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can rewrite intersections as conjunctions, and w~ ~an ~ew~ite set differenc~by
. . 1 the two relations partlclpatlng ill the set operationsuSIng negation, so ong as . fIt'

. h I t'on We can then use the estimates or se ec IOnsare selections on t e same re a 1 . ~.. 2
involving conjunctions, disjunctions, and negation I.n SectIOn 1~.2. t' th

If the inputs are not selections on the same relation, w.e estIma e e
this way: The estimated size of r U s is the su~ of the SIzes of ~ and s.
estimated size of r n s is the minimum of the SIzes of rand s ..T e --. ..." .......... ''''<L\..I.

. h . All three estimates may be Inaccurate,size of r - SIS t e same sIze as r.
provide upper bounds on the sizes.

. . . d' f:::N s is the size of r !Xl s plus the size of r; thatOuter JOln' The estlmate SIze a r I h .
. . . h'l th t of r ]X[ s is the size of r !Xl s p us t e SIzesr [X[ SIS symmetnc, w Ie a 'd b d

rand s. All three estimates may be inaccurate, but provi e upper oun s
the sizes.

14.2.5 Estimation of Number of Distinct Values
. h b f d' tinct values of an attribute (or set of attributes) AFor selections, t e num er a IS .. .

the result of a selection, V (A, C5g(r )), can be estimated ill these ways.

• If the selection condition eforces A to take on a specified value (e.g., A =
V(A, C5g(r)) = 1.

• If e forces A to take on one of a specified set of values .(~.g., (A = I V

3 V A = 4)), then V(A, C5g(r)) is set to the number of specIfIed values.

• If the selection condition e is of the form A op v, where op ~s a cmmplaYlS(
operator, V(A, C5g(r)) is estimated to be V(A, r) * s, where s IS the
of the selection.

• In all other cases of selections, we assume that the d.istributio.n of A
is independent of the distribution of the :ralues on ~hlch selection ,..,n......A...."rlJ

'f' d nd use an approximate estlmate of mm(V(A, r), no-e(r))'are speci Ie ,a . b b T th
accurate estimate can be derived for this case uSIng pro a Iity eory,
above approximation works fairly well.

For joins, the number of distinct values of an attribute (or set of attributes) A
result of a join, V(A, r !Xl s), can be estimated in these ways:

• If all attributes in A are from r, V (A, r I><l s) is estin1ated as n~in(V(A,
and similarly if all attributes in A are from s, V (A, r !Xl s) IS
min(V(A, s), nrlXls)'

• If A contains attributes Al from rand A2 from s, then V(A, r I><l s) is
as

min(V(AI, r) *V(A2 - AI, s), V(AI- A2, r) *V(A2, s), nrlXls)

.... T -./..~ -I-h,,-I- C'f""\l11P ::lttributes maybe in Al as well as in A2, and Al -
- 1~_ L.~~ ~ -:>nr1

14.3 Transformation of Relational Expressions
So faI~ we have studied algorithnls to evaluate extended relational-algebra opera
tiems, and have estimated their costs. As mentioned at the start of this chapter, a
query can be expressed in several different ways, with different costs of evaluation.
In this section, rather than take the relational expression as given, we consider alter
native, equivalent expressions.

Two relational-algebra expressions are said to be equivalent if, on every legal data
base instance, the two expressions generate the san1e set of tuples. (Recall that a legal
database instance is one that satisfies all the integrity constraints specified in the data
base schema.) Note that the order of the tuples is irrelevant; the two expressions may
generate the tuples in different orders, but would be considered equivalent as long
as the set of tuples is the same.

In SQL, the inputs and outputs are multisets of tuples, and a multiset version of the
relational algebra is used for evaluating SQL queries. Two expressions in the multiset
version of the relational algebra are said to be equivalent if on every legal database
the two expressions generate the sanle multiset of tuples. The discussion in this chap
ter is based on the relational algebra. We leave extensions to the nlultiset version of
the relational algebra to you as exercises.

14.3..1 Equivalence Rules

An equivalence rule says that expressions of two fonns are equivalent. We can re
place an expression of the first fornl by an expression of the second form, or vice
versa-that is we can replace an expression of the second fonn by an expression
of the first form-since the two expressions would generate the same result on any
valid database. The optimizer uses equivalence rules to transfornl expressions into
other logically equivalent expressions.

We now list a number of general equivalence rules on relational-algebra expres
sions. Some of the equivalences listed appear in Figure 14.2. We use e, e

1
,()2, and

so on to denote predicates, L I , L 2 , L 3 , and so on to denote lists of attributes, and
E, E I , E 2 , and so on to denote relational-algebra expressions. A relation nan1e r is
simply a special case of a relational-algebra expression, and can be used wherever E
appears.



Figure 14.2 Pictorial representation of equivalences.

1. Conjunctive selection operations can be deconstructed into a sequence
dividual selections. This transformation is referred to as a cascade of eY.
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4. Selections can be combined with Cartesian products and theta joins.

a. eY8(E1 x E 2 ) = E1 t><l8 E 2

This expression is just the definition of the theta join.
b. eY81 (E1 t><l82 E2 ) = E 1 t><l81/\82 E 2

5. Theta-join operations are commutative.

E1 t><l8 E2 = E 2 t><l8 E1

Actually/ the order of attributes differs between the left-hand side
hand side/ so the equivalence does not hold if the order of
into account. A projection operation can be added to one of the
equivalence to appropriately reorder attributes/ but for simplicity
projection and ignore the attribute order in most of our examples.

eY81/\82 (E) = eY81 (eY82 (E))

2. Selection operations are commutative.

eY81(eY82(E)) = eY82 (eY81 (E))

3. Only the final operations in a sequence of projection operations are
the others can be omitted. This transformation can also be referred
cascade of II.

)

)
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Recall that the natural-join operator is simply a special case of the theta-join
operator; hence, natural joins are also commutative.

6. a. Natural-join operations are associative.

(E1 IXl E2 ) IXl E3 = E 1 IXl (E2 IXl E3 )

b. Theta joins are associative in the following lnamler:

(E1 lXl e1 E2 ) lXl e2 !\e3 E 3 = E 1 lXl e1 ;\(13 (E2 lXl e2 E3 )

where 82 involves attributes frolll only E 2 and E 3 . Any of these conditions
lllay be elllpty; hence, it follows that the Cartesian product (x) operation
is also associative. The comlllutativity and associativity of join operations
are illlportant for join reordering in query optilllization.

7. The selection operation distributes over the theta-join operation under the fol
lowing two conditions:

a. It distributes when all the attributes in selection condition 80 involve only
the attributes of one of the expressions (say, E 1 ) being joined.

CYeo(E1 lXle E2 ) = (CYeo(E1 )) lXle E2

b. It distributes when selection condition 81 involves only the attributes of
E 1 and 82 involves only the attributesraf E 2 .

\
CYe1!\e2 (E1 lXle E2 ) = (CYe1(E1 )) lXle (CYe2(E2 ))

8. The projection operation distributes over the theta-join operation under the
following conditions.

a. Let L1 and L 2 be attributes of E 1 and E 2 , respectively. Suppose that the
join condition 8 involves only attributes in L1 U L 2 • Then,

IIL1UL2 (E1 lXle E 2 ) = (IIL1 (E1 )) lXle (IIL2 (E2 ))

b. Consider a join E 1 lXle E2 . Let L1 and L 2 be sets of,attributes from E
1

and E 2 , respectively. Let L 3 be attributes of E 1 that are involved in join
condition 8/ but are not in L1 U L 2 , and let L4 be attributes of E 2 that are
involved in join condition 8/ but are not in L1 U L 2 • Then,

IIL1UL2 (E1 lXle E 2 ) = IIL1UL2 ((IIL1UL3 (E1 )) lXle (IIL2uL4 (E2 )))

) 9. The set operations union and intersection are comlllutative.

E 1 U E2 E 2 U E 1

E 1 n E2 E 2 n E 1

Set difference is not commutative.

10. Set union and intersection are associative.

(E1 U E2 ) U E 3 E 1 U (E2 U E3 )

(E1 n E2 ) n E 3 E 1 n (E2 n E3 )



IIcustomer-name (CYbmnclrcity = "Brooklyn" (branch IXI (account IXI depositor)))

14.3.2 Examples of Transformations

Query Optimization

IIcustomer-name (CY bmnch- city = "Brooklyn" 1\ balance >1000
(branch IXI (account IXI depositor)))

We cannot apply the selection predicate directly to the branch relation, since
icate involves attributes of both the branch and account relation. However, we

was transformed into the following expression,

IIcustomer-name ( (CYbmnch-city = "Brooklyn" (branch)) IXI (account IXI depositor))

which is equivalent to our original algebra expression, but generates smaller
mediate relations. We can carry out this transformation by using rule 7.a. .L'-C::.LLL'_HLL

that the rule merely says that the two expressions are equivalent; it does not
one is better than the other.

Multiple equivalence rules can be used, one after the other, on a query or on
of the query. As an illustration, suppose that we modify our original to
attention to customers who have a balance over $1000. The new ..."'I,,.h.___.....,'"'

query is

cyp(E1 - E 2 ) = CYp(E1 ) - E 2

The preceding equivalence, with - replaced by n, also holds, but does not
hold if - is replaced by U.

12. The projection operation distributes over the union operation.

Branch-schema = (branch-name; branch-city, assets)
Account-schema = (account-number, branch-name, balance)
Depositor-schema = (customer-name, account-number)

Similarly, the preceding equivalence, with - replaced with either U or n, also
holds. Further,

11. The selection operation distributes over the union, intersection, and set
difference operations.

cyp(E1 - E 2 ) = CYp(E1 ) - CYp(E2 )

The relations branch, account, and depositor are instances of these schemas.
In our example in Section 14.1, the expression

We now illustrate the use of the equivalence rules. We use our bank example with
relation schemas:

This is only a partial list of equivalences. More equivalences involving extended
relational operators, such as the outer join and aggregation, are discussed in the ex-

ercises.

Chapter 14
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m, intersection, and set- apply rule 6.a (associativity of natural join) to transform the join branch !Xl (account !Xl

depositor) into (branch !Xl account) !Xl depositor:

Figure 14.3 Multiple transformations.

IIcustomer-name ((Jbranch-city = "Brooklyn" /\ balance> 1000

((branch !Xl account) !Xl depositor))

Then, using rule 7.a, we can rewrite our query as

IIcustomer-name (( (Jbmnch-city = "Brooklyn"/\ balance> 1000

(branch !Xl account)) !Xl depositor)

Let us examine the selection subexpression within this expression. Using rule I, we
can break the selection into two selections, to get the following subexpression:

(Jbmnch-city = "Brooklyn" ((Jbalance > 1000 (branch !Xl account))

Both of the preceding expressions select tuples with branch-city = "Brooklyn" and
balance> 1000. However, the latter form of the expression provides a new opportu
nity to apply the "perfonn selections early" rule, resulting in the subexpression

(Jbmnch-city="Brooklyn" (branch) !Xl (Jbalance>1000 (account)

Figure 14.3 depicts the initial expression and the final expression after all these
transformations. We could equally well have used rule 7.b to get the final expression
directly, without using rule 1 to break the selection into two selections. In fact, rule 7.b
can itself be derived from rules 1 and 7.a

A set of equivalence rules is said to be minimal if no rule can be derived from any
combination of the others. The preceding example illustrates that the set of equiva
lence rules in Section 14.3.1 is not minimal. An expression equivalent to the original
expression may be generated in different ways; the number of different ways of gen
erating an expression increases when we use a nonminimal set of equivalence rules.
Query optimizers therefore use minimal sets of equivalence rules.

(b) Tree after multiple transformations
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Now consider the following form of our example query:

IIcustomer-name ((CJbranch-city = "Brooklyn" (branch) IXI account) IXI depositor)

When we compute the subexpression

(CJbranch-city = "Brooklyn" (branch) IXI account)

we obtain a relation whose schema is

(branch-name, branch-city, assets, account-number, balance)

We can eliminate several attributes from the schema, by pushing projections based
on equivalence rules 8.a and 8.b. The only attributes that we must retain are those
that either appear in the result of the query or are needed to process subsequent
operations. By eliminating unneeded attributes, we reduce the number of columns
of the intermediate result. Thus, we reduce the size of the intermediate result. h10ur
example, the only attribute we need from the join of branch and account is account
number. Therefore, we can modify the expression to

IIcustomer-name (
( IIaccount-number ((CJ branclrcity = "Brooklyn" (branch)) IXI account)) IXI depositor)

The projection IIaccount-number reduces the size of the intermediate join results.

14.3.3 Join Ordering
A good ordering of join operations is important for reducing the size of ternOIJrall'V
results; hence, most query optimizers pay a lot of attention to the join order. As
tioned in Chapter 3 and in equivalence rule 6.a, the natural-join operation is ",cc'''r>''\c

tive. Thus, for all relations rl, r2, and r3,

(rl IXI r2) IXI r3 = rl IXI (r2 IXI r3)

Although these expressions are equivalent, the 'costs of computing them may
Consider again the expression

IIcustomer-name ((CJbranch-city = "Brooklyn" (branch)) IXI account IXI depositor)

We could choose to compute account IXI depositor first, and then to join the result

CJbranch-city = "Brooklyn" (branch)

However, account IXI depositor is likely to be a large relation, since it contains one
for every account. In contrast,

CJbranclrcity = "Brooklyn" (branch) IXI account

is probably a small relation. To see that it is, we note that, since the bank has
number of widely distributed branches, it IS likely that only a small fraction
bank's customers have accounts in branches located in Brooklyn. Thus, the
ing expression results in one tuple for each account held by a resident of
Therefore, the temporary relation that we must store is smaller than it
been had we computed account IXI depositor first.



That is, we could compute

IIcustomer-name (( (O"bmnch-city = "Brooklyn" (branch)) t><l depositor) t><l account)

&
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Query optimizers use equivalence rules to systematically generate expressions equiv
alent to the given query expression. Conceptually, the process proceeds as follows.
Given an expression, if any subexpression matches one side of an equivalence rule,
the optimizer generates a new expression where the subexpression is transformed to
match the other side of the rule. This process continues until no Inore new expres
sions can be generated.

The preceding process is costly both in space and in time. Here is how the space
requirement can be reduced: If we generate an expression E 1 from an expression
E 2 by using an equivalence rule, then E 1 and E 2 are sin1ilar in structure, and have
subexpressions that are identical. Expression-representation techniques that allow
both expressions to point to shared subexpressions can reduce the space requirement
significantly, and many query optimizers use them.

Moreover, it is not always necessary to generate every expression that can be gen
erated with the equivalence rules. If an optimizer takes cost estiInates of evaluation
into account, it may be able to avoid examining some of the expressions, as we shall
see in Section 14.4. We can reduce the time required for optimization by using tech
niques such as these.

first, and, after that, join the result with account. Note, however, that there are no
attributes in common between Branch-schema and Depositor-schema, so the join is just
a Cartesian product. If there are b branches in Brooklyn and d tuples in the depositor
relation, this Cartesian product generates b * d tuples, one for every possible pair of
depositor tuple and branches (without regard for whether the account in depositor is
maintained at the branch). Thus, it appears that this Cartesian product will produce
a large temporary relation. As a result, we would reject this strategy. However, if
the user had entered the preceding expression, we could use the associativity and
commutativity of the natural join to transfonn this expression to the more efficient
expression that we used earlier.

(O"bmnch-city = "Brooklyn" (branch)) t><l depositor

That is, natural join is commutative (equivalence rule 5).
Using the associativity and commutativity of the natural join (rules 5 and 6)/ we

can consider rewriting our relational-algebra expression as

There are other options to consider for evaluating our query. We do not care about
the order in which attributes appear in a joint since it is easy to change the order
before displaying the result. Thus, for all relations 1'1 and '1'2/

14.3.4 Enumeration of Equivalent Expressions
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depositor

Figure 14.4 An evaluation plan.
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IT customer-name (sort to remove duplicates)

I
t><l (hash join)

~/
t><l (merge join)

PiPey ~eline
(j branch-city=Brooklyn (j balance < 1000

I (use index 1) I(use linear scan)

branch account

One way to choose an evaluation plan for a query expression is simply to choose
each operation the cheapest algorithm for evaluating it. We can choose any V-Lu"'-.l.lJ"ll::

of the operations that ensures that operations lower in the tree are executed
operations higher in the tree.

However, choosing the cheapest algorithm for each operation independently is
necessarily a good idea. Although a merge join at a given level may be costlier
a hash join, it may provide a sorted output that makes evaluating a later
(such as duplicate elimination, intersection, or another merge join) cheaper.
a nested-loop join with indexing may provide opportunities for pipelining the
to the next operation, and thus may be useful even if it is not the cheapest

14.4.1 Interaction of Evaluation Techniques

Generation of expressions is only part of the query-optimization process, since each
operation in the expression can be implemented with different algorithms. An eval
uation plan is therefore needed to define exactly what algorithm should be used for
each operation, and how the execution of the operations should be coordinated. Fig
ure 14.4 illustrates one possible evaluation plan for the expression from Figure 14.3.
As we have seen, several different algorithms can be used for each relational opera
tion, giving rise to alternative evaluation plans. Further, decisions about pipelining
have to be made. In the figure, the edges from the selection operations to the merge
join operation are marked as pipelined; pipelining is feasible if the selection oper
ations generate their output sorted on the join attributes. They would do so if the
indices on branch and account store records with equal values for the index attributes

sorted by branch-na11'ze.

14.4 Choice of Evaluation Plans



-------------11I_
performing the join. To choose the best overall algorithm, we must consider even
nonoptimal algorithms for individual operations.

Thus, in addition to considering alternative expressions for a quer~ we must also
consider alternative algorithms for each operation in an expression. We can use rules
much like the equivalence rules to define what algorithms can be used for each op
eration, and whether its result can be pipelined or must be materialized. We can use
these rules to generate all the query-evaluation plans for a given expression.

Given an evaluation plan, we can estimate its cost using statistics estimated by
the techniques in Section 14.2 coupled with cost estimates for various algorithms
and evaluation methods described in Chapter 13. That still leaves the problem of
choosing the best evaluation plan for a query. There are two broad approaches: The
first searches all the plans, and chooses the best plan in a cost-based fashion. The
second uses heuristics to choose a plan. We discuss these approaches next. Practical
query optimizers incorporate elements of both approaches.
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