicates the success or failure of a search againgt the content
of the corresponding associative word. Findly, the multiple match resolver is used to narrow
the result of a search to a pecific word in case of multiple responses (e.g. matches).

An asociative processor is then defined as an associative memory capable of
performing arithmetic and logic operations. Usudly, in such an organization, arithmetic and logic

17

operations are performed one bit a atime. An associative computer then is defined as a system
that uses an associative memory or processing as an essentid component for storage or
processing, respectively. An obvious advantage of associative processing can be found in its
goplication in nor-numeric processing, radar sgnd tracking and processing, image processng,
and smple arithmetic and logic operaions on large sets of data. The main motivation for the
study of the associative systems centers around its capability in:

i) Reducing the exigting semantic gap and bottleneck in the conventiona systems, and

ii) Increasing the performance due to the pardld operations at the storage level and

elimination of address computation.

The first eectronic associative memory was introduced by Slade and McMahon who
described the design of a cryogenic memory system. Since then associative memories have
been implemented using techniques such as tunnel diodes, evaporated organic diode arrays,
magnetic cores, plated wires, semiconductors, bubble memory, integrated circuits, and recently
optical technology. Moreover, literature has addressed several modifications to the basic
associative operations (eg. Hybrid associative memory, read only associative memory).
However, up to the last decade there was no wide spread generd application of associative
memories. Thiswas due to the hardware complexity and cost of associative cdlsin comparison
with RAM cdls, consarvatism, and lack of suitable associative dgorithms. As a result, the
statement such as "the superiority of the content addressable memory isimplied not proven” was
atrue statement. However, since the mid 1970s there is growing evidence that the above clam
of an associdive memory's superiority may be judified. This is due to the advances in
technology and its effect on cost and size of the hardware components, and the strong
gpplications of associative processing in nor-numeric operations, image processing and pattern
recognition (Table 3).

Asociative memories have been dassfied into four categories namely fully-pardld, bit-
serid, word-serid and block-oriented. This classfication is in accordance with the basic unit of
data to which the search operation is gpplied, and reflects a compromise between speed and
Cost.

a) Fully-Paralle: Inafully pardld organization, each basic unit of information (eg., bit)
has its own search circuitry. Therefore, the associative operation can be performed dong two
dimensgons smultaneoudy. Such adirection implieslarger cdll sze and more expensve modules
in comparison with a bit in the random access memory. Point D in Figure 1 represents a fully
pardld associative memory. In practice, fully pardld associative memories have been redized
as a two or one dimensgonad memory arays. In the two dimensiona organization (word

organized) memory is composed of fixed length entities cadled words. In a one dimensond

organization (distributed logic), memory is arranged as a string of search character cells where
each cdl communicates with its neighbors and the control unit. Naturdly fixed length record
gze is an obvious shortcoming of a word organized modd. This will limit/complicate the
implementation of the variable length word applications. However, one should remember that
asociative operations in a word organized memory are handled easier than the aesin a
digtributed logic organization.

b) Bit-Serial: This organization represents point C in Feng's concurrent space (Figure 1).
Memory could be organized as a collection of circular shift registers in which search capability is

18

associated with a designated bit within each word (eg. bit-dice). To achieve efficiency a a
reasonable cog, a varidaion of this organization (i.e. byte seria associative memory) has dso
been proposed in the literature. 1n a byte serid moddl, byte search capability is associated with
each associative word.

) Word-Serial: In this class, search capability is associated with a word. This will
represent point B in Figure 1. However, one should recognize the difference between this
organization and word-pardle ALU systems, based on the fact that in word-serid organization
operations are peformed in asociative fashion. This organization represents a hardware
redization of asmple program loop in linear search.

d) Block-Oriented System: In this class, associative capability is provided at the mass
dorage level (e.g. secondary storage). This concept is an extenson of fixed head rotating
secondary storage technology. However, the fixed read/write heads are extended as a small
processor (i.e. logic per track). As the data passes under the read/write heads, it will be
investigated and marked for the later accesses. During the 1970s, the concept of logic per
track, originaly proposed by Sotnick, was used as a guideline in the design of many database
meachines.

Comparand Reg.
Tag Reg.
\éve‘;rd Select Mask Reg. Multiple
' Match
Resolver
“ /
Memory Cell
Array
| nput/Output Reg.

Figure6. A Word Parallel Associative Memory.

19

Table 3. Developmentsin the Design of Associative Chip.

20

e) Application of Associative memory: The use of CAMs to improve the performance
of memory management is dready well established. Associaive memories can be used to
quickly execute the table entry look-up and modification operations used in memory
management systems. For this reason, CAMs are often used as trandation look- asde buffers
in virtua memory systems and as tag directories in fully-associative cache organizations. For
both these gpplications the CAM needs to perform equality searches on its contents.
Associative memories have often been used in the architecture of database machines
(unit 4). The pardld search capabilities of CAMs make these devices idedly suited for the
database environments. Typicdly, a CAM used for database operations should have & least
maskable equdity-search, maskable write, and multiple write capabilities. However, many
database gpplications often perform g-searches (where q is the dement of the set {<, >, =, 1,
£, 3). Asarealt, making an associative memory which can implement a g-search directly in
hardware is very desrable. The concept of content addressable processing for handling
character matching operations was proposed by Lee and Paull. This bit parallel word serid
organization was composed of an array of identica cdls, each acting as a samdl finite sate
mechine cgpable of communication with its left and right neighboring cdls The sysem was
proposed for text retrieval operations, but because of the hardware cost it was not possible to
be used in practicd applications. Later on, a number of variations to this organization were
proposed in the literature. In the early 1970s some new hardware for handling databases using
associative processors was designed. Comparisons between an associative processor based
architecture and a Smilar von-Neumann architecture have shown its superiority with respect to
retrieval, update and storage operations. DeFiore and Berra have shown that in a database

environment, associative processors need to use three to fifteen times less storage compared to
adatabase system using inverted list organization and have a response time faster by an order of
magnitude.

Associative memories are aso being used in the design of the prolog machines for
efficient handling of backtracking and unification operations. It has been shown that a CAM
with a maskable equality search, maskable write, and the garbage collection abilities can reduce
the backtracking time to a smdl, constant value regardliess of the number of bindings, aso a
CAM can be used to speed performance on unification through clause filtering. Findly, we
have recently witnessed a surge of interest in the gpplication of associative memory and
associative processing in the area of Computer Vision.

Despite the great advantages of associative operations in some gpplications, there are
very few associaive memories currently available in the market either as generd purpose chips
or as components in standard cdll libraries for VLS design. One reason for this is that there
exigs aperceived belief that the cost of an associative memory is much too large to be practicdl.
At firgt glance, this seems to be avalid concern. After dl, compared to a conventiond RAM a
fully pardld CAM suffers the additiona cost of search circuitry a every bit postion (a CAM
aso has more complex control circuitry to operae it, but in large CAMSs this circuitry is
overshadowed by the size of the storage e ements and search circuitry). In some cases, though,
this sze and cost increase should be acceptable. For example, the equality-search bit cell
contains only about twice as many trangstors as a tandard CMOS satic RAM cdll, apendty
more than offset by the increased functiondity of the associative memory.

However, the perceived cogt of a CAM might not be the only reason that CAM
production has been discouraged. As discussed earlier, applications which use CAMsto speed
up their execution often require CAMs with varying degrees of functiondity. As a reault, it
would be nice to have a generd CAM design which dlows CAMs of different functiondity to
be built easly. However, most of the proposed fully pardld CAM designs are for specid
purpose CAMs with a very specific set of functions. While these CAM designs might be
suitable for an gpplication which requires those specific functions, the specid purpose nature of
the desgn may make it difficult to incorporate other types of functions into the CAM.

To hep smplify the development of different types of CAMs, we believe that a generd
CAM organization suitable for creating CAMSs of various degrees of functiondity is needed.
Idedly, this organization should contain a high-level CAM architecture composed of a set of
mogtly-independent modules and alist of common features shared by every CAM regardless of
its functiondity. These common fegiures are implemented by modules whose designs usudly
remain the same regardiess of the type of CAM being developed. A set of specid-purpose
features, different for eech CAM implementation, determines the exact functiondity of the
CAM. These features are implemented by specia-purpose modulesin the CAM. Findly, one
needs to develop proper tools for automatic design and fabrication of modular associative chips
with various functiondities

It is worthwhile to mention that, besides the above specid purpose designs based on
associative processors, there are some associ ative processors which are capable of performing
generd purpose operations. STARAN is an example of such a system; it is composed of an
associative array processor (one to 32 modular associative processor) with an interface (custom
interface unit) to the wsars. It dso has conventionally addressed control memory for program
storage and data buffering. Each associative processor is a matrix of 256 words by 256 hit,

21

with paralld access up to 256 bits at atime in the word, bit, or mixed direction. Control Sgnds
generated by the control logic unit are fed to the processing dements in pardld, and dl
processing eements execute the ingruction smultaneoudy. The STARAN symbolic assembly
language APPLE provides a flexible and convenient assembler for programming without
complex and coglly indexing, nested loops, and data manipulation congtructions required in
conventiond systems. Indruction execution time is dependent upon the number of bits in the
operations involved in the indruction.

3.2 Multiprocessor Systems

The atribute that characterizes a multiprocessing system is the sharing of a globa
memory by severd independent processors making up the system. Two arguments justify such
an gpproach. Thefirg isthat by assgning a different job to each processor, the total throughput
of the sygem isincreased. Thisis due to the ability to overlgp both computation intensive and
I/O intengive jobs in the overdl system. The second argument for multiprocessors is thet there
exigs a large class of problems where the problem can be split up into a number of independent
tasks. In amultiprocessor system, each task can be smultaneoudy run on a different processor.
This reduces the execution time of the problem and hence increases the system's throughpuit.
Figure 7 depicts the generd organization of a multiprocessor system.

In genera, a multiprocessor system can be characterized by the following features:

» The system contains two or more processors, each with its own control unit. These
processors can be homogeneous or non-homogeneous, but most currently
developed systems use homogeneous processors. Since it is generdly required that
the processors can perform genera purpose operations, this rules out systems with a
central processor and highly specialized 1/0 processors as multiprocessors. Note
that the execution performance of a sSingle processor can vary dramaticaly between
different systems. For example, the Cm* multiprocessor system uses processors
with the computing power of a PDP-11, while each processor in the S-1
multiprocessor is about as powerful asa CRAY -1 computer.

» The processng dements share a main memory that usudly congds of severd
independently accessble modules. This memory holds common data needed by the
various processors in the system. The shared memory can be organized in one of
two ways. In the first organization, al of the shared memory modules are separated
from the independent processors by an interconnection network or a multiport
interface. Hence the access time of the shared memory (assuming no conflicts) is
independent of the module being accessed. This type of system is known as atightly
coupled system. In the second organization each processor has a loca-public (as
opposed to local-private) memory; the shared memory of the multiprocessor is the
aggregate of dl these memory modules. Each processor can directly access its
memory module, but al other accesses to non-loca memory modules must be made
through an interconnection network. Note that in this organization, caled aloosdy
coupled system, the access time to the shared memory depends upon whether the
desired address is local to the processor. The CRAY X-MP and the HEP are both
examples of tightly coupled multiprocessor systems, while the Cm* is an example of

23

a loosely coupled system. In both tightly and loosdly coupled systems the access
time to shared memory may be increased due to the memory contention — i.e. more
than one processor ng the same module & the same time.

» Each processor might adso have a loca-private memory in addition to the shared
memory. A programmer may or may not be able to directly reference this memory.
In the first case, the memory can be used to store local variables and globa vaues
that would otherwise be frequently referenced from the shared memory. In the
second case, the memory is a hardware controlled cache which holds recently
referenced datain the expectation that it will be referenced again soon. Since private
memories can potentialy increase the overal performance of a system, recent
multiprocessor designs are equipped with local- private memory modules. Insuch an
environment the issue of coherence problem with private memories has attracted
many research efforts.

* Besides a mmmon memory, the processors usudly (but not dways) share other
resources such as 1/0 channels and devices. This amortizes the costs of these
resources over the savera processors in the syssem. This aso dlows the rest of the
system to continue using 1/0 devices even though a processor may fail. However, it
Is possible for processors to have private I/O devices in the multiprocessor system.

P, % A
LM LM L Mn
1 2

I nterconnection Networ k

it Y

Ml M2 . . . Mk

P : Processor

CPU : Central Processing Unit
LM : Local Memory

M : Memory Module

Figure?. Multiprocessor System.

» Thewhole multiprocessor is under the control of a Single integrated operating system.
This operating system provides the means of interaction among different modules in
the sysem. To hdp do this, it uses the unique hardware features of the system such

as an interprocessor communication mechaniam, if any. Note that some operating
systems dlow the processors to work on severd different problems at the sametime
(multiprogramming) while others require that al the processors be dedicated to a
snglejob.

Multiprocessors have severd advantages over conventional computer systlems. Fird, as
mentioned above, problems can often be solved fagter if they are broken up into severd
concurrently executing tasks. Second, multiprocessor systems are more reliable since falure in
any one of the redundant components can be tolerated by reconfiguring the system. Findly,
multiprocessor systems are cost effective due to resource sharing among the processors in the
sysem.

It is clear to see that multiprocessor systems naturaly evolved from earlier systems.
Like aray processors, multiprocessor systems achieve concurrency through hardware
replication (i.e. redundancy). Thusit isreasonable to say that the multiprocessor organization is
alogica extenson of array processor organization. The degree of freedom associated with the
processor is much higher than in an aray processor. That is, the processors are more
independent with respect to each other. However, this independence of the processors and the
sharing of resources among the processors, both desirable features, do not come without a
price. Instead, these fegtures increase the complexity of a dynamic communication system
between the processors and the shared resources (e.g., memory) and between themsalves. In
addition, the operating system and other software supports must be more complex than their
array processor counterpartsin order to efficiently map application programs onto the hardware
features.

If @ multiprocessor has P processors, its throughput is certainly less than P timesthe
throughput of a single processor. This is due to severd factors. For example, 1/0 operations
usudly take longer in multiprocessor systems due to the overhead caused by software which
resolves resource conflicts. The performance of individual jobs can be degraded by the delays
caused by interprocessor communication, the need for processor synchronization, and memory
and other resource conflicts. However, the number of resource conflicts can be reduced by
scheduling a balanced mix of 1/0O intendve and computation intengve tasks. In multiprocessor
systemswith 2 and 4 processors, typical vaues of throughput are 1.5 and 2.5, respectively.

3.3 Pipdine Systems

The term pipdining refers to the design technique that introduces concurrency into a
computer system by taking some basic function to be involved repestedly in the sysem and
partitioning it into saverd sub-functions with following properties

» Evduation of the basic function is equivadent to some sequentid evaduation of the
sub-functions.

e Other than the exchange of inputs and outputs, there are no interrdaionships
between sub-functions

» Hardware may be developed to execute each sub-function.

24

* Thetime required for these hardware units to perform their individua evauaionsis
usudly approximately equal.

Therefore, in a pipeine sysem a process is decomposed into a series of sequentia sub-
processes. Each sub-process is executed on a dedicated module called a stage or station. In
addition, since the logic that actualy peforms the sub-processes at each stage is without
memory, the presentation of data to each stage usualy demands some kind of storage (buffer)
to be included at either the beginning or end of each stage. This will help to synchronize the
overdl flow of data through out the pipe. Thus, within a pipeline severd partial operations can
be in progress concurrently, which will result in an increase in throughput. The concept of
pipdining has been implemented in sysem such as. Amdahl 470 V/8, CDC 7600, CDC
STAR-100, Cray , Fijitsu VP-200, Hitachi S-810, IBM 360-91, NEC SX-2, and TI-ASC.

Suppose we want to compute the dements x(i) defined as.

x()=A@)*Bi)i=1,2, .., N.
Asauming that the multiplier unit is a pipdine of 5 stages, then the overal execution time will be
[(N-1)+5]Dt (Dt is the delay time due to operation in a stage) provided that a constant flow of
data is dways available to the pipdine and the system can store the X(i)s as fast as they are
generated. Now, suppose one hasto cdculate

Y = S A(i) * B(i)

using the same pipe for addition. The formation of products will take (N+4) stage ddlays. Then
the pipeline is drained out and set for addition operations. Due to the data dependence,
additions are performed in severa passes. After the firgt pass, the pipdine yield éN/2uresults,
in the second pass it yields approximately éN/4uresults, ... etc. Hence the total execution time
would be 5+(é&N/2u- 1) + 5+ (é&N/40- 1) + ... +5+ (1-1) =4 logN + é&N/2u+ éN/4u+ ..= 4
logN+N stage delays. Hence, the total execution time is =2N+4logN+4 stage delays. A
seria process would have taken 5(2N-1)=10N-5 stage delays. As a result the speed up ratio
isequd to

_ _ 5(2n-1)
2nt4 log ,nt+4 1

Pipelines can be classfied according to their capabilities. A unifunction pipdine isthe one that
is capable of only one kind of operation. On the other hand, a multifunction pipeline isthe
one that is capable of handling severd different kinds of functiond evauation. A multifunctiond
pipeline can be further grouped into statically configured and dynamically configured
pipdine. This classfication is based on the frequency of changes in the functions they perform.
A concept known as the hazard is a mgor concern in a pipeine architecture. A hazard
prevents the pipeline from accepting data a the maximum rate that the staging clock might
support. Hazards are the result of structural and data dependencies. A structurd hazard is one
where two different pieces of data attempts to use the same stage a the same time (eg.,
collisons). Data dependent hazards occur when a pass through a stage is afunction of the data
vaue. For daticaly configured pipdines, the designers could predict precisely when a structurd
hazard might occur and hence they can schedule the pipeline so that the collisons do not occur.

» 5 forlargen

25

Data dependent rezards are clearly system and usage dependent and are not as amenable to
andytica study as are structural hazards.

Application of pipdining as a technique to improve the performance, and hence to
reduce the computation gap, can be traced in the evolution of the CDC-6600. In 1969 the
CDC-7600, an upgraded version of the CDC-6600 was introduced. The mgor innovation in
the CDC-7600 was tha dl but one of the functiona units of the CDC-6600 (i.e. divide unit)
were replaced with pipeined functional units. As a result, not only could al of the functiona
units operate concurrently, but most could also be operating on severa pieces of data at the
sametime. Following in thistrend, the CRAY -1 was introduced in 1976. Likethe CDC-7600
the CRAY -1 had pipdined functiond units. But it so had a more extensve register structure
that better complements the pipelined functiona unit design. In 1982 the CRAY X-MP was
redleased. This supercomputer incorporated multiple independent CPUs (up to four by 1984) in
its design to further increase the computer system's power. In 1985 Cray research introduced
the CRAY-2. While much of its performance increase was due to technologicd factors, it was
mainly a pipelined organization.

This trend in gpplication of pipelining scheme produces two postive Sde effects. Fird,
the design of the control unit was made easer because pipelined functiona units can accept a
new operand (or pair of operands) every clock cycle and thus are never considered "busy”.
Second, the pipelining scheme made the ALU ided for solving problems that are vector in
nature. It should be noted, however, that since the vector and scadar operations of this
computers paform manly large-scde arithmetic, some types of agorithms, such as sorting
agorithms, can not use the vector capabilities very effectively.

3.3.1 Hazard and Callison

Asdiscussed earlier, to utilize a pipdine effectively we have to provide stream of datato
the pipe. Othewise, hardware resources can not be overlapped and system throughput
decreases. In alinear pipeline the ddivery of the data to the pipe (e.g., Latency) can be easily
synchronized with the time delay of the dowest stage. However, in afeedback pipe because of
the interna conflicts, due to the collisons among different data set, such a smple synchronization
scheme can not be employed. Though the scheduling dgorithm for a generdized pipeine is NP
complete, but under some gtrict practicd restrictions one could develop an optimum solution for
such ahard problem. The set of redtrictive conditions well applicable to the practica operations
are

* Theexecution time of dl sagesisamultiple of some basic unit.

* Oncean activaion is Sarted, itstime pattern of stage utilization is fixed and defined

The first condition can be easly enforced and the second condition excludes the class of
dynamic pipdines. The time-pattern of stage utilization can be defined by a two dimensiond
table called reservation table, in which rows represent stages of the pipdine and columns
represent the time dots. The reservation table shows at each time instant which stage of pipeline
in this table is in used by the computation. A reservation table represents exactly one pattern
taken by one input data set. A mark in the entry (i,j) of the reservation table indicates that for
that pipeline Sage i is needed j time units after itsinitiation. Therefore, the compute time of the
table is defined by the number of columnsin the reservation table. Existence of severd marksin
one row represents the fact that the corresponding stage is utilized severd times during one

26

initiation. Moreover, consecutive marks in a row indicate that the execution of the stage is a
multiple of basic time unit.

Figure 8 depicts a pipdine and its reservation table. Note that the pipeline has seven
stages and a compute time of 9. It should be noted that each operation with respect to a
pipdine sysem has a unique reservation table. However, a reservetion table might represent
severd pipdines.

According to the definition of the reservation table, then one can make the following
conclusons. A pipdine is daticaly configured if the same resarvation table is used by dl
activaions. A multifuntion pipeine has severd reservation tables. Findly, in adynamic pipdine
the computation does not have a predetermined reservation table. From Figure 8 it can be
concluded that two initiations which are four time units gpart will collide & Sage S,. Moreover,
no collison will occur if two initiations are two time units apart. Therefore, one hasto design a
control mechanism which dlows the data to be delivered in a time pattern which prevents any
possible collisons in the future with the previoudy initisted computations.

According to our discusson so far we can conclude that, two computations should not
be initiated if they are | time units gpart and | is the distance between two marks in the same
row. Such atime disgtance is cdled a forbidden latency. From the definition of forbidden
latency, then one can determine the forbidden list (L) which is the collection of al the
forbidden latenciesin apipdine.

L=(,1, ... 1) (15)
the collision vector (C) in then defined as abinary vector of length K

C=(C C....C,C) where C =1 iff el
C =0 otherwise (16)

The bit pattern of a collison vector determines the forbidden latencies of the pipeine.
Therefore, by invedtigating such a pattern one can initiate two computations without any
calligons. For the pipeline of Figure 8 then,

L =(1,4) and C = (1001)
As areault, a new collison free computation can be started only after 2 and 3 time units after
the initiation of the firs computation. A smple logica shift register can be used to control the
initiation of a new computation. Upon the activation of the pipdine for the first computation, the
calligon vector is loaded into the shift register. The regider is shifted right one postion a a
time. A collison free computation is dlowed at time indant t+i if and only if abit O isbeing
shifted out of the register after i shiftsfrom thetimet.

After the initiation of the second computation then the collective collison vector of the
pipdine for two initiations should be caculated. This collective collison vectors should then be
investigated to determine the initiation of the next computetion. The collective collison vector is
caculated by oring the contents of the shift register with the initid collison vector. In generd,
after initiation of a new operation, the contents of the shift register should be modified to
represent the overdl status of the pipeline.

27

1 pass
#ILI—H S] s s IJ
Ot

t t; t, ts {, 15 ts t; ts
S X
S X X
S X X
S, X X
S, X
S X
S X

Figure8. An Exampleof a pipeline and its Reservation Table.

Asfar as Figure 8 is concerned, suppose the second computation is initiated after two-
time units, the content of the shift regider is

C. = C, U C=(0010) U (1001) = 1011.

Now, the third computation can be initiated a time 3, this gives a collison vector of:

(0001) U (1001) = 1011
which isatrangtion to the initid Sate.

This gives rise to the idea of a state graph, representing al the collison free trangtions
in the pipeline. Cydes in the date diagram correspond to the possible cycles of collision free
initiations of the computations. Every cycle has an aver age latency which isthe average of the
latencies of its condituent edges. An optimum cycle is the one that has the minimum average
latency. After determination of the proper optimum cycle then one can design a smple finite
gtate machine which can control the new collison free initiation of new computations.

4. PROGRAMMING CONTROL FLOW COMPUTERS

In the preceding sections we examined the architectures of some pipelined and parale
computers. Through advancement in technology and architectura innovations, each system is
characterized by a very high pesk processing rate for numerical computation. However, only a
very limited subset of instructions available on these computers can execute a these peak rates.
Since most non-trivia applications use a wide mix of ingructions, the processing rates of these
applications are often much less than the theoretical performance of the syslem

From the programming point of view, we may date tha a supercomputer is merely a
computer with some added features dlowing it, under certain conditions, to perform groups of
operations a high speed. The key to designing programs that execute quickly on these
machines is to learn how to utilize the resources of the supercomputer effectively for a given

28

goplication. This section surveys some techniques to improve the resource utilization of the
aforementioned organizations.

41 Array Processor

An array processor can be classified as having a shared memory (i.e., BSP) or private
(i.e, ILLIAC IV) memory organization. In a shared memory organization each processing
element can access any memory module, while in a private memory architecture each processor
has its own private memory module. In a shared memory organization (as long as array
elements are didributed uniformly across a collection of prime memory modules) most common
array operations can be performed without any memory contention. Since the representation of
vector indructions in a shared memory array processor is Smilar to that in a piplined processor,
much of the discusson that gpplies to pipeined organizations applies to this organization as well.
For this reason, only private memory modes are discussed in this section and the word "array
processor” will refer to thismode of computation.

In generd, a private memory array processor has the following features:

* It contains a finite number of processors (naturd paraldism) that execute the same

operation in lockstep on different operands.

» Each processor in the array has a private memory which it can access very quickly.

* The processors in the aray can exchange information via an interconnection

network which has a particdar topology. While only topologicad neighbors can
directly communicate with each other, any two processors can communicate
indirectly by passng vaues through a finite number of intermediate processors.

* At ay given moment, al data passing through the interconnection network is

traveling in the same topologica direction.

Computationaly, an aray processor agorithm should try to perform the same
operations on many independent sets of data. Often during the course of an agorithm, though,
processors need the results calculated in other processors before another operation can be
performed. This requires that data be shifted through the interconnection network. The
communication complexity of an agorithm is defined as the number of data routings needed on a
particular array processor to implement the data flow between processors that is specified by
the agorithm. Since a data route operation often takes the same amount of time as other
processors operations, the communication complexity of an agorithm cannot be ignored.

To reduce the communication complexity of an dgorithm, communication should be
limited to processors that are as topologically close together as possible. Idedlly, processors
should communicate only with direct topologica neighbors. This implies that the optima
agorithm for an array processor is a strong function of the topology of the interconnection
network. For example, an array processor with an interconnection network that can efficiently
implement a tree-like communication network (such as hypercube interconnection network) can
add N numbers in O(logN) time using a tree structured cascade sum agorithm. However, an
optima summing agorithm for a mesh connected array processor takes O(sgrt(N)) time and has
asubgtantidly different data flow than atree structured cascade sum agorithm.

In many casesit is not possible to digtribute data in the processor memories such that al
processors need to communicate with their direct topologica neighbors. For these Stuations, it
may be beneficid to break up the processors into severd clusters where the processorsin each
cluster are topologically close together. Data is distributed among al the processors such that

29

the mgority of communication occurs between the processor in a cluster and not between
different dlusters. By localizing most of the communication to ingde the clusters, the overdl
communication cost of an agorithm might be reduced.

In generd, it is not wise to have an dgorithm where any processor can be connected to
any other processor. Such a connection scheme requires each piece of data that is sent through
the interconnection network to have a processor destination address associated with it. The
routing algorithm used in the array processor would have to examine the degtination address of
that piece of data and determine where to route it so that it eventualy arrives at its destination.
For most array processors, the overhead for such a routing agorithm would be sdif-defegting.
However, on the Connection Machine this routing adgorithm is performed in hardware
concurrently with the instruction execution of the processors. This makes the implementation of
any logica connection structure much more feasible than in most other array processors, which
do not have such routing agorithms implemented in hardware.

4.2 Multiprocessor Systems

There are three generd classes of parale agorithms that can be applied towards
multiprocessor systems. They are synchronized dgorithms, asynchronous agorithms, and semi-
synchronized dgorithms.

A synchronized agorithm is conceptudly the easiest of the three classes of dgorithmsto
understand. In a synchronized agorithm, a processor must wait for a synchronization sgnd
from another processor before it can execute a certain portion of its program. Because process
synchronization is a cogly operation, synchronization cals should be avoided as much as
possble. Thisintroduces the concept of granularity to synchronized agorithms. Granularity can
be defined as the time spent executing concurrent code between processor synchronizations.
To reduce the tota percentage of time spent synchronizing the processors, the grain size of an
agorithm should be made as large as possible. The amount of time that characterizes a large
grain gpplication varies between different computers. For example, agranularity on the order of
milliseconds is congdered large for the CRAY X-MP. Sometimes, however, it is necessary to
execute smdl grain dgorithms on a multiprocessor. In such cases, the direct use of hardware
indead of operating systems cals for synchronizations can sgnificantly reduce the execution
times of these dgorithms. The advantage of synchronized agorithms is thet they are rdatively
easy to design and andyze.

Synchronized dgorithms can be further subdivided into two types of dgorithms:
partitioned and pipdined agorithms. In a partitioned agorithm, a task is divided into severd
subtasks, each hopefully of the same sze. Each processor s assgned one or more of the
subtasks to execute, and dl of the processors begin executing their subtasks at the same time.
Synchronization points are inserted ingde a subtask only when interactions between subtasks
are needed. Whenever a processor finishes executing its subtask(s), it synchronizes itsdf with
the remaining processors. After the synchronization, the results which were generated by the
individua subtasks can then be combined to solve the origind problem.

A pipdined dgorithm, like its hardware counterpart, conssts of severa independent
stages (subtasks) where each stage accepts input data from the preceding stage in the pipe and
sends its output to the next stage of the pipeline. The input to the dgorithm is given to the firgt
stage of the pipdine, and the output of the last stage is the output of the dgorithm. Each stagein
the pipeline is assigned to a processor, and al the processors have to be synchronized before

30

data is passed between the stages. Pipdined agorithms are sometimes caled macro-pipdined
agorithmsto diginguish them from hardware pipdining.

The second generd class of multiprocessor dgorithms is the asynchronous dgorithm. In
this type of agorithm, severd processors are cooperating to solve a particular problem.
However, communication between processes is accomplished by accessng globa data and
shared variables ingtead of processor synchronization. Each process works in stages. At the
beginning of a stage, the process reads data from the globa variables and determines whether
the desired god of the algorithm has been reached. If nat, it caculates some new values based
on the current vaues found in the globa variadbles. These newly cdculated vdues are usudly
dored into the globa variables, but even this action may depend on the current values of other
globa varidbles. Since updating globd variables is dmost dways performed in critical sections,
processor idling occurs only when two or more processes try to update the same globa variable
a the sametime. Thisupdating takes a smal amount of time, so even an idled processor would
not be stopped for long. After updating the globa variables, the process then repests the stage.
Note that the computations performed in a stage are designed to bring the whole system closer
to the solution of the problem.

Asynchronous dgorithms have severd advantages over synchronous dgorithms. Firg,
the large synchronization overhead found in synchronous dagorithms is nonrexigent in
asynchronous adgorithms. In addition, asynchronous agorithms are more reliable than their
synchronous counterparts Snce it is guaranteed that a least one nonblocked processor will be
working toward the solution of the problem. Another benefit of asynchronous dgorithmsis thet
they can take advantage of fluctuations in processor speeds due to factors such as memory
conflicts, etc. Asynchronous agorithms do have some tradeoffs, though. If processor speeds
do not fluctuate much in the system, processors which perform the same computations in their
stages may end up redundantly performing the same operations on the globd data The datain
the globa variables aso become inconsistent due to severa asynchronous processes updating
them at the same time. This nakes it hard to andyze how fast an asynchronous agorithm
converges in on a solution. Despite these disadvantages, asynchronous agorithms can be
competitive with synchronous agorithms, especidly if the system contains many processors and
the fluctuations in speed of these processors are large.

The third dass of multiprocessor dgorithms is the semi-synchronized agorithms. This
type of dgorithm may be thought of as an asynchronous agorithm with an additiona fegture: if
one processor gets "too far in front of" or "too close to” the caculations of another processor, it
is blocked (synchronized) until the blocking condition no longer gpplies. Under most
circumstances this blocking rarely occurs; thus the dgorithm has the asynchronous dgorithm's
advantage of a low synchronization overhead. The exact blocking conditions for a semi-
synchronized agorithm are determined by the specia features of the problem to be solved.
These blocking conditions are chosen to guarantee favorable rates of convergence for the
dgorithm, a festure not dways possble in pure asynchronous agorithms. Thus semi-
synchronous agorithms have the advantages of both synchronous and asynchronous agorithms.
Unfortunately, favorable blocking conditions for a particular problem are not dways easy to
determine,

4.3 Pipdine Processors

31

Pipdined processors used pipdined functiond units to perform operations on large
vectors of data much quicker than could be done using scdar operations. Basicdly, a vector
indruction can be thought of as a hardware implemented DO loop which takes one or two
independent input vectors, performs an operation on them, and produces a single output vector.
For example, the software loop

DOI =1, 100
A() =A() +B(1+1)
ENDDO

can be represented by a single vector ingtruction

A(1:100) = A(1:00) + B(2:101)
The key to designing high performance agorithms on pipelined processors is to utilize these
vector operations as efficiently as possble. It is important to recognize that pipdined
supercomputers are Smilar to conventiona computers in many respects. Thus many of the rules
that can help to speed up programs for conventional systems may be generdized to pipdined
processors. One such rule is that values often used in a program should be kept in internd
registers for quick access. For pipdined supercomputers with vector registers, an additiona
rule can be gated: perform as many operations on an input vector as possible before storing the
result vector back in the main memory. Note, however, that these two rules are probably more
suitable for a compiler to implement since mogt dgorithms are not initidly designed with register
usage in mind.

Whenever a vector operation is executed, some overhead time is needed to initialy fill
the functiona pipdine being used. Thus the totad execution time T of a vector ingruction
operating on an N-dement vector is

T=[s+(N-1)] Dt

where s * Dt is the artup time of the pipe. Since the startup time is amortized over the N
elements of the vector, the best average processing rates occur for the largest vaues of N.
Depending upon the architecture of the computer, however, the largest value for N may have
some limitations placed upon it. For this reason two classes of pipelined computers, memory-
to-memory (i.e. STAR-100) and register-to-register (i.e. CRAY-1) pipelined computers, are
discussed separately. Memory-to-memory pipeined supercomputers have virtudly no limit
placed upon N. Thus the size of the vectors used in an dgorithm should be aslarge as possible
to achieve the highest processing rates. There are several basic ways to increase the vector Size
in an agorithm. Since only inner loops can be vectorized, the firgt is to make the innermost loop
of a multiple-nested loop as large as possble. This can sometimes be accomplished by
changing the nesting order of the loop. For example, the code fragment

DOI=1,100

A(1,1:60) =0

ENDDO
can be rewritten as

DO J=1,60

A(1:1000) =0

ENDDO
ance both forms are functiondly equivdent. Note that the vector Sze of the innermost loop is
now 100 instead of 60. The second method is to convert multi-dimensond arrays into one-
dimensond arrays, if possble. For example, the same code fragment above can be written as

32

A(1:6000) =0

without changing its meaning (this assumes the dements of the two-dimensiond array are stored
contiguoudy in memory). The third technique is to rearrange data into unconventiona forms o
that several smadler vectors may be combined into a single larger vector. For example,
successive over-relaxaion (SOR) methods for solving finite differential equations gppear to be
nor+vectorizable due to an abundance of short vectors. However, as mentioned in, clever
reordering of the grid blocks used in SOR techniques can subgtantidly increase the length of
vectorsin the dgorithm.

In a regider-to-regider pipeined computer, the maximum vector sSze that can be
processed is limited by the Size of the vector registers, Nyg. The Sze of Nyg isrddively smdl
(e.0. Nyr = 64 for the CRAY-1) and for most supercomputer applications vectors of sze N >
Nyvr need to be processed. In this case, the vector must be sectioned into several smaler
vectors of length Nyr plus perhaps a find remainder vector with a length less than Nyg. The
best average execution time occurs whenever N is a multiple of Nyg. In some instances, the
nesting of loops can be rearranged to make the vector length of the innermost loop amultiple of
Nvr. In many ingtances, though, one of theindices in anested loop sructure is not amultiple of
Nvr. Inthese dtuations, the totd startup time must be checked and the case with the smadlest
overdl gartup time should then be chosen. Findly, as mentioned for memory-to-memory
computers, multidimensiond array should be collgpsed to one-dimensiond arrays if possble.

All pipdined computers, whether memory-to-memory or register-to-register, use an
interleaved main memory. By storing sequentiad dements of a vector in different memory banks,
consecutive eements of a vector can be accessed quickly. Almogt dl pipelined computers
alow accesses to vectors with any congtant stride between the elements. However, some
constant strides can cause the same memory bank to be accessed before its memory cycleis
complete. This causes memory conflicts and dows the performance of the computer. For
example, accessing every eighth element of a vector on a CRAY-1, which has 16 interleaved
memory banks, can cause memory conflicts. Thus, the memory layout of datain an agorithm
should be designed to minimize memory bank conflicts. This can sometimes be done by adding
dummy rows and columns to an array. Random accesses to the main memory should adso be
avoided.

Another feature shared by dl pipdined computers is the ability to use a bit vector, dso
caled a control vector, to control the execution of a vector operation. A control vector for an
N-element vector operation is an N-bit vector where the i" bit of the vector is set if the i pair
of elements in the input vectors are to be operated upon. Control vectors can be used to
vectorize conditiona statements within aDO loop. For example, the code

DOI=164

IF (A().GT.0) A(l)=A(l) +B(l)

ENDDO
can be vectorized into

L(1:64) = A(1:64).GT.0

WHERE L(I) A(1:64) = A(1:64) + B(1.64)
Note, however, that whenever a control vector is used to control a vector operation, dl
elements of the input vector must be fetched even if an operation will not be performed upon
them. Thus if a control vector is rdatively soarse then much of the time spent during a
controlled vector operation is wasted in fetching operands that are not needed. One way to

33

gpeed up the performance of a conditiona vector operation isto collect dl of the input dements
that are going to be operated upon into a sngle, smaler vector, performing the desired
operations upon this smaler vector, and then returning the output elements to their proper
pogitionsin the larger vector.

Finaly, most DO loops found in agorithms contain more than one array assgnment
datement. There are many techniques used to transform multi- statement DO loopsinto a series
of vector statements, most of which can be used by vectorizing compilers. It should be noted
that among the aforementioned techniques to increase the performance of the agorithms for
pipelined organizations, some can be used when designing an dgorithm, while others can be
used by an intelligent compiler to vectorize an dready existing program.

4.4
1

2)

3)

4)

Self Test Problems#2
Compare and Contrast:

a) Sngle-bit and Multi-bit array processor organizations against each other.

b) Globa-memory and Dedicated-memory array processor organizations against
each other.

True or fase: In a database environment associative memory (associative processing)
can improve the memory utilization (justify your answer).

The following pipdine organization is assumed:

whee di=Dt 0=i=6and d; = 2Dt for i = 3. Determine the lis of the forbidden
latencies, the collison vector, and the Sate diagram.

For a fully pardle word organized associative memory, write an dgorithm to find the
greatest value gtored in the memory. Assume numbers are dl positive and each word
contains one number.

35

5. ISSUESIN CONTROL FLOW CONCURRENT SYSTEMS
51 Paralldism vs. Pipdlining

The theme of this section is two-fold: Firg, the genera characteridtics of pardld and
pipeline systems are compared. Our comparison is intended to clarify the existing ambiguity
between pipdining and paralelism. However, one can extend such a generd discussion for
other classes of concurrent systems. Second, the shortcomings of the conventional concurrent
systems are addressed to motivate our discussion in the next section of thisarticle.

Based on our earlier discussion, both pardldism and pipdining attempt to increase the
performance of some functions by increasing the number of smultaneoudy operating hardware
modules. For a conveniently designed module to perform some generic function, ether
technique can be used to derive a new design running up to N times faster. However,
pardlelism is achieved through the replication of the basic tardware unit N times, with dl
replicated units running Smultaneoudy, while pipdining is the result of staging the hardware unit
into a sequence of N subunits. The difference between pipdining and pardldism adso shows up
in memory organization and kendwidth, internal interconnection of modules, and control. For
example, in a pipdine syssem, memory organization should support a constant and smooth flow
of datato the pipdine. On the other hand, in a parald system, accesses to the memory system
are not smooth, and each processor could initiste an access to any memory module. This
implies a complex and dynamic interconnection network between processng modules and
memory modules. Such a network should provide smultaneous accesses to the memory
modules where one access does not block other accesses to the memory modules. Since, a
pipeline can not be broken up into an arbitrary number of stages, one can conclude that paralé
systems ae more expandable than pipdine sysems. Rdiahility is another feature which
separates these two techniques. In generd, pardlelism offers a more rdigble sysem. This is
due to the fact thet in a pardld system, the task of any faulty module can be distributed among
other replicated modules; this can not be done in a pipeline system. Architecturd andyss of the
s0 caled supercomputers reveds a trend in the design of concurrent systems, which can be
classfied as pardld pipdined systems.

5.2 Shortcomings of the Conventional Concurrent Systems

The class of concurrent systems and its successor (e.g., supercomputers) have shown
ther effectiveness in many red time gpplications. These computers by their very naure are
more complex than their predecessor architectures. This complexity is mainly due to the
smultaneous competition/cooperation of several modules over common resources, which leads
to more complexity and sophigtication at the:

i) Control dtructure, in order to manage the flow of data and operations within the
system’'s modules.

ii) Interconnection network, to dlow smultaneous interactions among the sysem's
modules.
While the growth in complexity could result in higher codt, lower resource utilization, and
performance degradation, the mgor disadvantage of these systems is associated with two
interrelated factors, namey specialization and the semantic gap.

36

In contrast to the conventiona von-Neumann architectures, concurrent systems are
gpecidized architectures. For example, while concurrent systems are superior in handling
computation bound applications, they offer low performance in 1/O bound applications such as
database systems. In addition, these machines demand specific domain(s) to guarantee the
performance improvement. Studies on ILLIAC-IV type architecture have shown that the
dlocation of data within the memory modules has dradtic effect on the performance.
Experiences on the CRAY computers have proven that vector operations for smal vectors
demonstrate performance degradation over scaar operations. These examples reflect the fact
that conventiona concurrent systems require specidized and sometimes different programming
kills for efficient resource utilization. As a reult, in a multi-functiond unit sysem a mixed
sequence of ingructions increases the performance, while in a pipdine sysem a uniform
sequence of ingructions increases the performance. Therefore, we can conclude that
conventiona concurrent systems introduce a wider semantic gap than conventional systems in
handling generd purpose gpplications. Thus, they require an extensive software support to
determine the inherent parallelism in an gpplication program.

The performance improvement of concurrent systems is greetly dependent on the
proper utilization of the hardware resources. However, it has been shown in practice that in
many applications such a performance improvement has not been achieved. This problem is
contributed to the: i) lack of suitable "pardld” agorithms for various gpplications, ii) lack of
auiteble "pardld” high levd languages which enables the programmer to express the inherent
paraldism explicitly in the problem being encoded, iii) lack of suitable compilation techniques to
detect embedded "pardldism” in a sequentia program, and iv) lack of suitable control
agorithms to digtribute hardware resources among concurrently running programs.

High level languages rooted in the 1950's have been devel oped as programming toolsto
increase the machine's independence and productivity. Naturdly, these languages reflect the
structure of the conventiond uni-processor systems - i.e, the existence of a primitive set of
arithmetic operations which are carried out sequentiadly on data stored in some form of memory
device. However, for a concurrent system there is a need to express the "concurrency” in an
agorithm for pardle execution. This god can be achieved either through the definition of new
pardld languages or the addition of pardld condructs in the definition of the conventiona
sequentid high level languages. Since the introduction of concurrent systems, there has been a
surge to design and develop pardld languages to fecilitate the utilization and performance of
these computers. The so cdled Pardld Fortran (P-FOR) proposed for PEPE architecture,
TRANQUIL for ILLIAC IV, and APPLE for STARAN are among the pioneer efforts in this
area

Generdion of pardldian from sequentid congructs (eg., vectorization) requires an
extensve andysis of the sequentid programs. This analys's must check that the ordering isin
fact arbitrary and that there are no sequential dependencies in the process. This gpproach is a
means to increase the adaptability of the pardld systems and to protect the previous
investments of the users. Naturdly, this direction requires the development of sophisticated
compilers (e.g. vectoring compilers) to generate pardld machine ingtructions from sequences of
operations without violating the program semantics. This means more sophigticated compilation
techniques, more complex operating systems, and more advanced program development tools.
The growth of the software overhead and its by-products in the concurrent systems is the
source of our discusson in the upcoming units.

37

Glossary

Address accessible
memory

Array Processors

Associative Memory

Associative Processor

CDC
CMOS

Computation Gap

Concurrency
Content addressable
Memory

Control flow modd of
computation

DAP

Data flow computation

Data dependent hazard

ENIAC

Greedy Cycle

38

A storage unit in which an storage element is accessed by
means of its address.

A collection of synchronous processng dements under the
control of asingle contral unit.

A memory organization in which storage elements are accessed
in pardld on the basis of data contents.

An asociative memory cgpable of performing arithmetic and
logic operations.

Control Data Corporation.

Complementary Metd Oxide Silicon.

The difference between computationd power demanded by
gpplication areas and the computation power of the computer
systems.

Ability of the computer hardware to smultaneoudy execute
many actions & any instant.

See asociative memory.

A computation modd in which the execution of an
ingtruction activates the execution of the next ingtruction.
Digtributed Array Processor.

A computation mode in which the avalability of the data
activates the execution of the next instruction(s).

A pass through a pipdine stage is afunction of the data vaue.
A pioneer computer organization (1948).

For a pipdine organization, a greedy cycle is a cycle which
dlows the new activation at the earliest possible instant.

MIMD

MI1SD

Multiprocessor system

Parallelism

RAM
Pipelining

Semantic gap

SIMD
SISD

Structural hazard

Tl

Q-search associative

ULS
VLS

WSl

Multiple Ingtruction stream, Multiple Data stream.
Multiple Ingruction stream, Single Data stream.

A collection of asynchronous processing units under the control
of ashared operating system.

Ability to achieve concurrency via duplication/replication of
hardware units.

Random Access Memory.
Ability to achieve concurency via staging the hardware units.

The difference between the festures in the high leve languages
and the hardware features of the underlying architecture.

Single Indruction stream, Multiple Data stream.
Single Indruction stream, Single Data stream.

Is the one when two different pieces of data attempt to use the
same pipdine stage a the sametime.

Texas Ingrument

An associdive memory organization which dlows memory
gements to be accessed based on Qa {=,<>==0}
relationship.

Ultra Large Scae Integration.

Very Large Scae Integration.

Wafer Scale Integration.

39

