Distributed Databases and
Client-Server Architecture

In this chapter we turn our attention to distributed databases (DDBs), distributed database
management systems (DDBMSs), and how the client-server architecture is used as a plat-
form for database application development. The DDB technology emerged as a merger of
two technologies: (1) database technology, and (2) network and data communication
technology. The latter has made tremendous strides in terms of wired and wireless tech-
nologies—from satellite and cellular communications and Metropolitan Area Networks
(MANs) to the standardization of protocols like Ethernet, T CP/IP, and the Asynchronous
Transfer Mode (ATM) as well as the explosion of the Internet, including the newly started
Internet-2 development. While early databases moved toward centralization and resulted
in monolithic gigantic databases in the seventies and early eighties, the trend reversed
toward more decentralization and autonomy of processing in the late eighties. With
advances in distributed processing and distributed computing that occurred in the operat-
ing systems arena, the database research community did considerable work to address the
issues of data distribution, distributed query and transaction processing, distributed data-
base metadata management, and other topics, and developed many research prototypes.
However, a full-scale comprehensive DDBMS that implements the functionality and tech-
niques proposed in DDB research never emerged as a commercially viable product. Most
major vendors redirected their efforts from developing a “pure” DDBMS product into
developing systems based on client-server, or toward developing active heterogeneous
DBMSs.

765

Organizations, howevet, have been very Interested in the GECeREEyin UL protess-—
ing (at the system level) while achieving an integration of the information resources (at
the logical level) within their geographically distributed systems of databases, applica-
tions, and users. Coupled with the advances in communications, there is now a general
endorsement of the client-server approach to application development, which assumes
many of the DDB issues.

In this chapter we discuss both distributed databases and client-server architectures, !
in the development of database technology that is closely tied to advances in communi-
cations and network technology. Details of the latter are outside our scope; the reader is
referred to a series of texts on data communications (see the Selected Bibliography at the
end of this chapter).

Section 24.1 introduces distributed database management and related concepts.
Detailed issues of distributed database design, involving fragmenting of data and distribut-
ing it over multiple sites with possible replication, are discussed in Section 24.2. Section
243 introduces different types of distributed database systems, including federated and
multidatabase systems and highlights the problems of heterogeneity and the needs of
autonomy in federated database systems, which will dominate for years to come. Sections
24 4 and 24.5 introduce distributed database query and transaction processing techniques, .
respectively. Section 24.6 discusses how the client-server architectural concepts are
related to distributed databases. Section 24.7 elaborates on future issues in client-server
architectures. Section 24.8 discusses distributed database features of the Oracle RDBMS.

For a short introduction to the topic, only sections 24.1, 24.3, and 24.6 may be covered.

2.1 Distributed Database Concepts

Distributed databases bring the advantages of distributed computing to the database man-
agement domain. A distributed computing system consists of a number of processing ele-
ments, not necessarily homogeneous, that are interconnected by a computer network,
and that cooperate in performing certain assigned tasks. As a general goal, distributed
computing systems partition a big, unmanageable problem into smaller pieces and solve it
efficiently in a coordinated manner. The economic viability of this approach stems from
two reasons: (1) more computer power is harnessed to solve a complex task, and (2) each
autonomous processing element can be managed independently and develop its own
applications.

We can define a distributed database (DDB) as a collection of multiple logically
interrelated databases distributed over a computer network, and a distributed database
management system (DDBMS) as a software system that manages a distributed database
while making the distribution transparent to the user.? A collection of files stored at dif-
ferent nodes of a network and the maintaining of inter relationships among them via
hyperlinks has become a common organization on the Internet, with files of Web pages.

1. The reader should review the introduction to client-server architecture in Section 17.1.

2. This definition and some of the discussion in this section is based on Ozsu and Valduriez (1999).

2h.1 Distributed Database Concepts

The common functions of database management, including uniform query processing and
transaction processing, do not apply to this scenario vet. The technology is, however,
moving in a direction such that distributed World Wide Web (WWW) databases will
become a reality in the near future. We shall discuss issues of accessing databases on the
Web in Section 27.1 and mobile and intermittently connected databases in Section 27.3.
None of those qualify as DDB by the definition given earlier.

24.1.1 Parallel Versus Distributed Technology

Turning our attention to system architectures, there are two main types of multiprocessor
system architectures that are commonplace:

® Shared memory (tightly coupled) architecture: Multiple processors share secondary
(disk) storage and also share primary memory.

® Shared disk (loosely coupled) architecture: Multiple processors share secondary (disk)
storage but each has their own primary memoty.

These architectures enable processors to communicate without the overhead of
exchanging messages over a network.? Database management systems developed using the
above types of architectures are termed parallel database management systems rather than
DDBMS, since they utilize parallel processor technology. Another type of multiprocessor
architecture is called shared nothing architecture. In this architecture, every processor has
its own primary and secondary (disk) memory, no common memory exists, and the proces-
sots communicate over a high-speed interconnection network (bus or switch). Although
the shared nothing architecture resembles a distributed database computing environment,
major differences exist in the mode of operation. In shared nothing multiprocessor systems,
there is symmetry and homogeneity of nodes; this is not true of the distributed database
environment where heterogeneity of hardware and operating system at each node is very
common. Shared nothing architecture is also considered as an environment for parallel
databases. Figure 24.1 contrasts these different architectures,

24.1.2 Advantages of Distributed Databases

Distributed database management has been proposed for various reasons ranging from
organizational decentralization and economical processing to greater autonomy. We high-
light some of these advantages here.

1. Management of distributed data with different levels of transparency: Ideally, a DBMS
should be distribution transparent in the sense of hiding the details of where
each file (table, relation) is physically stored within the system. Consider the
company database in Figure 7.5 that we have been discussing throughout the
book. The empLovee, PrRoJECT, and works_on tables may be fragmented horizontally

3. If both primary and secondary memories are shared, the architecture is also known as shared
everything architecture.

767

768 Chapter 24 / Distributed Databases and Client-Server Architecture

(a)
Computer System 1 Computer System 2
r Switch J
Computer System n
(k) Central
Site
(Chicago)
Site Site
(San Francisco) (New York)
Communications
Network
Site Site
(Los Angeles) (Atlanta)
(©

Communications
Network

Figure 2.1 Some different database system architectures. (a) Shared nothing
architecture. (b) A networked architecture with a centralized database
at one of the sites. (c) A truly distributed database architecture.

4.1 Distributed Database Concepts

(that is, into sets of rows, as we shall discuss in Section 24.2) and stored with pos-
sible replication as shown in Figure 24.2. The following types of transparencies
are possible:

e Distribution or network transparency: This refets to freedom for the user from the
operational details of the network. It may be divided into location transpat-
ency and naming transparency. Location transparency refers to the fact that
the command used to perform a task is independent of the location of data and
the location of the system where the command was issued. Naming transpar-
ency implies that once a name is specified, the named objects can be accessed
unambiguously without additional specification.

® Replication transparency: As we show in Figure 24.2, copies of data may be
stored at multiple sites for better availability, performance, and reliability. Rep-
lication transparency makes the user unaware of the existence of copies.

® Fragmentation transparency: Two types of fragmentation are possible. Horizon-
tal fragmentation distributes a relation into sets of tuples (rows). Vertical frag-
mentation distributes a relation into subrelations where each subrelation is
defined by a subset of the columns of the original relation. A global query by
the user must be transformed into several fragment queries. Fragmentation
transparency makes the user unaware of the existence of fragments.

2. Increased reliability and availability: These are two of the most common potential
advantages cited for distributed databases. Reliability is broadly defined as the
probability that a system is running (not down) at a certain time point, whereas

EMPLOYEES—-San Francisco EMPLOVEES-AIl

and Los Angeles PROJECTS— 2“
PROJECTS—- San Francisco WORKS_ON-All
WORKS_ON-San Francisco Chicago

Employees (headquarters)

EMPLOYEES—-New York

NewYork | pROJECTS- Al

WORKS_ON- New York
Employees

San Francisco

Communications

Network

EMPLOYEES-Atlanta

Atlanta PROJECTS- Atlanta

WORKS_ON- Atlanta
Employees

Los Angeles

EMPLOYEES-Los Angeles

PROJECTS- Los Angeles and
San Francisco

WORKS_ON-Los Angeles
Employees

Figure 24.2 Data distribution and replication among distributed databases

769

770

Chapter 24 / Distributed Databases and (lient-Server Architecture

availability is the probability that the system is continuously available during a
time interval. When the data and DBMS software are distributed over several sites,
one site may fail while other sites continue to operate. Only the data and software
that exist at the failed site cannot be accessed. This improves both reliability and
availability. Further improvement is achieved by judiciously replicating data and
software at.more than one site. In a centralized system, failure at a single site
makes the whole system unavailable to all users. In a distributed database, some of
the data may be unreachable, but users may still be able to access other parts of
the database.

3. Improved performance: A distributed DBMS fragments the database by keeping the
data closer to where it is needed most. Data localization reduces the contention
for CPU and 1/O services and simultaneously reduces access delays involved in
wide area networks. When a large Jdatabase is distributed over multiple sites,
smaller databases exist at each site. As a result, local queries and transactions
accessing data at a single site have better performance because of the smaller local
databases. In addition, each site has a smaller number of transactions executing
than if all transactions are submitted to a single centralized database. Moreover,
interquety and intraquery parallelism can be achieved by executing multiple que-
ries at different sites, or by breaking up a query into a number of subqueries that
execute in parallel. This contributes to improved performance.

4. Easier expansion: In a distributed environment, expansion of the system in terms
of adding more data, increasing database sizes, or adding more processors is much
easier.

The transparencies we discussed in (1) above lead to a compromise between ease of
use and the overhead cost of providing transparency. Total transparency provides the glo-
bal user with a view of the entire DDBS as if it is a single centralized system. Transparency
is provided as a complement to autonomy, which gives the users tighter control over their
own local databases. Transparency features may be implemented as a part of the user lan-
guage, which may translate the required services into appropriate operations. In addition,
transparency impacts the features that must be provided by the operating system and the
DBMS.

24.1.3 Additional Functions of Distributed Databases

Distribution leads to increased complexity in the system design and implementation. To
achieve the potential advantages listed previously, the DDBMS software must be able to
provide the following functions in addition to those of a centralized DBMS:

o Keeping track of data: The ability to keep track of the data distribution, fragmenta-
tion, and replication by expanding the DDBMS catalog. '

o Distributed query processing: The ability to access remote sites and transmit queries
and data among the various sites via a communication network.

e Distributed transaction management: The ability to devise execution strategies for que-

ries and transactions that access data from more than one site and to synchronize the
access to distributed data and maintain integrity of the overall database.

2.2 Data Fragmentation, Replication, and Allocation Techniques

® Replicated data management: The ability to decide which copy of a replicated data
item to access and to maintain the consistency of copies of a replicated data item.

® Distributed database recovery: The ability to recover from individual site crashes and
from new types of failures such as the failure of a communication links.

® Security: Distributed transactions must be executed with the proper management of
the security of the data and the authorization/access privileges of users.

® Distributed directory (catalog) management: A directory contains information (meta-
data) about data in the database. The directory may be global for the entire DDB, or
local for each site. The placement and distribution of the directory are design and
policy issues.

These functions themselves increase the complexity of a DDBMS over a centralized
DBMS. Before we can realize the full potential advantages of distribution, we must find sat-
isfactory solutions to these design issues and problem:s. Including all this additional func-
tionality is hard to accomplish, and finding optimal solutions is a step beyond that.

At the physical hardware level, the following main factors distinguish a DDBMS from
a centralized system:

® There are multiple computers, called sites or nodes.

® These sites must be connected by some type of communication network to transmit
data and commands among sites, as shown in Figure 24.1(c).

The sites may all be located in physical proximity—say, within the same building or
group of adjacent buildings—and connected via a local area network, or they may be geo-
graphically distributed over large distances and connected via a long-haul or wide area net-
work. Local area networks typically use cables, whereas long-haul networks use telephone
lines or satellites. It is also possible to use a combination of the two types of networks.

Networks may have different topologies that define the direct communication paths
among sites. The type and topology of the network used may have a significant effect on
performance and hence on the strategies for distributed query processing and distributed
database design. For high-level architectural issues, however, it does not matter which type
of network is used; it only matters that each site is able to communicate, directly or indi-
rectly, with every other site. For the remainder of this chapter, we assume that some type of
communication network exists among sites, regardless of the particular topology. We will
not address any network specific issues, although it is important to understand that for an
efficient operation of a DDBS, network design and performance issues are very critical.

24.2 Data Fragmentation, Replication, and
Allocation Techniques for Distributed
Database Design

In this section we discuss techniques that are used to break up the database into logical
units, called fragments, which may be assigned for storage at the various sites. We also
discuss the use of data replication, which permits certain data to be stored in more than
one site, and the process of allocating fragments—or replicas of fragments—for storage at

711

112

Chapter 24 / Distributed Databases and Client-Server Architecture

the various sites. These techniques are used during the process of distributed database
design. The information concerning data fragmentation, allocation, and replication is
stored in a global directory that is accessed by the DDBS applications as needed.

24.2.1 Data Fragmentation

In a DDB, decisions must be made regarding which site should be used to store which por-
tions of the database. For now, we will assume that there is no replication; that is, each
relation—or portion of a relation—is to be stored at only one site. We discuss replication
and its effects later in this section. We also use the terminology of relational databases—
similar concepts apply to other data models. We assume that we are starting with a rela-
tional database schema and must decide on how to distribute the relations over the vari-
ous sites. To illustrate our discussion, we use the relational database schema in Figure 7.5.

Before we decide on how to distribute the data, we must determine the logical units of
the database that are to be distributed. The simplest logical units are the relations them-
selves; that is, each whole relation is to be stored at a particular site. In our example, we
must decide on a site to store each of the relations EMPLOYEE, DEPARTMENT, PROJECT, WORKS_ON,
and pepenbenT of Figure 7.5. In many cases, however, a relation can be divided into smaller
logical units for distribution. For example, consider the company database shown in Fig-
ure 7.6, and assume there are three computer sites—one for each department in the com-
pany.* We may want to store the database information relating to each department at the
computer site for that department. A technique called horizontal fragmentation can be used
to partition each relation by department.

Horizontal Fragmentation. A horizontal fragment of a relation is a subset of the tuples
in that relation. The tuples that belong to the horizontal fragment are specified by a con-
dition on one or more attributes of the relation. Often, only a single attribute is involved.
For example, we may define three horizontal fragments on the empLoveE relation of Figure
7.6 with the following conditions: (ono = 5), (ono = 4), and (pno = 1)—each fragment con-
tains the EmpLoYEE tuples working for a particular department. Similarly, we may define
three horizontal fragments for the projECT relation, with the conditions (bnum = 5), (onum =
4), and (onum = 1)—each fragment contains the proiect tuples controlled by a particular
department. Horizontal fragmentation divides a relation “horizontally” by grouping rows
ta create subsets of tuples, where each subset has a certain logical meaning. These frag-
ments can then be assigned to different sites in the distributed system. Derived horizontal
fragmentation applies the partitioning of a primary relation (DEPARTMENT in our example) to
other secondary relations (eMpLovee and ProJECT in our example), which are related to the
primary via a foreign key. This way, related data between the primary and the secondary
relations gets fragmented in the same way.

Vertical Fragmentation. Each site may not need all the attributes of a relation, which
would indicate the need for a different type of fragmentation. Vertical fragmentation

4. Of course, in an actual situation, there will be many more tuplés in the relations than those
shown in Figure 7.6.

2.1 Data Fragmentation, Replication, and Allocation Techniques

divides a relation “vertically” by columns. A vertical fragment of a relation keeps only
certain attributes of the relation. For example, we may want to fragment the empLoveE rela-
tion into two vertical fragments. The first fragment includes personal information—nav,
BDATE, ADDRESS, and sex—and the second includes work-related information—ssn, SALARY,
supERssN, oNo. This vertical fragmentation is not quite proper because, if the two fragments
are stored separately, we cannot put the original employee tuples back together, since
there is no common attribute between the two fragments. It is necessary to include the pri-
mary key or some candidate key attribute in every vertical fragment so that the full rela-
tion can be reconstructed from the fragments. Hence, we must add the ssw attribute to the
personal information Fragment.

Notice that each horizontal fragment on a relation R can be specified by a oci(R)
operation in the relational algebra. A set of horizontal fragments whose conditions CI,
C2, .., Cn include all the tuples in R—that is, every tuple in R satisfies (C1 OR C2 OR -
OR Cn)———1s called a complete horizontal fragmentation of R. In many cases a complete
horizontal fragmentation is also disjoint; that is, no tuple in R satisfies (Ci AND Cj) for
any 1 # j. Our two earlier examples of horizontal fragmentation for the eMpLovee and
PROJECT relations were both complete and disjoint. To reconstruct the relation R from a
complete horizontal fragmentation, we need to apply the UNION operation to the frag-
ments.

A vertical fragment on a relation R can be specified by a m; (R) operation in the
relational algebra. A set of vertical fragments whose projection lists L1, L2, ..., Ln include
all the attributes in R but share only the primary key attribute of R is called a complete
vertical fragmentation of R. In this case the projection lists satisfy the following two con-
ditions:

e LIULZU...ULn=ATTRS(R).

° Li N Lj=PK(R) forany i # 3, where ATTRS(R) is the set of attributes of R and
PK(R) is the primary key of R.

To reconstruct the relation R from a complete vertical fragmentation, we apply the
OUTER UNION operation to the vertical fragments (assuming no horizontal fragmentation
is used). Notice that we could also apply a FULL OUTER JOIN operation and get the same
result for a complete vertical fragmentation, even when some horizontal fragmentation
may also have been applied. The two vertical fragments of the empLoveE relation with
projection lists L1 = {SsN, NAME, BDATE, ADDRESS, SEx} and L2 = {sSN, SALARY, SUPERSSN, DNO} consti-
tute a complete vertical fragmentation of EMPLOYEE.

Two horizontal fragments that are neither complete nor disjoint are those defined on
the empLovee relation of Figure 7.5 by the conditions (satary > 50000) and (ono = 4); they
may not include all empLoYEE tuples, and they may include common tuples. Two vertical
fragments that are not complete are those defined by the attribute lists L1 = {name, ADDRESS}
and L2 = {ssN, nawe, SALARY}, these lists violate both conditions of a complete vertical
fragmentation.,

Mixed (Hybrid) Fragmentation. We can intermix the two types of fragmentation,
yielding a mixed fragmentation. For example, we may combine the horizontal and verti-
cal fragmentations of the ewpLovee relation given earlier into a mixed fragmentation that

713

includes six fragments. In this case the original relation can be reconstructed by applying
UNION and OUTER UNION (or OUTER JOIN) operations in the appropriate order. In gen-
eral, a fragment of a relation R can be specified by a SELECT-PROJECT combination of
operations my (0(R)). If C = TRUE (that is, all tuples are selected) and L # ATTRS(R),
we get a vertical fragment, and if C # TRUE and L = ATTRS(R), we get a horizontal frag-
ment. Finally, if C # TRUE and L # ATTRS(R), we get a mixed fragment. Notice that a
relation can itself be considered a fragment with C = TRUE and L = ATTRS(R). In the fol-
lowing discussion, the term fragment is used to refer to a relation or to any of the preced-
ing types of fragments,

A fragmentation schema of a database is a definition of a set of fragments that
includes all attributes and tuples in the database and satisfies the condition that the whole
database can be reconstructed from the fragments by applying some sequence of OUTER
UNION (or OUTER JOIN) and UNION operations. It is also sometimes useful—although not
necessary—to have all the fragments be disjoint except for the repetition of primary keys
among vertical (or mixed) fragments. In the latter case, all replication and distribution of
fragments is clearly specified at a subsequent stage, separately from fragmentation.

An allocation schema describes the allocation of fragments to sites of the DDBS;
hence, it is a mapping that specifies for each fragment the site(s) at which it is stored. If a
fragment is stored at more than one site, it is said to be replicated. We discuss data repli-
cation and allocation next.

24.2.2 Data Replication and Allocation

Replication is useful in improving the availability of data. The most extreme case is repli-
_ cation of the whole database at every site in the distributed system, thus creating a fully
replicated distributed database. This can improve availability remarkably because the
system can continue to operate as long as at least one site is up. It also improves perfor-
mance of retrieval for global queries, because the result of such a query can be obtained
locally from any one site; hence, a retrieval query can be processed at the local site where
it is submitted, if that site includes a server module. The disadvantage of full replication is
that it can slow down update operations drastically, since a single logical update must be
performed on every copy of the database to keep the copies consistent. This is especially
true if many copies of the database exist. Full replication makes the concurrency control
and recovery techniques mote expensive than they would be if there were no replication,
as we shall see in Section 24.5.

The other extreme from full replication involves having no replication—that is,
each fragment is stored at exactly one site. In this case all fragments must be disjoint,
except for the repetition of primary keys among vertical (or mixed) fragments. This is also
called nonredundant allocation. .

Between these two extremes, we have a wide spectrum of partial replication of the
data—that is, some fragments of the database may be replicated whereas others may not.
The number of copies of each fragment can range from one up to the total number of sites
in the distributed system. A special case of partial replication is occurring heavily in
applications where mobile workers—such as sales forces, financial planners, and claims
adjustors—carry partially teplicated databases with them on laptops and personal digital

assistants and synchronize them periodically with the server database.” A description of
the replication of fragments is sometimes called a replication schema.

Bach fragment—or each copy of a fragment—must be assigned to a particular site in
the distributed system. This process is called data distribution (or data allocation). The
choice of sites and the degree of replication depend on the performance and availability
goals of the system and on the types and frequencies of transactions submitted at each
site. For example, if high availability is required and transactions can be submitted at any
site and if most transactions are retrieval only, a fully replicated database is a good choice.
However, if certain transactions that access particular parts of the database are mostly
submitted at a particular site, the corresponding set of fragments can be allocated at that
site only. Data that is accessed at multiple sites can be replicated at those sites. If many
updates are petformed, it may be useful to limit replication. Finding an optimal or even a
good solution to distributed data allocation is a complex optimization problem.

24.2.3 Example of Fragmentation, Allocation,
and Replication

We now consider an example of fragmenting and distributing the company database of
Figures 7.5 and 7.6. Suppose that the company has three computer sites—one for each
current department. Sites 2 and 3 are for departments 5 and 4, respectively. At each of
these sites, we expect frequent access to the eMpLovee and PRoJECT information for the
employees who work in that department and the projects controlled by that department. Fur-
ther, we assume that these sites mainly access the NAME, SsN, SALARY, and SuPERssN attributes '
of empLoveE. Site 1 is used by company headquarters and accesses all employee and project
information regularly, in addition to keeping track of bePENDENT information for insurance
purposes.

According to these requirements, the whole database of Figure 7.6 can be stored at
site 1. To determine the fragments to be replicated at sites 2 and 3, we can first horizon-
tally fragment pEPARTMENT by its key pnumser. We then apply derived fragmentation to the
relations EMPLOYEE, PROJECT, and DEPT_LOCATIONS relations based on their foreign keys for
department number—called ono, onum, and pNuMBER, respectively, in Figure 7.5. We can then
vertically fragment the resulting evpLovee fragments to include only the attributes {naue,
SSN, SALARY, SUPERSSN, DNo}. Figure 24.3 shows the mixed fragments empp5 and empp4,
which include the empLovee tuples satisfying the conditions pno = 5 and bNo = 4, respec-
tively. The horizontal fragments of pROIECT, DEPARTMENT, and DEPT_LOCATIONS are similarly frag-
mented by department number. All these fragments—stored at sites 2 and 3—are
replicated because they are also stored at the headquarters site 1.

We must now fragment the works_on relation and decide which fragments of WorRKS_oN to
store at sites 2 and 3. We are confronted with the problem that no attribute of works_on
directly indicates the department to which each tuple belongs. In fact, each tuple in works_
on relates an employee e to a project p. We could fragment works_on based on the depart-
ment d in which e works or based on the department d’ that controls p. Fragmentation

5. For a scalable approach to synchronize partially replicated databases, see Mahajan et al. (1998).

776 Chapter 24 / Distributed Databases and Client-Server Architecture
a
@) EMPD5 FNAME | MINIT | LNAME SSN SALARY | SUPERSSN |DNO
John B Smith 123456789 30000 333445555 5
Frankiin T Wong 333445555 40000 888665555 5
Ramesh K Narayan 666884444 38000 333445555 5
Joyce A English | 453453453 25000 333445555 5
| DEP5 DNAME DNUMBER | MGRSSN MGRSTARTDATE I?EPS,LOCS DNUMBER | LOCATION
Research 5 333445555 1988-05-22 5 Bellaire
5 Sugarland
5 Houston
(WORKs_ONS ESSN__| PNO | HOURS PROJSS5 PNAME PNUMBER | PLOCATION | DNUM
123456789 1 325 Product X 1 Bellaire 5
123456789 2 75 ProductY 2 Sugarland 5
666884444 3 400
Product Z 3 Houston 5
453453453 1 20.0
453453453 2 20.0
333445555 2 10.0
333445555 3 10.0
333445555 | 10 10.0
333445555 | 20 10.0 Data at Site 2
b
) EMPD4 FNAME | MINIT. [LNAME SSN SALARY | SUPERSSN |DNO
Alicia J Zelaya 999887777 25000 987654321 4
Jennifer S Wallace 987654321 43000 888665555 4
Ahmad v Jabbar 987987987 25000 987654321 4
’ DEP4 DNAME DNUMBER MGRSSN MGRSTARTDATE DEP4_LOCS DNUMBER | LOCATION
Administration 4 987654321 1995-01-01 4 Stafford
| WORKSON4 | ESSN | PNO | HOURS PROJS4 PNAME | PNUMBER | PLOCATION | DNUM
555 10 100 Computerizati Stafford
999887777 | 80 300 omputerization 10 4
999887777 10 10.0 Newbenefits 30 Stafford 4
987987987 | 10 350
087987987 | 30 5.0 -
987654321 30 20.0
987654321 20 15.0 Data at Site 3

Figure 2.3 . Allocation of fragments to sites. (a) Relation fragments at site 2 corresponding to

department 5. (b) Relation fragments at site 3 corresponding to department 4.

2.2 Data Fragmentation, Replication, and Allocation Techniques

becomes easy if we have a constraint stating that d = d’ for all works_on tuples—that is, if
employees can work only on projects controlled by the department they wotk for. However,
there is no such constraint in our database of Figure 7.6. For example, the works_on tuple
<333445555, 10, 10.0> relates an employee who works for department 5 with a project
controlled by department 4. In this case we could fragment works_on based on the depart-
ment in which the employee works (which is expressed by the condition €) and then frag-
ment further based on the department that controls the projects that employee is working
on, as shown in Figure 24.4,

77

@) G1 ESSN PNO | HOURS G2 ESSN PNO , HOURS G3
123456789 1 325 333445555 10 | 100
123456789 2 75 C2=C AND (PNO IN (SELECT PNUMBER C3=C AND (PNO IN (SELECT PNUMBER
666884444 3 40.0 FROM PROJECT FROM PROJECT
453453453 1 20.0 WHERE DNUM=4)) WHERE DNUM=1))
453453453 2 20.0
333445555 2 10.0
333445555 3 10.0
C1=C AND (PNO IN (SELECT PNUMBER
FROM PROJEGT
WHERE DNUM=5))
Employees in Department 5
b [y | Essn[Pno | Hours l @ | EsSN | PNO | Houms le6| EssN__ [Pno | Houms
887777 3 30, 987654321 20 15.0
C4=C AND (PNO IN (SELECT PNUMBER 23382 13 123
FROM PROJECT - C6=C AND (PNO IN (SELECT PNUMBER
WHERE DNUM=5)) 987987987 10 35.0 . FROM PROJECT
987987987 30 50 WHERE DNUM=1))
987654321 30 20.0
C5=C AND (PNO IN (SELECT PNUMBER
FROM PROJECT
WHERE DNUM=4))

Employees in Department 4

© &' ESSN ,PNO | Hounﬂ ’E} ESSN PNO] HOURﬂ [g ESSN__ | PNO l HOURS

8866555 20 |
C7=C AND (PNO IN (SELECT PNUMBER C8=C AND (PNO IN (SELECT PNUMBER 888665555 [ou
FROM PROJEGT FROM PROJECT
WHERE DNUM<5)) WHERE DNUM-—4)) C9=CAND (PNOIN (SE',;E‘(;L';NR%EE?

Employees in Department 1

WHERE DNUM=1))

Figure 2b.4 Complete and disjoint fragments of the works_on relation. (a) Fragments of works_on for
employees working in department 5 (c= [ESSN IN (SELECT SSN FROM EMPLOYEE WHERE
bNo=5)1). (b) Fragments of works_on for employees working in department 4 (c=[Essy
(SELECT SSN FROM EMPLOYEE WHERE DN0=4)]). (c) Fragments of works_on for employees work-

“'ing in department 1 (c=[ESSN IN (SELECT SSN FROM EMPLOYEE WHERE DNO=1)]).

718

(hapter 24 / Distributed Databases and Client-Server Architecture

In Figure 24.4, the union of fragments G1, G2, and G3 gives all works_on tuples for
employees who work for department 5. Similarly, the union of fragments G4, G5, and G6
gives all works_oN tuples for employees who work for department 4. On the other hand, the
union of fragments G1, G4, and G7 gives all works_on tuples for projects controlled by
department 5. The condition for each of the fragments G1 through G9 is shown in Figure
24.4. The relations that represent M:N relationships, such as works_on, often have several
possible logical fragmentations. In our distribution of Figure 24.3, we choose to include all
fragments that can be joined to either an eMpLOYEE tuple or a PROJECT tuple at sites 2 and 3.
Hence, we place the union of fragments G1, G2, G3, G4, and G7 at site 2 and the union
of fragments G4, G5, G6, G2, and G8 at site 3. Notice that fragments G2 and G4 are rep-
licated at both sites. This allocation strategy permits the join between the local empLovee
or PROJECT fragments at site 2 or site 3 and the local works_on fragment to be performed
completely locally. This clearly demonstrates how complex the problem of database frag-
mentation and allocation is for large databases. The Selected Bibliography at the end of
this chapter discusses some of the work done in this area.

