14.3 Transformation of Relational Expressions

So far, we have studied algorithms to evaluate extended relational-algebra opera-
tions, and have estimated their costs. As mentioned at the start of this chapter, a
query can be expressed in several different ways, with different costs of evaluation,
In this section, rather than take the relational expression as given, we consider alter-
native, equivalent expressions,

generate the tuples in different orders, but would be considered equivalent as long
as the set of tuples is the same. ‘
In SQL, the inputs and outputs are multisets of tuples, and a multiset version of the

14.3.1 Equivalence Rules

An equivalence rule says that expressions of two forms are equivalent. We can re-
place an expression of the first form by an expression of the second form, or vice
versa—that is we can replace an expression of the second form by an expression
of the first form—since the two expressions would generate the same result on any
valid database. The optimizer uses equivalence rules to transform expressions-into
other logically equivalent expressions.

We now list a number of general equivalence rules on relational-algebra expres-
sions. Some of the equivalences listed appear in Figure 14.2. We use 6,0y, 65, and
so on to denote predicates, Ly, Ly, Ly, and s0 on to denote lists of attributes, and
E,Fy,E,, and so on to denote relational—algebra expressions. A relation name 7 is
simply a special case of a relational-algebra expression, and can be used wherever £
appears.

538 Chapter 14 Query Optimization

X) - Rule b X 0
/N /N
El E2 E2 El
X - Rule 6a N X
/N 7N
% E3 El X
VRN
El1 E2 E2 E3
S, Rule 7a X X
{ 1f 6 only has / \
e attributes from E1) E2
AN |

El E2 -E1

Figure 14.2 Pictorial representation of equivalences.

1. Conjunctive selection operations can be deconstructed into a sequence of in-
dividual selections. This transformation is referred to as a cascade of o.

6,00, (E) = 00, (06,(E))
2. Selection operations are commutative. ‘
06, (00, (E)) = 06,(00,(E))

3. Only the final operations in a sequence of projection operations are needed
the others can be omitted. This transformation can also be referred to as

cascade of IT.
Tip, (g (- (T, ()) = e (B)
) 4. Selections can be combined with Cartesian products and theta joins.
a. 0g(E1 X Eg) = E1 Mg By
This expression is just the definition of the theta join.
b. 0s,(F1 e, E3) = E1 Mg, ne, L2

5. Theta-join operations are commutative.
El Ng E2 = Ez Ng E1

/ Actually, the order of attributes differs between the left-hand side and
hand side, so the equivalence does not hold if the order of attributes is
into account. A projection operation can be added to one of the sides ¢

equivalence to appropriately reorder attributes, but for simplicity we oml
projection and ignore the attribute order in most of our examples.

143 Transformation of Relational Expressions 539

Recall that the natural-join operator is simply a special case of the theta-join
operator; hence, natural joins are also commutative.,

6. a. Natural-join operations are associative.
(Bi X Ep) M By = By M (B, M Ey)
b. Theta joins are associative in the following manner:
(B Mg, Ey) Mo,pe, B3 = By Mo, ne; (L2 Mg, Es)

where 05 involves attributes from only E and Ej3. Any of these conditions
may be empty; hence, it follows that the Cartesian product (x) operation
is also associative. The commutativity and associativity of join operations
are important for join reordering in query optimization.

7. The selection operation distributes over the theta-join operation under the fol-
lowing two conditions:

a. It distributes when all the attributes in selection condition to involve only
the attributes of one of the expressions (say, 1) being joined.

T, (E1 Mg By) = (09, (E1)) Mg Fy

b. It distributes when selection condition 6, involves only the attributes of
Fy and 09 involves only the attributes of E,. :

96,70, (B Mg E) = (04, (F1)) Mg (04,(F5))

8. The projection operation distributes over the theta-join operation under the
following conditions.

a. Let L; and L, be attributes of F; and Es5, respectively. Suppose that the
join condition € involves only attributes in L; U L,. Then,

p,ur, (By My Ep) = (11, (Fy)) Mg (111, (Es))

b. Consider a join E;, Xy F,. Let Ly and L, be sets of attributes. from By
and Ej, respectively. Let Ly be attributes of £, that are involved in join
condition 6, but are notin L; U Ly, and let Ly be attributes of Ey that are
involved in join condition 8, but are not in L1 U Ly. Then,

Uz or, (B Mo Ba) =11, 01, (Hr,0L, (B1)) Mo (T,uz, (Fs)))
) 9. The set operations union and intersection are commutative.
Ey U Ey, = By, U E;
EinNE, = EyN E;
Set difference is not commutative.
10. Set union and intersection are associative.
(By U By) U B3 = By U (By U E)
(By N Ey) N B3 = By N (By N Ey)

540

Chapter 14 ~ Query Optimization

- which is equivalent to our original algebra expression, but generates smaller inte

11. The selection operation distributes over the union, intersection, and set—
difference operations.

op(Br — By) = op(By) — op(E)

Similarly, the preceding equivalence, with — replaced with either U or N, also
holds. Further,

op(By — Ey) =op(E1) — B

The preceding equivalence, with — replaced by N, also holds, but does not
hold if — is replaced by U.

12. The projection operation distributes over the union operation.

I1,(Ey U Ey) = (TIL(E)) U (Hr(E2))

This is only a partial list of equivalences. More equivalences involving extended
relational operators, such as the outer join and aggregation, are discussed in the ex-
ercises.

14.3.2 Examples of Transformations

We now illustrate the use of the equivalence rules. We use our bank example with the
relation schemas:

Branch-schema = (branch-name, branch-city, assets)
Account-schema = (account-number, branch-name, balarce)
Depositor-schema = (customer-narme, account-number)

The relations branch, account, and depositor are instances of these schemas.
In our example in Section 14.1, the expression

chstomer-name(Ubranclz-city:“Brooklyn"(branch M (account M depositor)))

was transformed into the following expression,

T eustomer-name ((Tbranch-city — “Brooklyn» (ranch)) X (account X depositor))

mediate relations. We can carry out this transformation by using rule 7.a. Rememb

that the rule merely says that the two expressions are equivalent; it does not say th

one is better than the other.

Multiple equivalence rules can be used, one after the other, on a query or on pat

of the query. As an illustration, suppose that we modify our original query to restti

attention to customers who have a balance over $1000. The new relational-algebr
query is

chstomer-name (O'branch-cv}ty = “Brooklyn” A balance >1000

(branch M (account X depositor)))
We cannot apply the selection predicate directly to the branch relation, since the p
icate involves attributes of both the branch and account relation. However, we cail

14.3 Transformation of Relational Expressions 541

apply rule 6.a (associativity of natural join) to transform the join branch X (account O
depositor) into (branch X account) W depositor: :

chstomer-name (menc/rcity = “Brooklyn” A balance >1000
((branch X account) X depositor))

Then, using rule 7.a, we can rewrite our query as

M eustomer-name ((Ubranclz—city_—-“B'rooklyn”/\ balance>1000
(branch M account)) X depositor)

Let us examine the selection subexpression within this expression. Using rule 1, we
can break the selection into two selections, to get the following subexpression:

O branch-city = “Brooklyn” (Ubalance > 1000 (b?’[li’lC}’l o account))

Both of the preceding expressions select tuples with branch-city = “Brooklyn” and
balance > 1000. However, the latter form of the expression provides a new opportu-
nity to apply the “perform selections early” rule, resulting in the subexpression

Obranch-city = “Brooklyn” (branch) D O balance>1000 ([lCCOlLTlt)

Figure 14.3 depicts the initial expression and the final expression after all these
transformations. We could equally well have used rule 7.b to get the final expression
directly, without using rule 1 to break the selection into two selections. In fact, rule 7.b
can itself be derived from rules 1 and 7.a

A set of equivalence rules is said to be minimal if no rule can be derived from any
combination of the others. The preceding example illustrates that the set of equiva-
lence rules in Section 14.3.1 is not minimal. An expression equivalent to the original
expression may be generated in different ways; the number of different ways of gen-
erating an expression increases when we use a nonminimal set of equivalence rules.
Query optimizers therefore use minimal sets of equivalence rules.

II

customer-namne
IT customer-name

Gbranch—city:Brooklyn / \

A\ balance < 1000
depositor

S N

Obranch-city=Brooklyn Cbalance <1000

branch / \
account depositor branch account
(a) Initial expression tree (b) Tree after multiple transformations

Figure 14.3 Multiple transformations.

542 Chapter 14 Query Optimization

Now consider the following form of our example query:
I eustomer-name ((Tbranch-city = “Brooklyn” (branch) X account) X deposi"tor)
When we compute the subexpression
(G branch-city = “Brooklyn” (brancl) X account)

we obtain a relation whose schema is
(branch-name, branch-city, assets, account-number, balance)

We can eliminate several attributes from the schema, by pushing projections based
on equivalence rules 8.a and 8.b. The only attributes that we must retain are those
that either appear in the result of the query or are needed to process subsequent
operations. By eliminating unneeded attributes, we reduce the number of columns
of the intermediate result. Thus, we reduce the size of the intermediate result. In our
example, the only attribute we need from the join of branch and account is account-
number. Therefore, we can modify the expression to

chstomer-name (
(M account-number ((O'branclrcity = “Brooklyn” (branch)) X account)) M dePOSltOT‘)

The projection I gccount-number reduces the size of the intermediate join results.

14.3.3 Join Ordering

A good ordering of join operations is important for reducing the size of temporary
results; hence, most query optimizers pay a lot of attention to the join order. As men-
tioned in Chapter 3 and in equivalence rule 6.a, the natural-join operation is associa-
tive. Thus, for all relations 71, 72, and r3,

(T‘1|><1 7'2)N T3 — 7’1[><] (TQ[)(] ’1"3)

Although these expressions are equivalent, the costs of computing them may differ.
Consider again the expression

I customer-name ((Ubranclz-city = “Brooklyn” (b?‘ﬂ?’lCh)) M account M dEPOSitor)

We could choose to compute account X depositor first, and then to join the result with

O branch-city = “Brooklyn” (bTLU’lCI’L)

However, account X depositor is likely to be a large relation, since it contains one tuple.
for every account. In contrast, ‘

O branch-city = “Brooklyn” (branch) W account

is probably a small relation. To see that it is, we note that, since the bank has a lar:
number of widely distributed branches, it is likely that only a small fraction of t
bank’s customers have accounts in branches located in Brooklyn. Thus, the prece
ing expression results in one tuple for each account held by a resident of Brookly
Therefore, the temporary relation that we must store is smaller than it would ha
been had we computed account X depositor first.

14.3 Transformation of Relational Expressions 543

There are other options to consider for evaluating our query. We do not care about
the order in which attributes appear in a join, since it is easy to change the order
before displaying the result. Thus, for all relations r; and r,

ri X org = rg X 1y

That is, natural join is commutative (equivalence rule 5).
Using the associativity and commutativity of the natural join (rules 5 and 6), we
can consider rewriting our rélational-algebra expression as

chstomer—nwrﬁa (((Ubranch—city:“Brooklyn” (bl‘[lI’lCh)) X dePOSitOT) X account)

That is, we could compute

(U branch~ city = “Brooklyn” (bra”Ch)) X deP ositor

first, and, after that, join the result with account. Note, however, that there are no
attributes in common between Branch-schema and Depositor-schema, so the join is just
a Cartesian product. If there are b branches in Brooklyn and d tuples in the depositor
relation, this Cartesian product generates b * d tuples, one for every possible pair of
depositor tuple and branches (without regard for whether the account in depositor is
maintained at the branch). Thus, it appears that this Cartesian product will produce
a large temporary relation. As a result, we would reject this strategy. However, if
. the user had entered the preceding expression, we could use the associativity and
commutativity of the natural join to transform this expressmn to the more efficient
expression that we used earlier.

14.3.4 Enumeration of Equivalent Expressions

Query optimizers use equivalence rules to systematically generate expressions equiv-
alent to the given query expression. Conceptually, the process proceeds as follows.
Given an expression, if any subexpression matches one side of an equivalence rule,
the optimizer generates a new expression where the subexpression is transformed to
match the other side of the rule. This process continues until no more new expres-
sions can be generated.

The preceding process is costly both in space and in time. Here is how the space
requirement can be reduced: If we generate an expression E; from an expression
E; by using an equivalence rule, then £; and E, are similar in structure, and have
subexpressions that are identical. Expression-representation techniques that allow
both expressions to point to shared subexpressions can reduce the space requirement
significantly, and many query optimizers use them.

Moreover, it is not always necessary to generate every expression that can be gen-
erated with the equivalence rules. If an optimizer takes cost estimates of evaluation
into account, it may be able to avoid examining some of the expressions, as we shall
see in Section 14.4. We can reduce the time required for optimization by using tech-
niques such as these.

544

Chapter 14 ~ Query Optimization

14.4 Choice of Evaluation Plans

Generation of expressions is only part of the query-optimization process, since each
operation in the expression can be implemented with different algorithms. An eval-
uation plan is therefore needed to define exactly what algorithm should be used for
each operation, and how the execution of the operations should be coordinated. Fig-
ure 14.4 illustrates one possible evaluation plan for the expression from Figure 14.3.
As we have seen, several different algorithms can be used for each relational opera-
tion, giving rise to alternative evaluation plans. Further, decisions about pipelining
have to be made. In the figure, the edges from the selection operations to the merge
join operation are marked as pipelined; pipelining is feasible if the selection oper-
ations generate their output sorted on the join attributes. They would do so if the
indices on branch and account store records with equal values for the index attributes

sorted by branch-name.

14.41 Interaction of Evaluation Techniques

One way to choose an evaluation plan for a query expression is simply to choose for
each operation the cheapest algorithm for evaluating it. We can choose any ordering
of the operations that ensures that operations lower in the tree are executed before
operations higher in the tree. ‘

However, choosing the cheapest algorithm for each operation independently is not
necessarily a good idea. Although a merge join at a given level may be costlier than
a hash join, it may provide a sorted output that makes evaluating a later operati
(such as duplicate elimination, intersection, or another merge join) cheaper. Similar
a nested-loop join with indexing may provide opp ortunities for pipelining the resu
to the next operation, and thus may be useful even if it is not the cheapest way

IT cystomer-name (SOTt to remove duplicates)

b (hash join)

T T

X (merge join) depositor
pipeline pipeline
O pranch-city=Brooklyn O balance < 1000

(use index 1) (use linear scan)

branch account

Figure14.4 - An evaluation plan.

14.4 Choice of Evaluation Plans 545

performing the join. To choose the best overall algorithm, we must consider even
nonoptimal algorithms for individua] operations.

Thus, in addition to considering alternative expressions for a query, we must also
consider alternative algorithms for each operation in an expression. We can use rules

eration, and whether its result can be pipelined or must be materialized. We can use
these rules to generate all the query-evaluation plans for a given expression.

Given an evaluation plan, we can estimate its cost using statistics estimated by

