
Distributed and Parallel Databases, 6, 373-- 420 (1998)
c� 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Solving Local Cost Estimation Problem for Global
Query Optimization in Multidatabase Systems

QIANG ZHU qzhu@umich.edu
Department of Computer and Information Science, The University of Michigan - Dearborn,
Dearborn, MI 48128, USA

PER��AKE LARSON * palarson@microsoft.com
Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Abstract. To meet users’ growing needs for accessing pre-existing heterogeneous databases, a multidatabase
system (MDBS) integrating multiple databases has attracted many researchers recently. A key feature of an
MDBS is local autonomy. For a query retrieving data from multiple databases, global query optimization should
be performed to achieve good system performance. There are a number of new challenges for global query
optimization in an MDBS. Among them, a major one is that some local optimization information, such as local
cost parameters, may not be available at the global level because of local autonomy. It creates difficulties for
finding a good decomposition of a global query during query optimization. To tackle this challenge, a new query
sampling method is proposed in this paper. The idea is to group component queries into homogeneous classes,
draw a sample of queries from each class, and use observed costs of sample queries to derive a cost formula
for each class by multiple regression. The derived formulas can be used to estimate the cost of a query during
query optimization. The relevant issues, such as query classification rules, sampling procedures, and cost model
development and validation, are explored in this paper. To verify the feasibility of the method, experiments
were conducted on three commercial database management systems supported in an MDBS. Experimental results
demonstrate that the proposed method is quite promising in estimating local cost parameters in an MDBS.

Keywords: multidatabase, global query optimization, cost model, query sampling, multiple regression

1. Introduction

A multidatabase system (MDBS) integrates data from multiple pre-existing databases
managed by heterogeneous component (local) database systems (DBS) in a distributed
environment. The MDBS can only interact with component DBSs at their external user
interfaces. A key feature of an MDBS is the local autonomy that individual DBSs retain
to serve existing applications [2]. Briefly speaking, local autonomy refers to the situation
where each component DBS retains complete control over its local data and operations.

The term MDBS has been used by different people to mean different things [20]. Litwin
et al. [11] use it to mean a system managing multiple databases without a global schema.
The essential component of such an MDBS is a language used to manage interoperable
databases. Local database systems are loosely coupled. Local autonomy is fully supported.
Dayal and Hwang [6], Breitbart and Silberschatz [1], Lu et al. [13], and many others use

* Current address: Microsoft Corporation, One Microsoft Way, Redmond, WA 98052--6399, USA

374 Q� ZHU AND P���A� LARSON

the term MDBS to mean a system managing multiple databases with one or more global
schemas. The essential component of such an MDBS is a global system built on top of
the component DBSs to provide global query optimization, transaction management, and
other global services. Local database systems are more tightly coupled than the previous
model. Local autonomy is supported to certain degree. In this paper, we adopt the latter
MDBS model.

A user who interacts with an MDBS is called a global user. A user who interacts with a
component DBS in the MDBS is called a local user. An MDBS provides a global user with
a simple and consistent view of database access. A global user can issue a global query
for retrieving data from several component databases. To achieve good overall system
performance, global query optimization is needed.

Local autonomy poses new challenges for global query optimization in an MDBS
[13, 20, 24]. Among them, the crucial one is that some local information needed for
global query optimization, such as local cost parameters, may not be available at the global
level. Because of local autonomy, a component DBS may not expose all its information
at the global level. Lack of local information increases the difficulty for the global query
optimizer to choose a good strategy for executing a global query. The global query
optimizer needs some local information to decide how to decompose a global query into
component queries and where to execute the component queries. To perform global query
optimization, the problem of how to estimate local cost parameters in an MDBS needs to
be solved.

Recently, several researchers have been investigating how to solve this crucial problem
for global query optimization in an MDBS. In general, if an autonomous component DBS is
viewed as a black box whose optimization information is hidden from the global optimizer,
there are three potential approaches to obtain or estimate local optimization information
[26, 28]:

� performing some testing queries to test the black box;

� guessing necessary information subjectively based on external characteristics of and
previous knowledge about the black box;

� monitoring the behavior of the black box at run time and dynamically collecting
necessary information.

The third approach is actually a type of adaptive query optimization that can be
implemented by borrowing existing adaptive query optimization techniques in the literature.
Lu and Zhu [12, 24] discussed some issues for applying this approach to an MDBS.

The first two approaches are relatively new and were investigated recently. In [7], Du
et al. proposed a calibration method to deduce necessary local information. This method
belongs to the first approach. The idea is to construct a local synthetic calibrating database
(with some special properties), and then run a set of special queries against this database.
The access method used for executing such a query is known because of the special
properties of the database and query. Cost metrics for the queries are recorded and used
to deduce the coefficients in the cost formulas for the access methods supported by the
underlying local database system by using the properties of the database and queries.

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 375

In [27], we introduced an alternative method, called the query sampling method, which
also belongs to the first approach. The idea is to classify queries according to their potential
access methods to be used, then perform sample queries against the actual underlying
database, and use observed costs to derive a local cost formula for each query class by
multiple regression. Since the actual underlying database rather than a synthetic database
is used in the method, the derived cost formulas are expected to reflect the performance of
the real user environment better.

In [24], Zhu suggested to perform carefully-designed probing queries on a component
database to probe and deduce some optimization information. In fact, sample queries can
be considered as a special type of probing queries. In [25], Zhu discussed the issues faced
in estimating selectivities of queries in an MDBS environment.

In [26, 28], we also proposed a fuzzy optimization method which belongs to the
second approach. The idea is to build a fuzzy cost model based on experts’ knowledge,
experience and guesses about the required optimization parameters and perform fuzzy
query optimization based on the fuzzy cost model.

Our results about the query sampling method reported in [27] were preliminary. For
instance, the query classification rules, cost formulas and statistical procedures presented
there were simplistic. In this paper, we will fully explore and further extend this method.
More query classification rules, new sample queries, and a new statistical procedure
to automatically generate a suitable cost formula for a query class are proposed. The
feasibility of the method was verified experimentally on three commercial database
management systems (DBMS). This method was designed for an MDBS prototype, called
CORDS-MDBS, that was developed jointly by the University of Waterloo and the Queen’s
University.

Although a number of sampling techniques have been applied to query optimization
in the literature, all of them perform data sampling (i.e., sampling data from databases)
instead of query sampling (i.e., sampling queries from a query class). Muralikrishna and
Piatetsky-Shapiro et al. [14, 19] discussed how to use data sampling to build approximate
selectivity histograms. Hou and Lipton et al. [8, 10] investigated several data sampling
techniques, e.g., simple sampling, adaptive sampling and double sampling, to estimate the
size of a query result. Olken et al. [16] considered the problem of constructing a random
subset of a query result without computing the full result. All their work is about performing
a given query against a sample of data and deriving properties for the underlying data (e.g.,
selectivities). The query sampling method presented in this paper considers performing a
sample of queries against the (entire) underlying database and deriving a property about a
query performed on the underlying DBMS, i.e., performance of the query on the DBMS.

The rest of this paper is organized as follows. Section 2 will introduce the key idea and
assumptions of the query sampling method. To carry out the query sampling method, one
has to solve the following three main problems: (1) how to classify queries, (2) how to draw
sample queries, (3) how to derive satisfactory cost formulas. These issues will be discussed
in Sections 3 � 5, respectively. Section 6 will report our experimental results to show the
feasibility of the query sampling method. Section 7 will summarize the conclusions and
list some future research issues.

376 Q� ZHU AND P���A� LARSON

2. Methodology

To solve the incomplete local information problem in an MDBS, this paper presents a query
sampling method that is based on statistical sampling and regression analysis techniques.
Before describing the idea of the method, let us first make some assumptions.

2.1. Assumptions and Notations

2.1.1. Considered query set Different component DBMSs may adopt different local
data models. At the global level of an MDBS, there usually is a common global data
model. In our MDBS prototype, the global data model is assumed to be relational. Each
component DBMS is associated with an MDBS agent which provides a relational interface
if the component DBMS is non-relational. Hence, the global query optimizer in the MDBS
may view all participating component DBMSs as relational ones.

Many possible queries can be issued against a component database. Since most common
queries can be expressed by a sequence of select (�), project (�) and join (�), only these
three types of operations (so-called ‘‘work-horse’’ operations in the relational model) are
considered in this paper. The cost of a query composed from these operations can be
estimated by composing the costs of the operations. Aggregates are not considered in
this paper. However, the ideas and methods to be discussed in this paper can be directly
extended to handle a query with aggregates. In real systems a project is usually computed
together with the select or join that it follows, so we will not consider it separately. A
select that may or may not be followed by a project is called a unary query. A join that may
or may not be followed by a project is called a join query. Since the majority of practical
joins are equijoins, only equijoins are considered. The method can be easily extended to
handle general joins.

Let G be the set of all component (unary and join) queries that can be issued against
a component database DB. Let Ri �� � i � K� denote a table in DB; ��i� denote a
non-empty list of columns in Ri �� � i � K�; ��ij� denote a non-empty list of columns
in Ri and Rj �� � i� j � K�; F �i� denote the qualification of a query on Ri; F �ij�

denote the qualification of a query on Ri and Rj ; Ri�an �n � �� denotes a column of
Ri (the prefix Ri can be omitted if no ambiguity); C �i�an� be a constant in the domain
of column Ri�an (the superscript is sometimes omitted if no confusion). Without loss of
generality, the qualifications of queries are assumed to be in conjunctive normal form.
The basic predicates allowed for unary queries are of the form Ri�an � C�i�an�, where
� � f�� ��� �������� nilg. Ri�an nil C

�i�an� stands for the ‘true’ (empty) predicate,
also called a dummy basic predicate. The basic predicates allowed for join queries are of
the forms Ri�an � Rj �am as well as Ri�an � C�i�an�. Since we only consider equijoin
queries, each join query has at least one conjunct Ri�an � Rj �am. Let � and � denote the
logical connectives AND and OR, respectively, and jX j denote the cardinality of set X .

2.1.2. Characteristics of cost estimation for query optimization In order to perform
global query optimization in an MDBS, costs of component queries need to be estimated.
The global query optimizer decides where to perform component queries and how to transfer

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 377

intermediate results among local sites, based on the estimated costs. For the estimated
costs, the more accurate, the better. However, there are several relaxed characteristics of
cost estimation for query optimization, three of which are discussed as follows.

The first relaxed characteristic is that the required precision of estimation is not as high
as in many engineering applications. In other words, estimation errors can be tolerated to
certain degree. The reason for this is that the goal of most practical query optimizers is to
find a good execution plan for a query rather than a truly optimal execution plan for the
query. As long as an estimated cost and a real cost are of the same order of magnitude, the
estimated cost is usually acceptable. For example, if the costs of two execution plans for a
query are of the same order of magnitude, such as several seconds, or several thousands of
seconds, the two plans can be considered of the same goodness because one is not much
better than the other. However, if the cost of one plan is several seconds, while the cost
of another is several thousands of seconds, the former is obviously much better than the
latter.

Another relaxed characteristic of cost estimation for query optimization is that it is
usually satisfactory if most estimated costs are within an acceptable error range. In other
words, it is tolerated if a few estimated costs have unacceptable errors. The reason for this
is that a practical query optimizer is said to be good if it can improve the performance of
most queries, not necessarily all queries.

The last relaxed characteristic is that the accuracy of estimated costs for frequently-used
queries is more important than the accuracy of estimated costs for rarely-used queries. This
implies that we can sacrifice the latter to guarantee the former if it is hard to satisfy both
due to estimation overhead, complexity and/or other reasons.

2.2. Idea of Query Sampling Method

The main idea of the query sampling method to be discussed in this paper is described
in Figure 1. The first step of the method is to group all possible queries on a component
database into more homogeneous classes so that the costs of queries in each class can be
estimated by the same formula. This can be done by classifying queries according to their
potential access methods. A sample of queries are then drawn from each query class and
run against the actual component database. The costs of sample queries are recorded and
used to derive a cost formula for the queries in the query class by multiple regression.
The coefficients of the cost formulas for the component database system are kept in the
multidatabase catalog and retrieved during query optimization. To estimate the cost of
a query, the query class to which the query belongs needs to be identified first, and the
corresponding cost formula is then used to give an estimate for the cost of the query.

To classify queries, a number of relevant issues need to be studied, such as what useful
information is available for classification, what rules can be used for classification, and
what procedure can be applied to classification. To draw sample queries from query classes,
several relevant issues should be investigated, such as what query sampling approach is
appropriate, what sampling procedures can be used for different query classes, and how to
get good sampling procedures. To derive cost formulas for query classes, some relevant
issues must be considered, such as what variables can be included in a cost formula, what

378 Q� ZHU AND P���A� LARSON

classify

Start

draw a sample of
queries from each

class

perform sample
queries on the

derive a cost
formula for each

class

measured costs

+ multiple regression

Cost Estimation Formulas

Database

component query set

component queries

component DBMS

DBMS
component

Figure 1. The Idea of Query Sampling Method

cost formulas are suitable for different query classes, how the goodness of a cost formula
can be evaluated. All these issues are to be discussed in the following sections.

3. Classification of Queries

The first step of the query sampling method is to classify the set of component queries
that can be performed on a component DBS. The objective is to group queries into more
homogeneous classes so that the costs of queries in each query class can be estimated by
the same formula. This section discusses how to obtain such a query classification.

3.1. Useful Information for Classification

The costs of queries executed by using the same access method, such as a sequential scan
or a nested-loop join, can be estimated quite accurately by the same formula. Therefore,
it is a good principle to classify queries according to their employed access methods.
However, which access method to be used for a component query may not be known at
the global level in an MDBS. It depends on the underlying component DBMS.

Fortunately, there are some common rules for choosing an access method in many
DBMSs. Based on these common rules and some other available information, we can
group queries into more homogeneous classes. The costs of all queries in one class are
estimated by the same formula. If available information is sufficient, we can classify
queries in such a way that each class corresponds to one access method. The estimated
costs are expected to be quite accurate in this case. If the available information is not

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 379

sufficient, it is possible that queries executed by different access methods are put in the
same class. Since the practical goal of query optimization in an MDBS is the same as
those of many traditional query optimizers, that is, avoiding bad execution plans instead of
achieving a truly optimal one, estimation errors can be tolerated to some degree.

Unlike a query optimizer in a traditional DDBS, the global query optimizer in an MDBS
has limited available information. To classify queries, the following types of information
can be exploited:

� characteristics of queries: such as query types (unary or join), the number of conjuncts,
types of predicates and so on. This type of information can be obtained by analyzing
the syntax of a given query.

� characteristics of operand tables: such as cardinality of a table, the number of columns,
indexed columns, clustered-indexed columns and so on. This type of information can
usually be obtained from the multidatabase catalog or local catalogs.

� characteristics of underlying component DBMSs: such as types of supported access
methods and maybe rules for choosing an access method for a query. This information
can be obtained from the documentation of a component DBMS, such as DBA’s
(database administer) guidance.

The above types of information are generally available from most DBMSs, hence we
assume that they are the minimum available information at the global level in an MDBS.
Some other types of information, such as (estimated) sizes of result tables, can also be used
for classification. Some component DBMSs may provide additional information, such as
the execution plan generated for a query. The additional information can be used to refine
a classification, resulting in more accurate cost estimates.

3.2. Common rules

There are some common rules adopted in many DBMSs for choosing an access method for
a query. These common rules can be used to classify queries. For example, the following
common rule is obviously true for all DBMSs:

r�: a unary query and a join query are executed by using different access methods.

Based on this rule, we can put unary queries and join queries into two separate classes.
Some other common rules are listed in Tables 1 and 2.

A common rule, such as r�, is said to be inapplicable if either the underlying DBMS
does not support the relevant access method or the qualification of the query does not
have a required conjunct. A predicate Ri�an � C �� � f�� �� �� �� �g� is said to
be index-usable if Ri�an is (clustered or non-clustered) indexed. A conjunct is said to be
index-usable if every predicate in the conjunct is index-usable. For example, the conjunct
�R��a� � � � R��a� � � � R��a� � �	 is index-usable if all the predicates involving
R��a�, R��a� and R��a�, respectively, are index-usable.

Each common rule in Tables 1 and 2 specifies what queries are most likely to be executed
by the same access method. Therefore, the qualified queries for each common rule can be
put into the same query class.

380 Q� ZHU AND P���A� LARSON

Table 1. Some Common Rules for Unary Queries

Label Description of Common Rules
r� a clustered-index scan method with a key value is usually chosen if the qualification of

a query has at least one conjunct Ri�an � C where Ri�an is clustered-indexed
r� an index scan method with a key value is usually chosen if r� is inapplicable and the

qualification of a query has at least one conjunct Ri�an � C where Ri�an is indexed
r� a clustered-index scan method with a range is usually chosen if r� and r� are

inapplicable and the qualification of a query has at least one conjunct Ri�an � C
where Ri�an is clustered-indexed and � � f�������� g

r� an index scan method with a range is usually chosen if r� � r� are inapplicable and the
qualification of a query has at least one conjunct Ri�an � C where Ri�an is indexed

r� a sequential scan method is usually chosen if r� � r� are inapplicable

Table 2. Some Common Rules for Join Queries

Label Description of Common Rules
r� a clustered-index join method is usually chosen if the qualification of a query has at least

one conjunct Ri�an � Rj �am where either Ri�an or Rj �am is clustered-indexed
r� an index join method is usually chosen if r� is inapplicable and the qualification of a

query has at least one conjunct Ri�an � Rj �am where either Ri�an or Rj �am is indexed
r� a nested-loop join method with reduction on operand table(s) via index(es) is usually

chosen if r� and r� are inapplicable and the qualification of a query has at least one
index-usable conjunct for Ri or Rj

r	
 a sort-and-merge join method is usually chosen if r� � r� are inapplicable

These common rules are valid for many DBMSs. However some of them may need to
be adjusted for a specific DBMS because an actual rule for choosing an access method in
the DBMS may not be consistent with one or more common rules discussed above.

For example, a DBMS may choose a sequential scan method if r� � r� are inapplicable
and the qualification of a given query has at least one conjunct Ri�an � C where Ri�an is
indexed and � � f�� �� �� �g. This rule is inconsistent with common rule r� in Table
1. This rule can then be merged with rule r� to get a new rule r��. We may, therefore,
replace r� and r� by this actual rule r�

�
when we classify queries for the DBMS.

In fact, if we keep using r� and r� to classify queries for this DBMS, the obtained
classification is still good. The reason for this is that we then get two classes and each of
them consists of the queries executed by the same access method although the name of the
access method for one class is guessed incorrectly. Hence the name of the access method
in a common rule is not essential. The important thing is that the relevant queries employ
the same access method.

Furthermore, even if the queries in a class employs different access methods, as long as
these access methods behave similarly in terms of performance the classification is still
satisfactory.

If the developer of a component DBMS is the same as the developer of the MDBS, all
actual rules for choosing access methods on the DBMS are known. Some actual rules may
be cost-based; i.e., if the value of a cost function is less than the value of another, an access
method is chosen; otherwise, another access method is chosen. They can be used in the
same way as a heuristic-based rule for classification.

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 381

In general, the more information we have about a component DBMS (rules), the better
classification would result.

Many (component) DBMSs can describe (explain) the access method chosen for a
(component) query. For this type of DBMSs, the common rules can be verified by running
some test queries and observing their access methods. Actual rules on such a DBMS can
be guessed via experiments. The common rules used for classification can be adjusted
accordingly. For those DBMSs that do not provide any information about the execution
of a query, the discussed common rules can be assumed to be valid. The goodness of
the classification depends on the degree of agreement between the common rules and the
actual rules. Since the common rules are usually robust, we expect such a classification to
be acceptable. In fact, nowadays more and more DBMSs tend to provide an explain facility
for execution plans (access methods). Therefore, only a few DBMSs do not provide any
useful information about the execution of a query.

3.3. Classification Procedure

A query classification procedure can be described as follows. Initially, there is one class
that is the entire set G of given queries. Query class G can then be divided into two smaller
classes:

G � G� 	 G�� (1)

where G� � funary queriesg, G� � fjoin queriesg. This classification is based on
common rule r� and syntax information about the queries.

If we know more rules for choosing access methods for queries in a component DBMS,
we can refine the classification (1). For example, if we know the common rule r� in Table
1 is valid for the component DBMS, we can divide G� into two smaller classes:

G� � G� � 	 G�
�
�

where

G� � � f unary queries whose qualifications have at least one conjunct

Ri�an � C where Ri�an is clustered
 indexed g�

G�� contains the queries inG� that are not inG� �. This classification refinement is actually
based on information about query syntaxes, operand tables, and supported access methods.

If we know that the common rules r� � r� in Table 1 are also valid for the component
DBMS, we can further divide G�

� into smaller classes:

G�� � G� � 	 G� � 	 � � � 	 G� ��

where

G� � � f unary queries whose qualifications have at least one conjunct

Ri�an � C where Ri�an is indexed g
 G� ��

G� � � f unary queries whose qualifications have at least one conjunct

Ri�an � C where Ri�an is clustered
 indexed g
 G� �
 G� ��

382 Q� ZHU AND P���A� LARSON

G� � � f unary queries whose qualifications have at least one conjunct

Ri�an � C where Ri�an is indexed g
 G� �
 G� �
 G� ��

G� � � G�
 G� �
 G� �
 G� �
 G� ��

G� � � G� � are the query classes generated by common rules r� � r�, respectively.
Similarly, if we know that the common rules r� � r�� in Table 2 are valid for the

component DBMS, we can divide G� into smaller classes:

G� � G� � 	 G� � 	 � � � 	 G� ��

where

G� � � f join queries whose qualifications have at least one conjunct

Ri�an � Rj �am where either Ri�an or Rj �am is clustered
 indexed g�

G� � � f join queries whose qualifications have at least one conjunct

Ri�an � Rj �am where either Ri�an or Rj �am is indexed g
 G� ��

G� � � f join queries whose qualifications have at least one index

usable conjunct for at least one operand table g
 G� �
 G� ��

G� � � G�
 G� �
 G� �
 G� ��

G� � � G� � are the query classes generated by common rules r� � r��, respectively.
In principle, any of classes G� i� G� j �� � i �
� � � j � �� can be further divided into

smaller classes if more information is available (see Figure 2).

G1

G12 G13 G15

G11

G2

G21 G22 G24

G

G1’

Figure 2. Classify Queries in Top-down Approach

For example, in some DBMSs, such as ORACLE 7.0, an access method by concatenating
indexes may be supported to make use of an index-usable conjunct, such as R��a� �
� � R��a� � �
 where R��a� and R��a� are indexed for a query in G� �. Then the
class G� � can be further divided into two smaller classes --- one G�

� � contains queries
having one or more index-usable conjuncts and the other G ��

� �
contains queries without

such conjuncts. In fact, index-usable conjuncts can be divided into equality index-usable
conjuncts (i.e., Ri�an � C�Ri�an�, where Ri�an is clustered or non-clustered indexed, for
G� � 	 G� �) and non-equality index-usable conjuncts (i.e., other index-usable conjuncts
for G� � 	 G� � 	 part of G�� �). Furthermore, equality index-usable conjuncts can

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 383

be refined into equality clustered-index-usable conjuncts (i.e., Ri�an � C�Ri�an�, where
Ri�an is clustered-indexed, for G� �) and equality non-clustered-index-usable conjuncts
(i.e., Ri�an � C�Ri�an�, where Ri�an is non-clustered-indexed, for G� �). It is similar for
non-equality index-usable conjuncts, i.e., further refining G� � 	 G� � 	 part of G�� �.
The similar rules can be applied to refine G� � where the situation is more complicated
because left and right index-usable conjuncts may occur.

As another example, any class can be divided into smaller classes according to the
(estimated) sizes of query result tables (or operand tables) because a DBMS may adopt
different processing and buffering strategies to handle queries with different result sizes.

Also, the query classes can be refined according to the data type(s) of referenced
column(s), because the same access method may behave differently for different data types
in term of performance.

In addition, a join query class can be refined according to whether there is a joining
column pair which satisfies a referential integrity constraint.

The classification of queries may vary from one DBMS or application to another. In
general, a refined classification is expected to yield better cost estimates because each
query class is usually more homogeneous in terms of performance. However, the overhead
of maintaining the cost parameters grows as the number of query classes increases. A
trade-off between estimation accuracy and maintenance overhead is required.

After a classification is given, as we will see, a cost estimation formula will be derived
for each class. However, it is possible that we cannot find a satisfactory cost formula for
a particular class. In that case, the classification needs to be re-considered and refined
by trying to use some more information and/or guesses. Therefore, in practice, the
classification procedure and the cost formula derivation may need to be iterated several
times before satisfactory cost estimation formulas can be achieved.

Some component DBMSs in an MDBS may retain strong local autonomy in the sense
that not much information is available at the global level for query classification. In this
case, the assumed common rules and some estimated information are used to classify
queries. The goodness of derived cost formulas depends on the agreement between the
assumed/estimated information and the actual information in the component DBMS. Some
warnings can be issued to the global query optimizer to alert this case. The global query
optimizer must use such derived cost formulas with caution during query optimization.

The classification �c that consists of G� � � G� � and G� � � G� � is called a
common classification, because it is valid for many component DBMSs (probably with
some minor changes). A query class in �c is called a common query class. The common
classification will be used as a representative classification in the following discussion of
the query sampling method. The conclusions derived on the common classification are
quite typical and can be generalized to other possible classifications.

4. Sampling Queries

Using the method discussed in Section 3, one can group queries into more homogeneous
classes. It is too expensive or even impossible to perform all queries in each class to obtain
cost information because the number of queries in a class is usually huge. How can we
solve this problem? As we know, sampling is an example of inductive logic by which

384 Q� ZHU AND P���A� LARSON

conclusions can be inferred on the basis of a limited number of instances. If each query
class is considered as a population, a sample of queries can be drawn from each population.
It is expected that a small number of sample queries can represent the whole population so
that the cost estimation formula derived from the observed costs of sample queries can be
used to give a good estimate for the cost of a query in the population. The question is how
to draw such a sample of queries from a query class. This is the issue to be considered in
this section.

4.1. Two-Phase Sampling Approach

There are a number of ways for a sample to be drawn from a population [4]: probability
sampling (e.g., simple random sampling, stratified sampling, cluster sampling, multi-
stage cluster sampling, systematic sampling, etc.), judgment sampling, and convenience
sampling. Probability samples have one thing in common: the sampling units are chosen
according to a probability plan. These samples usually lead to estimators whose properties
can be evaluated formally. Judgment sampling is useful when the sample is to be very small,
the population is very heterogeneous, or special skills are required to form a representative
subset of the population. The quality of a judgment sample depends on the competence of
the expert who selects the sampling units. Convenience samples are prone to bias by their
very nature --- selecting sampling units that are convenient to choose almost always makes
them special or different from the rest of sampling units in the population in some way.

What sampling method is suitable for our problem? One practical difficulty in sampling
queries from a query class is that it is usually hard to enumerate all queries in the class
because of the large number and heterogeneity of the queries. Furthermore, a sample is
required to be small compared with the size of a query class, because the overhead of
performing sample queries should be reasonable. Fortunately some known characteristics
of queries can help us to choose sample queries and reduce the sample size. In other
words, judgment sampling is useful here to choose representative sample queries for a
query class based on our knowledge about the queries. However, our knowledge is usually
not sufficient to get a small enough representative sample. Therefore, it is also necessary
to apply other sampling methods to further reduce the size of a sample. In fact, some
probability sampling methods can be applied in the second stage. Since a query class
is usually very complicated, a single probability sampling technique may still not be
sufficient to handle all cases well. Hence several probability sampling techniques may be
combined in a sampling procedure.

In summary, we adopt a two-phase sampling approach to perform query sampling. The
idea is to draw a sample of queries from a query class in following two phases (see Figure
3):

Phase I: use judgment sampling to select a set of representative queries, which will serve
as a frame for further sampling in the second phase, from a query class based on some
knowledge about the queries,

Phase II: use one or more probability sampling techniques to draw a sample of queries
from the set of representative queries.

In the following two subsections, these two phases will be discussed in more details.

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 385

stratified sampling

cluster samplingsimple random sampling

Sampling

Judgment Mixed

Sampling
Probabilityquery class

representative queries
sample queries

Phase IIPhase I

knowledge about
queries & DBMS

Figure 3. Two-Phase Sampling Approach

4.2. Choosing Representative Queries

What sample queries to be drawn from a query class depends on the query class. It
is hard to describe query sampling without a specific query class. In this section, we
mainly discuss how to draw sample queries from the common query classes G� � � G� �

and G� � � G� � introduced in Section 3.3. Since the common classification is quite
typical, many principles discovered here can be applied or extended to other possible
classifications.

In this subsection, we discuss how to find queries that can represent a large number of
other queries in a given query class in terms of performance behavior. Our goal is to find
a set of representative queries for a given query class so that the set can serve as a good
frame for further sampling for the query class. If this set of queries is used to represent the
query class, many other queries can be removed from consideration in the second phase of
query sampling.

We notice that the performance of two similar predicates is similar; for instance,
Ri�an � C and Ri�an � C; Ri�an � C and Ri�an � C; Ri�an �� C and the
‘true’ predicate. Thus they can represent each other. We, therefore, only consider the
comparison operators �� �� �� and � for the predicates in the representative queries for
a query class. In other words, ��� and nil are represented by �� � and ��, respectively.

We also notice that each query in a unary query class G� � � G� � has a conjunct
(maybe more than one) that determines the access method chosen for the query, such as
Ri�an � C (where Ri�an is clustered-indexed) for a query in G� �. Such a key conjunct
hence dominates the performance of the query. Other conjuncts, if any, in the qualification
of the query usually do not affect the performance of the query as significantly as a key
conjunct does.

Example� For the following unary query �
R��a��� � R��a����

�R�� on table R��a�� a��,
where R��a� is indexed and R��a� is sequential, the key conjunct R��a� � � determines
that the access method used for the query is the index scan method with a key value. Thus
a component DBMS fetches all tuples that satisfy R��a� � � through the index on R��a�.
For each fetched tuple, the DBMS checks if the other conjunct R��a� � � is satisfied.

Clearly, the major cost here is to fetch the tuples fromR�. The cost for checking the second
conjunct is relatively small. In other words, there is no significant performance difference
between the queries with qualifications R��a� � � and R��a� � � � R��a� � �,

386 Q� ZHU AND P���A� LARSON

respectively. Moreover, there is no significant performance difference among queries
with qualifications R��a� � �, R��a� � � � �R��a� �
 � R��a� � ��, R��a� �
� � R��a� � �, and other qualifications that contains key conjunct R��a� � �. Hence
the key conjunct should be included in the qualification of a representative query that
represents all the other queries whose qualifications contain this key conjunct.

However, although key conjunct R��a� � � determines the performance of the queries
with qualifications R��a� � � � F , the remaining part F of such a qualification may
change the size of the result table which, as we will see, is one of the input parameters
for the relevant cost formula. In order to take this effect into consideration, we use simple
predicates R��am 	 C���am� to represent F . In other words, we use the following set of
qualifications

f R��a� � � � R��am 	 C���am� j 	 � f �� ��� �� � g and

C���am� is any constant in the domain of R��am and m � � or � g

to represent the set of qualifications below:

f R��a� � � � F j F is any legal partial qualification g�

In general, for a unary query class GU � fG� �� G� �� G� �� G� �g, let XP be the set of
queries in GU whose qualifications contain a key conjunct P ; i.e.,

XP � f �
��i�

��
P � F

�Ri�� j P � F is a legal qualification of

a query on Ri in GU g� (2)

We use the following set of queries

XRP � f �
��i�

��
P � Ri�am � C�i�am�

�Ri�� j P � Ri�am 	 C�i�am�

is a legal qualification of a query on Ri in GU �

am is any column in Ri� and 	 � f�� ��� �� �g g (3)

to represent XP . We call Ri�am 	 C�i�am� an auxiliary predicate (conjunct) of the
query �

��i�
��

P � Ri�am � C�i�am�
�Ri��. The union of all such XRP ’s for all possible key

conjuncts P ’s is used as the set UR of representative queries for GU ; that is,

UR �
	
P�� XRP (4)

where
 is the set of all possible key conjuncts for the queries in GU .
For unary query class G� �, any conjunct in the qualification of a query is a key conjunct.

Since there is no significant difference among the key conjuncts for such a query in terms
of performance, we choose to consider the key conjuncts of simple forms� Ri�an � C

�i�an�

where � � f�� �� �� ��g. Using such key conjuncts in (2) � (4), we can get the set of
representative queries for G� �.

Table 3 shows the possible representative query forms for the common unary query
classes. The key conjunct referenced in a representative query is called a representative
key conjunct�.

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 387

Table 3. Representative Query Forms for Common Unary Query Classes

Query Representative
Class Query Forms Conditions
G	 	 �

��i�
��

Ri�an � C�i�an� � Ri�am � C�i�am�
�Ri�� Ri�an is clustered-indexed

G	 � �
��i�

��
Ri�an � C�i�an� � Ri�am � C�i�am�

�Ri�� Ri�an is indexed; 	 cannot be ‘‘=’’

if Ri�am is clustered-indexed
G	 � �

�
�i�
�

��
Ri�an � C

�i�an�
�

� Ri�am �� C
�i�am�

�Ri�� Ri�an is clustered-indexed; 		 (�)

�
�
�i�
�

��
Ri�an � C

�i�an�
�

� Ri�ak �� C
�i�ak�

�Ri�� cannot be ‘‘=’’ if Ri�am �Ri�ak�

is clustered-indexed or indexed
G	 � �

�
�i�
�

��
Ri�an � C

�i�an�
�

� Ri�am �� C
�i�am�

�Ri�� Ri�an is indexed; 		 (�) cannot

�
�
�i�
�

��
Ri�an � C

�i�an�
�

� Ri�ak �� C
�i�ak�

�Ri�� be ‘‘=’’ if Ri�am �Ri�ak� is indexed;

		 (�) can only be ‘‘��’’ if Ri�am
�Ri�ak� is clustered-indexed

G	 � �
�
�i�
�

��
Ri�an � C

�i�an�
�

� Ri�am �� C
�i�am�

�Ri�� Only the 2nd form is allowed if Ri�an

�
�
�i�
�

��
Ri�an �� C

�i�an�
�

� Ri�ak �� C
�i�ak�

�Ri�� is clustered-indexed or indexed.

�
�
�i�
�

��
Ri�an � C

�i�an�
�

� Ri�ap �� C
�i�ap�

�Ri�� 		 (�� 	�, or 	�) can only be ‘‘��’’

�
�
�i�
�

��
Ri�an � C

�i�an�
�

� Ri�aq �� C
�i�aq �

�Ri�� if Ri�am (Ri�ak� Ri�ap, or Ri�aq)

is clustered-indexed or indexed

�
��i�

��
Ri�an � C�i�an� � Ri�am �� C�i�am�

�Ri��, for example, is one representative query

form forG� �. For each representative query form, many concrete queries can be generated
by instantiating different values for the parameters of Ri, an, am, C�i�an�, 	�, C�i�am� and
��i�. For instance, the following queries

�
R��a��R��a�

��
R��a� � �� � R��a� � 	�

�R����

�
R��a��R��a��R��a�

��
R��a� � � � R��a� � ���

�R����

�
R��a�

��
R��a� � � � R��a� �
�

�R����

�
R��a��R��a��R��a��R��a�

��
R��a� � ��� � R��a� �� ��

�R���

are generated from the above representative query form, where R��a�, R��a� and R��a�
are clustered-indexed,R��a�, R��a� and R��a� are sequential.

Let us now consider join query classes. Except the queries in G� �, each query in
G� �� G� � orG� � has a joining predicate conjunct (maybe more than one) that determines
the access method for the query, such as Ri�an � Rj �am (where Ri�an or Rj �am is
indexed) for a query in G� �, and any joining predicate Ri�an � Rj �am for a query in
G� �. Such a key conjunct dominates the performance of the query.

Example� For the following join query R�
�

R��a��R��a� � R��a��R��a�
R�� on the tables

R��a�� a�� and R��a�� a��, where only R��a� is indexed and all other columns are
sequential, the key conjunct R��a� � R��a� implies that the index join method is usually
used for the query. For each tuple inR�, a DBMS uses the index onR��a� to fetch the tuples
satisfyingR��a� � R��a� and then checks if the other conjunctR��a� � R��a� is satisfied.
Hence, there is no significant difference between the two qualifications R��a� � R��a�

388 Q� ZHU AND P���A� LARSON

and R��a� � R��a� � R��a� � R��a� in terms of performance. However, for the above
join query, if it has another conjunct R��a� � �
, the DBMS may use this conjunct to
reduce the size of R� before starting the above evaluation procedure. Thus, such unary
conjunct(s) may affect the performance of a join query significantly. We, therefore, use
qualifications of the form R��a� � R��a� � R��x� 	� C���x�� � R��x� 	� C���x��

to represent the qualifications R��a� � R��a� � � � �, where x�� x� � fa�� a�g and
	�� 	� � f������ ��g. The auxiliary unary conjuncts also reflect the impact of the
remaining part of a qualification other than the key conjunct on the size of the result table.

In general, for a join query class GJ � fG� �� G� �� G� �g, let YP be the set of queries
in GJ whose qualifications contain a key conjunct P ; i.e.,

YP � f �
��i j�

�Ri
�

P � F
Rj� j P � F is a legal qualification

of a query on Ri and Rj in GJ g� (5)

We use the following set of queries

Y RP � f �
��i j�

�Ri
�

Ri�ap �� C
�i�ap� � P � Rj�aq �� C

�j�aq �
Rj� j

Ri�ap 	� C
�i�ap� � P � Rj �aq 	� C

�j�aq � is a legal qualification of

a query in GJ � ap is any column of Ri� aq is any column of Rj �

and 	�� 	� � f�� �� �� ��g g (6)

to represent YP . We also call Ri�ap 	� C
�i�ap� and Rj �aq 	� C

�j�aq � auxiliary predicates

(conjuncts) of query �
��i j�

�Ri
�

Ri�ap �� C
�i�ap� � P � Rj�aq �� C

�j�aq � Rj�. The union of all
such Y RP ’s for all possible key conjuncts P ’s

JR �
	
P�� Y RP (7)

is used as the set of representative queries for GJ , where
 is the set of all possible key
conjuncts for the queries in the class.

For a join query in class G� �, any joining predicate conjunct can be considered as a
key conjunct. However, such a key conjunct P cannot determine the access method for
the query alone. P plus one or more index-usable (unary) conjuncts in the qualification
of a query determines the access method used for the query. We can still use the queries
of forms in (6) to represent the queries in YP , but some restrictions need to put on the
auxiliary conjuncts so that at least one of them is index-usable. In other words, we require
that at least one of Ri�ap and Rj �aq is indexed or clustered-indexed and the corresponding
	� or 	� is not ��.

Table 4 shows the representative query forms for the common join query classes. From
the table, we can see that all the join query classes have one type of representative key
conjunct; that is, Ri�an � Rj �am. There would be more types of representative key
conjunct, e.g., Ri�an � Rj �am, if non-equijoin queries were considered [27].

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 389

Table 4. Representative Query Forms for Common Join Query Classes

Query Representative
Class Query Forms Conditions
G� 	 Ri�an or Rj �am is

�
��i j�

�Ri

�

Ri�ap �� C
�i�ap� � Ri�an�Rj�am � Rj�aq �� C

�j�aq � Rj� clustered-indexed

G� � Ri�an or Rj �am is

�
��i j�

�Ri

�

Ri�ap �� C
�i�ap� � Ri�an�Rj�am � Rj�aq �� C

�j�aq � Rj� indexed; neither
Ri�an nor Rj �am is
clustered-indexed

G� � Ri�an and Rj �am are

�
��i j�

�Ri

�

Ri�ap �� C
�i�ap� � Ri�an�Rj�am � Rj�aq �� C

�j�aq � Rj� sequential; either
Ri�ap or Rj �aq is
clustered-indexed or
indexed, and the cor-
responding 	l is not
�� (l � � or �)

G� � Ri�an and Rj �am are

�
��i j�

�Ri

�

Ri�ap �� C
�i�ap� � Ri�an�Rj�am � Rj�aq �� C

�j�aq � Rj� sequential; 		 (�)

can only be ‘‘��’’
if Ri�ap (Rj �aq) is
clustered-indexed or
indexed

4.3. Selecting Random Sample Queries

A query class is greatly reduced to a set of representative queries. However, as mentioned,
the set of representative queries is usually still quite large. Hence, we use the set of
representative queries as a frame and apply several probability sampling methods to draw
a random sample of queries from the frame for the query class. We use the final (small)
sample of queries to represent the query class.

By using too small a sample, however, poor estimates of cost formula (regression)
coefficients may result --- leading to poor estimates of query costs. Thus, there is a
minimum sample size requirement. A commonly used rule [17] is to sample at least
� �n � �� observations for a regression formula with n coefficients. How to apply
probability sampling methods to get a sample with a desirable size is the issue to be
discussed in this subsection.

4.3.1. Random Unary Sample Queries Let us first consider how to draw a sample from
a unary query class.

For a given unary query class GU , any column that can be referenced in the key conjunct
of a representative query for GU is called an eligible column. For a component database
DB, let �U be the set of all eligible columns in the tables in DB for GU . For example,
�U for common query class G� � consists of all clustered-indexed columns in the tables in
DB. If DB consists of tables R�� R�� � � � � RK , clearly,

�U � �U R� 	 �U R� 	 � � � 	 �U RK � (8)

390 Q� ZHU AND P���A� LARSON

where �U Ri �� � i � K� is the set of eligible columns in table Ri. We assume that GU is
not empty. Then j�U j �� since a non-emptyGU should have at least one eligible column
for its queries.

Let HU denote the set of representative queries for GU , which is now the frame for
further sampling. To draw a sample query from HU , we need to determine three parts of
the query: (1) key conjunct, (2) auxiliary conjunct, and (3) project list.

Let us first consider a GU where every eligible column induces the same number of types
of representative key conjuncts. For example, if GU is G� � or G� �, every Ri�an induces
one type of representative key conjuncts, namely, Ri�an � C�i�an�; if GU is G� � or G� �,
every Ri�an induces two types of representative key conjuncts, namely, Ri�an � C�i�an�

�

and Ri�an � C�i�an�

�
(see Table 3). However, forGU � G� �, every eligible column that is

sequential induces four types of representative key conjuncts, while every eligible column
that is clustered-indexed or indexed induces only one type of representative key conjuncts.
The situation when GU � G� � will be considered later on.

A component database normally does not contain a very large number of tables. Hence
an appropriate sampling principle is to choose at least one sample query on each table that
has at least one eligible column. These sample queries would give us information about
the underlying component DBMS for performing queries on all tables, while the size of
the sample is still not large.

Let MU denote the minimum sample size that is required for GU . We need to draw a
sample with a size greater than or equal to MU . But we do not like the sample size to be
much greater than MU because executing extra sample queries requires extra cost. This is
another principle to be used when we draw sample queries.

Let bU �� � be the number of types of representative key conjuncts that can be induced
by each eligible column. Let eX denote a value randomly chosen from all possible values of
parameter X . For example, eC�i�an�, Ri�ex, e��i�, and e	 � f������ ��g represent a constant
randomly chosen from the domain of Ri�an, a column randomly chosen from all columns
of Ri, a project (column) list randomly chosen from all non-empty subsets of columns of
Ri, and an operator randomly chosen from f������ ��g, respectively.

To draw a sample of queries from GU , we consider the following cases.

Case 1: j�U j bU � MU . In this case, we use all eligible columns in �U to draw
sample queries. For each eligible column, we draw bU sample queries, i.e., one for each
representative key conjunct type. Hence we get exactly j�U j bU � MU queries in a
sample.

More specifically, for a given eligible column Ri�an � �U , each allowed comparison
operator �, e.g., �� � or �, corresponds to one type of representative key conjunct
Ri�an � C�i�an�, where C�i�an� is a parameter. The key conjunct of a random sample
query corresponding to Ri�an � C

�i�an� is obtained by instantiating C �i�an� by a constant
randomly chosen from the domain of Ri�an, i.e., eC�i�an�.

The auxiliary predicate (conjunct) Ri�am 	 C�i�am� in a sample query is randomly
chosen from all alternatives. That is, the referenced column Ri�am is randomly chosen
from all allowed columns, i.e., Ri�ex; the comparison operator 	 is randomly chosen from

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 391

all allowed operators, i.e., e	; the constant C �i�am� is randomly chosen from the domain of
the corresponding column, i.e., eC�i�ex�.

The project list ��i� for a sample query is randomly chosen from all non-empty subsets
of columns in the operand table Ri, i.e., e��i�.

For example, if R��a� is a clustered-indexed column, the two sample queries induced by
R��a� for query class G� � are

�e����
�

��
R��a��eC���a���

� R��ex� e�� eC���ex�� �R��� �

�e����
�

��
R��a��eC���a���

� R��ex� e�� eC���ex�� �R��� �

Note that e	� �e	�� is randomly chosen from f�� �� ��g if R��ex� �R��ex�� is clustered-
indexed, and randomly chosen from f�� �� �� ��g otherwise. Subscripts are used here
to distinguish random values chosen at different times.

In fact, the sampling method used in this case is a stratified multi-stage cluster sampling
method that combines stratified sampling with multi-stage cluster sampling.

First, the frame HU is separated into strata, where each stratum consists of the represen-
tative queries whose representative key conjuncts are of the same type and the referenced
column is instantiated by one eligible column. For example, forG� �, if there are two tables
R��a�� a�� and R��a�� a�� a�� in DB, where R��a� and R��a� are clustered-indexed and
others are sequential, thenHU are stratified into f STRA�� STRA�� STRA�� STRA� g
where

STRA� � f �
����

��
R��a��C

���a�� � R��am � C���am�
�R��� j R��a� is fixed�

but C���a��� R��am� 	� C
���am�� ���� can be any valid values g �

STRA� � f �
����

��
R��a��C

���a�� � R��am � C���am�
�R��� j R��a� is fixed�

but C���a��� R��am� 	� C
���am�� ���� can be any valid values g �

STRA� � f �
����

��
R��a��C

���a�� � R��am � C���am�
�R��� j R��a� is fixed�

but C���a��� R��am� 	� C
���am�� ���� can be any valid values g �

STRA� � f �
����

��
R��a��C

���a�� � R��am � C���am�
�R��� j R��a� is fixed�

but C���a��� R��am� 	� C
���am�� ���� can be any valid values g �

Secondly, each stratum is separated into clusters, then into sub-clusters, � � �, and so
on, by instantiating different values for one parameter, then for another, and so on. For
example, the above STRA� is first separated into the following clusters by instantiating
different values for constant parameter C ���a��:

CLUS� � f �
����

��
R��a��C

���a��

�
� R��am � C���am�

�R��� j R��a�� C
���a��

�

are fixed� but R��am� 	� C
���am�� ���� can be any valid values g �

CLUS� � f �
����

��
R��a��C

���a��

�
� R��am � C���am�

�R��� j R��a�� C
���a��

�

are fixed� but R��am� 	� C
���am�� ���� can be any valid values g �

CLUS� � f �
����

��
R��a��C

���a��

�
� R��am � C���am�

�R��� j R��a�� C
���a��

�

392 Q� ZHU AND P���A� LARSON

are fixed� but R��am� 	� C
���am�� ���� can be any valid values g �

������

The cluster CLUS�, for instance, is then divided into the following sub-clusters by
instantiating different valid columns for R��am:

CLUS� � � f �
����

��
R��a��C

���a��

�
� R��a� � C���a��

�R��� j R��a�� C
���a��

�
�

R��a� are fixed� but 	� C
���a��� ���� can be any valid values g �

CLUS� � � f �
����

��
R��a��C

���a��

�
� R��a� � C���a��

�R��� j R��a�� C
���a��

�
�

R��a� are fixed� but 	� C
���a��� ���� can be any valid values g �

Each sub-cluster can be further divided into smaller and smaller clusters by instantiating
different values for 	, C ���am� �m � � or �� and ����, one after another.

Multi-stage cluster sampling is used to draw sample queries from each stratum. More
precisely, a simple random sample of size one is drawn from a set of clusters at each level.
The final sample SPU consists of all the queries resulting in the end.

For example, the simple random sample drawn from f CLUS�, CLUS�, CLUS�, � � � g
is f CLUSei g, where�

CLUSei � f �
����

��
R��a��eC���a�� � R��am � C���am�

�R��� j R��a�� eC���a��

are fixed� but R��am� 	� C
���am�� ���� can be any valid values g �

The simple random sample drawn from f CLUSei �� CLUSei � g is f CLUSeiej g, where

f CLUSeiej g � f �
����

��
R��a��eC���a���

� R��ex � C���ex� �R��� j R��a�� e�����

R��ex are fixed� but 	� C���ex�� ���� can be any valid values g �

After a simple random value is chosen for each of remaining parameters 	, C ���ex� and ����,
we obtain a concrete query:

�e���� ��R��a��eC���a�� � R��ex e� eC���ex� �R��� �

which is the sample query that we draw from STRA�. Similarly, a sample query can
be drawn from each of STRA� � STRA�. If we use subscripts to distinguish different
random values drawn at different times from a set of allowed values, the sample of queries
drawn from G� � in the above example can be described as follows:

f �e����
�

��
R��a��eC���a���

� R��ex� e�� eC���ex�� �R��� �

�e����
�

��
R��a��eC���a���

� R��ex� e�� eC���ex�� �R��� �

�e����
�

��
R��a��eC���a���

� R��ey� e�� eC���ey�� �R��� �

�e����
�

��
R��a��eC���a���

� R��ey� e�� eC���ey�� �R��� g �

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 393

Case 2: j�U j bU � MU . In this case, if we still apply the sampling procedure in Case
1, the resulting sample size j�U j bU may be much larger than necessary (MU). In fact,
it is sufficient to consider only part of all eligible columns during query sampling. Which
part should we consider? If we draw a simple random sample of eligible columns from
�U , or we consider each table as a cluster and perform cluster sampling, some tables may
not be considered. In other words, cost information obtained in such a way may not reflect
performance of queries on all tables well.

In order to guarantee that there is at least one sample query on each table in the underlying
component database while the sample size is still kept not much greater than MU , we
employ a sampling procedure described below.

The set HU of representative queries is stratified such that all the queries whose key
conjuncts reference eligible columns in the same �U Ri comprise a stratum; i.e.,

HU � HU R� 	 HU R� 	 � � � HU RK �

where HU Ri is the stratum corresponding to table Ri. A certain percent �� of eligible
columns in each �U Ri are selected for sample queries. In other words, a simple random
sample ��	��

U Ri
of size dj�U Ri j ��e is drawn from �U Ri . Let H �	��

U Ri
be the set of

representative queries associated with ��	��

U Ri
. It is drawn from the stratum HU Ri . Let

H �	��

U
� H �	��

U R�
	 H �	��

U R�
	 � � � 	 H �	��

U RK
�

and

��	��

U
� ��	��

U R�
	 ��	��

U R�
	 � � � 	 ��	��

U RK
�

We, then, apply the same stratified multi-stage cluster sampling procedure described in
Case 1 to obtain a sample SPU of queries fromHU by consideringH �	��

U as HU and ��	��

U

as �U in Case 1.
Now the question is what percentage of eligible columns we should select from each

�U Ri so that the size of the final sample SPU is greater than or equal to the required
minimum size MU .

Theorem � For j�U j bU � MU , if

� � � MU��j�U j bU�� (9)

then MU � jSPU j � j�U j bU .

Proof: From (8) and the fact that �U Ri ��U Rj � � for i �� j, we have

j�U j � j�U R� j� j�U R� j� � � �� j�U RK j � (10)

Consider the total number of sample queries

jSPU j �

KX
i	�

bU dj�U Ri j ��e

�

KX
i	�

bU dj�U Ri j � MU��bU j�U j ��e

394 Q� ZHU AND P���A� LARSON

�

KX
i	�

bU dj�U Ri j MU��bU j�U j�e (11)

�
KX
i	�

bU j�U Ri j MU��bU j�U j�

�

KX
i	�

j�U Ri j MU�j�U j

�
MU

j�U j

KX
i	�

j�U Ri j � MU �

From (11) and MU��bU j�U j� � �, we have

jSPU j �
KX
i	�

bU dj�U Ri je � bU
KX
i	�

j�U Ri j � bU j�U j�

Theorem 1 states that if we choose � as in (9), the size of a sample obtained by the above
sampling procedure satisfies the minimum sample size requirement and is not greater than
j�U j bU . The sample size is usually smaller than j�U j bU although it equals to the latter
in the worst case.

In fact, Case 1 can be considered as a special case of Case 2 when �� � ��.

Case 3: j�U j bU � MU . In this case, it is not sufficient to consider all eligible columns
and choose bU sample queries for each eligible column. Clearly, all eligible columns need
to be considered, but more than bU sample queries need to be chosen for each eligible
column in order to have the sample size satisfy the minimum sample size requirement.

The sampling method to be used in this case is the same as the one in Case 1. However,
we draw more than one cluster during the first stage of the multi-stage cluster sampling.
We achieve this by instantiating more than one constant for the constant parameter in each
representative key conjunct type. For simplicity, we draw the same number of clusters from
each stratum. As for other parameters in a representative query form, such as the column
parameter in an auxiliary predicate and the project list parameter, we still instantiate one
random value.

How many clusters need to be drawn in the first stage so that the final sample SPU of
queries satisfies the minimum sample size requirement? Let U be the number of clusters
needed to be drawn from each stratum. We have

Theorem � For j�U j bU � MU , if

U � dMU��j�U j bU�e� (12)

then MU � jSPU j � �MU � j�U j bU�.

Proof:

jSPU j � U bU
KX
i	�

j�U Ri j � U bU j�U j

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 395

� dMU��j�U j bU�e bU j�U j (13)

� MU��j�U j bU� bU j�U j � MU �

From (13) and dMU��j�U j bU�e � MU��j�U j bU� � �, we have

jSPU j � �MU��j�U j bU� � �� bU j�U j � MU � bU j�U j�

Theorem 2 states that a sample produced by the sampling procedure satisfies the
minimum sample size requirement and does not include more than bU j�U j
 � extra
sample queries.

In fact, all three cases discussed above can be unified as follows. Case 1 can be
considered as � � � and U � �. Case 2 can be considered as U � � and � to be
determined by Theorem 1. Case 3 can be considered as � � � and U to be determined
by Theorem 2. Note that the formula (12) for U actually works for all three cases.

Now let us consider how to draw sample queries fromG� � which is in the situation where
different eligible columns may induce different numbers of representative key conjunct
types.

For G� �, the set �U of eligible columns consists of all possible columns. However,
an (clustered or non-clustered) indexed column and a sequential column induce different
numbers of representative key conjunct types. Let �U � ��

U
	 ���

U
, where ��

U
consists

of all (clustered or non-clustered) indexed columns, and ���
U

consists of all sequential
columns. Without loss of generality, assume ��

U
�� � and ���

U
�� �. Let H �

U
and H ��

U
be

the sets of representative queries associated with ��
U

and ���
U

, respectively. For a given
minimum size requirement MU , we can choose M �

U
and M ��

U
such that MU � M �

U
�M ��

U
.

For instance, let� M �
U
� bMU j��

U
j��j��

U
j � � j���

U
j�c and M ��

U
� MU
M �

U
. The

previous sampling procedures can then be applied to draw a sample SP �
U

(SP ��
U

) from H �
U

(H ��
U

) by considering ��
U

(���
U

) as �U and M �
U

(M ��
U

) as MU . The final sample SPU is the
union of SP �

U
and SP ��

U
.

The sampling procedure for G� � actually stratifies HU into H �
U

and H ��
U

first, then
applies the previous sampling procedures to each of them.

From the above discussion, we can see that a mixture of simple random sampling,
stratified sampling and cluster sampling is, in fact, used to sample queries from a unary
query class for all cases.

4.3.2. Random Join Sample Queries Drawing sample queries from a join query class
is more complicated than drawing sample queries from a unary query class. One principle
used in Section 4.3.1 for a unary query class is that at least one sample query is drawn
for each possible operand, i.e., a table that has at least one eligible column. However,
the principle may not be good for sampling queries from a join query class because the
number of possible operands (joining table pairs) is usually large. Even if we draw only
one sample query for each pair of joining tables, the sample size may still be much larger
than the required minimum sample size, which may not be good because performing a join
sample query is usually quite expensive. It is, therefore, desired to draw a sample of join

396 Q� ZHU AND P���A� LARSON

queries with a size not only greater than but also close to the required minimum sample
size.

Note that, in practice, not every pair of columns can be a joining column pair referenced
in a joining predicate. Such a pair of columns must be comparable by ‘‘�’’. For simplicity,
we assume that all pairs of columns are comparable in the following discussion.

If two columns Ri�an and Rj �am can be referenced by the representative key conjunct,
i.e., a joining predicate, of a representative query for a join query class, the pair
�Ri�an� Rj �am� is called an eligible joining column pair for the query class. For example,
�R��a�� R��a�� is an eligible joining column pair for query class G� � if either R��a� or
R��a� is clustered-indexed.

In a representative query, there are two auxiliary conjuncts (predicates) for the left and
right joining tables, respectively. For join query class G� �, at least one referenced column
in an auxiliary conjunct for a representative query is index-usable. For other join query
classes, any column can be referenced in an auxiliary conjunct for a representative query.
If two columnsRi�ap and Rj �aq can be referenced by the left and right auxiliary conjuncts
of a representative query for a join query class, respectively, the pair �Ri�ap� Rj �aq� is
called an eligible auxiliary column pair for the query class.

Let �J be the set of all eligible joining column pairs for a given join query class GJ in
a component database. Let �JA be the set of all eligible auxiliary column pairs for GJ ,
and �JAj�Ri�Rj � is the subset of �JA with the restriction that the first column in a pair is in
Ri and the second column in the pair is in Rj . Let HJ be the set of representative queries
for GJ , which serves as the frame for the second phase sampling. We assume that GJ is
not empty. Then �J and HJ are not empty either because a non-empty GJ has at least
one eligible joining column pair and one representative query. Let MJ be the minimum
sample size required forGJ and e��i j� be a project list randomly chosen from all non-empty
subsets of columns of Ri and Rj .

Note that each eligible joining column pair �Ri�an� Rj �am� induces only one represen-
tative key conjunct type, i.e., Ri�an � Rj �am, in our case. However, an eligible joining
column pair might induce more than one representative key conjunct types if non-equijoin
queries were considered. To make our results more general, in the following discussion,
we still include a parameter bJ �� �, like bU for a unary query class, to denote the number
of representative key conjunct types induced by an eligible joining column pair for GJ .
However, as just mentioned, bJ � � in our case. The situation where different eligible
joining column pairs for a join query class may induce different numbers of representative
key conjunct types can be handled in a similar way used for a unary query class.

To draw a sample from a join query class, let us consider the following cases:

Case 1: j�J j bJ �MJ . In this case, we draw a simple random sample e����

J of eligible
joining column pairs with size dMJ�bJe from �J . For each eligible joining column pair
in e����

J , we draw bJ sample queries, i.e., one for each representative key conjunct type.
For a join sample query on Ri and Rj , the auxiliary column pair is randomly chosen from
�JAj�Ri�Rj �; the comparison operators and constants in the auxiliary predicates (conjuncts)
are randomly chosen from the relevant domains; the project list is randomly chosen from
the non-empty subsets of the union of columns of the two joining tables.

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 397

For example, if �R��a�� R��a�� is an eligible joining column pair for join query class
G� �, the sample query associated with �R��a�� R��a�� that we draw from G� � is

�e��� ��
�R�

�

R��x� e�� eC���x�� � R��a��R��a� � R��x� e�� eC���x�� R�� �

where �R��x�� R��x�� is randomly chosen from �JAj�R��R��; e	� and e	� are randomly
chosen from f������ ��g; eC���x�� and eC���x�� are randomly chosen from the domains of
R��x� and R��x�, respectively; e��� �� is randomly chosen from all the columns of R� and
R�.

The size of such a sample SPJ is bJ dMJ�bJe. For a general bJ � , we have

Theorem � Let SPJ be the set of sample queries drawn from HJ as described above.
ThenMJ � jSPJ j �MJ��bJ
r�, where r � � r � bJ� is the remainder of the division
MJ by bJ .

Proof: We have

jSPJ j � bJ dMJ�bJe � bJ MJ�bJ � MJ � (14)

Let MJ�bJ � k � r�bJ where k is the quotient and r is the remainder. Hence

jSPJ j � bJ dk � r�bJe � bJ �k � ��

� bJ k � bJ � MJ � �bJ
 r��

Theorem 3 claims that the above sampling procedure draws a sample with a size
satisfying the minimum size requirement and with at most bJ
 r � bJ extra sample
queries. Since bJ is usually quite small, the drawn sample has the desirable property
that the size is very close to the required minimum size. In fact, for our case bJ � �,
jSPJ j � bJ dMJ�bJe � MJ .

Case 2: j�J j bJ � MJ . Clearly, in this case, all eligible joining column pairs need to
be used. However, drawing only bJ sample queries for each eligible pair is not sufficient.

If we insisted on drawing the same number of sample queries for all eligible joining
column pairs, like Case 3 for a unary query class, we could have up to bJ j�J j
 � extra
sample queries (like Theorem 2). This number of extra sample queries is reasonable for a
unary query class, but it may not be acceptable for a join query class, because a join query
is often much more expensive to execute.

To improve the sampling procedure, we choose a random subset e����

J of �J with size
d�MJ
J bJ j�J j��bJe, where J � bMJ��j�J j bJ�c. The following theorem shows
that the chosen size of e����

J is feasible although e����

J may be an empty or whole set.

Theorem � If J � bMJ��bJ j�J j�c, then � je����

J j � d�MJ
J bJ j�J j��bJe �
j�J j.

398 Q� ZHU AND P���A� LARSON

Proof:

je����

J
j � d�MJ
 J bJ j�J j��bJe � �MJ
 J bJ j�J j��bJ

� �MJ
 bMJ��bJ j�J j�c bJ j�J j��bJ

� �MJ
 bJ j�J j MJ��bJ j�J j���bJ � �

Notice that

MJ
 J bJ j�J j � MJ
 bMJ��bJ j�J j�c bJ j�J j

� MJ
 �MJ��bJ j�J j�
 �� bJ j�J j � bJ j�J j�

Hence �MJ
J bJj�J j��bJ � j�J j�Therefore, d�MJ
J bJj�J j��bJe � j�J j�

For each eligible joining column pair in e����

J , we draw �J ��� bJ sample queries from
HJ ; namely, using �J � �� sets of randomly-chosen left and right auxiliary predicates
and project lists to form �J � �� sample queries for each representative key conjunct
type associated with the given joining column pair. For each eligible joining column
pair in �J
 e����

J , we draw J bJ sample queries from HJ ; namely, using J sets of
randomly-chosen left and right auxiliary predicates and project lists to form J sample
queries for each representative key conjunct type that is associated with the given joining
column pair. If e����

J is a non-empty proper subset of �J , some eligible joining column
pairs in �J generate �J � �� bJ sample queries, while others generate J bJ sample
queries. If e����

J is an empty or whole set, each eligible joining column pair generate J bJ
or �J � �� bJ sample queries, respectively.

Theorem � Let SPJ be the set of sample queries drawn from HJ as described above.
Then jSPJ j � bJ �je����

J j� J j�J j�, and MJ � jSPJ j �MJ � bJ .

Proof: From the above discussion, we have

jSPJ j � �J � �� bJ je����

J
j� J bJ �j�J j
 je����

J
j�

� bJ �je����

J
j� J j�J j� �

Then

jSPJ j � bJ �je����

J
j� J j�J j�

� bJ �d�MJ
 J bJ j�J j��bJe� J j�J j�

� bJ ��MJ
 J bJ j�J j��bJ � J j�J j� � MJ �

On the other hand,

jSPJ j � bJ �d�MJ
 J bJ j�J j��bJe� J j�J j� (15)

� bJ ��MJ
 J bJ j�J j��bJ � � � J j�J j	 � MJ � bJ �

Theorem 5 indicates a desirable property of the above sampling procedure, namely, at
most bJ extra sample queries may exist in the sample. In fact, for our case bJ � �, it is
easy to see jSPJ j �MJ by substituting 1 for bJ in (15), i.e., no extra sample queries.

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 399

The above sampling procedure also adopts a mixture of simple random sampling,
stratified sampling and cluster sampling. The frame HJ is first stratified into two strata:
one H �

J
composed of representative queries associated with joining column pairs in e����

J

and the other H ��
J

composed of representative queries associated with joining column pairs
in �J
 e����

J . Each stratum is further stratified into smaller strata, each of which consists of
representative queries associated with one representative key conjunct type for an eligible
joining column pair. Each second level stratum is then decomposed into several levels
of smaller and smaller clusters according to the auxiliary column pair, the comparison
operator in the left auxiliary predicate, the constant in the left auxiliary predicate, the
comparison operator in the right auxiliary predicate, the constant in the right auxiliary
predicate, and the project list of a representative query. For each second level stratum
(with an eligible joining column pair �Ri�an� Rj �am�) for H �

J
, we draw a sample of first

level clusters with size J � � by randomly choosing J � � auxiliary column pairs�

from �JAj�Ri�Rj �. For each chosen first level cluster, a simple random sample of size 1 is
drawn from each higher level (smaller) clusters. In other words, one sample query is to
be obtained for each chosen first level cluster. The sample drawn from the second level
stratum consists of these J � � sample queries. The sample of queries drawn from H �

J
is

the union of all samples drawn from its second level strata. In a similar manner, we draw
J sample queries from each stratum for H ��

J
, and the sample drawn from H ��

J
is the union

of the samples for these strata. The final sample is the union of the sample from H �
J

and
the sample from H ��

J
.

In fact, Case 1 can be unified with Case 2. If j�J j bJ � MJ , then J � bMJ��j�J j

bJ�c � , and je����

J j � d�MJ
 J bJ j�J j��bJe � dMJ�bJe. The sampling procedure
in Case 2 using such J and e����

J agrees with the sampling procedure in Case 1 usinge����

J � e����

J . Since J bJ � , no sample queries are drawn by the sampling procedure
in Case 2 for any eligible joining column pair in �J
 e����

J , and one (J � � � �)
sample query is drawn for each representative key conjunct type associated with an eligible
joining column pair in e����

J . If j�J j bJ � MJ , then J � bMJ�j�J j bJc � �, and
je����

J j � d�MJ
J bJ j�J j��bJe � . The sampling procedure in Case 2 using such J
and e����

J agrees with the sampling procedure in Case 1 using e����

J � �J . Since e����

J � �,
all sample queries are drawn for eligible pairs in �J
 e����

J � �J � e����

J . It is easy to see
that Theorems 4 and 5 still hold for such extended J and ����

J .

5. Derivation of Cost Estimation Formulas

After queries are classified and a sample is drawn from each query class, a cost estimation
formula needs to be derived for each query class based on observed costs of sample queries.
Such a cost formula includes a set of variables that affect costs of queries and a number of
coefficients that reflect performance behavior of the underlying DBMS. How to derive a
good cost estimation formula for a query class is the topic to be discussed in this section.

There are several variables that affect the cost of a query. Multiple regression in statistics
allows us to establish a statistical relationship between the costs of queries and the relevant
affecting (explanatory) variables. Such a statistical relationship can be used as a cost

400 Q� ZHU AND P���A� LARSON

estimation formula for queries in a query class. We explore this idea in more details in the
following subsections.

5.1. Identification of Explanatory Variables

It is not difficult to see that the following types of factors usually affect the cost of a query:

1. The cardinality of an operand table. The larger the cardinality of an operand table is,
the higher the query (execution) cost. This is because the number of I/O’s required
to scan the operand table or its index(es) usually increases with the cardinality of the
table.

2. The cardinality of the result table. A large result table implies that many tuples need
to be processed, buffered, stored and transferred during query processing. Hence,
the larger the result table is, the higher the corresponding query cost. Note that the
cardinality of the result table is determined by the selectivity of (the qualification of)
the query. This factor can be considered as the same as the selectivity of a query.

3. The size of an intermediate result. For a join query, if its qualification contains one or
more conjunctive terms that refer to only one of its operand tables, called separable
conjunctive terms, they can be used to reduce the relevant operand table before further
processing is performed. The smaller the size of such an intermediate table is, the more
efficient the query processing would be. For a unary query, if it can be executed by an
index scan method, the query processing can be viewed as having two stages: the first
stage is to retrieve the tuples via an index(es), the second stage is to check the retrieved
tuples against the remaining conditions in the qualification. The number of tuples that
are retrieved in the first stage can be considered as the size of the intermediate result
for such a unary query.

4. The tuple length of an operand table�. This factor affects data buffering and transferring
cost during query processing. However, this factor is usually not as significant as the
above types of factors. It becomes important when the tuple lengths of tables in a
database vary widely; for example, when multimedia data is stored in the tables.

5. The tuple length of the result table. Similar to the above factor, this factor affects
data buffering and transferring cost, but it is not as significant as the first three types
of factors. It may become important when it varies significantly from one query to
another. Frequently, if the cardinalities of result tables for the queries in a query class
do not change much, the tuple lengths of result tables may become more significant.

6. The physical sizes (i.e., the numbers of occupied disk/buffer blocks) of operand tables
and result tables. Although the factors of this type are obviously controlled by the
factors of types 1, 2, 4 and 5, they may reflect additional information, such as the
percentage of free space assigned to an operand table (or a result table) and a combined
effect of the previous factors.

7. Contention in the system environment. The factors of this type include contention for
CPU, I/O, data items, and servers, etc. Obviously, such factors affect the performance

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 401

of a query. However, they are difficult to measure. The number of concurrent processes,
the memory resident set sizes (RSS) of processes, and some other information about
processes that we could obtain can only reflect part of all contention factors. That is
why contention factors are usually omitted from existing cost models.

8. The characteristics of an index, such as index clustering ratio, the height and number
of leaves of an index tree, the number of distinct values of an indexed column, and
so on. If all tuples with the same index key value are physically stored together, the
index is called as a clustered index, which has the highest index clustering ratio. For
a referenced index, how the tuples with the same index key value are scattered in the
physical storage has an obvious effect on the performance of a query. Other properties
of an index, such as the height of the tree and the number of distinct key values, also
affect the performance of a query.

The variables representing the above factors are the possible explanatory variables to be
included in a cost formula.

5.2. Development of Regression Cost Models

As mentioned before, a multiple regression model is to be developed for estimating costs
of queries in a query class. To develop such a regression model, we need to decide what
explanatory variables to be included and how to include them in the model.

5.2.1. Variables Inclusion Principle In general, not all explanatory variables in Section
5.1 are included in a cost model. Some variables may not be significant for a particular
model, while some others may not be available at the global level in an MDBS. Our general
principle for including variables in a cost model is to include important variables and omit
insignificant or unavailable variables.

Among the factors discussed in Section 5.1, the first three types of factors are often
more important. The variables representing them are usually included in a cost model.
The factors of types 4 and 5 are less important. The representing variables are included
in a cost model only if they are significant. The variables representing factors of type 6
are included in a cost model if they are not dominated by other included variables. The
variables representing the last two types of factors will be omitted from our cost models
because they are usually not available at the global level in an MDBS. In fact, we assume
that contention factors in a considered environment are approximately stable. Under this
assumption, the contention factors are not very important in a cost model. The variables
representing the characteristics of referenced indexes can possibly be included in a cost
model if they are available and significant.

How to apply this variables inclusion principle to develop a cost model for a query
class will be discussed in more details in the following subsection. Let us first give some
notations for the variables.

Let RU be the operand table for a unary query; RJ� and RJ� be the two operand tables
for a join query; NU , NJ� and NJ� be the cardinalities of RU , RJ� and RJ�, respectively;
LU , LJ� and LJ� be the tuple lengths of RU , RJ� and RJ�, respectively; RLU and RLJ be

402 Q� ZHU AND P���A� LARSON

the tuple lengths of the result tables for the unary query and the join query, respectively.
Let SU and SJ be the selectivities of the unary query and the join query, respectively; SJ�

and SJ� be the selectivities of the conjunctions of all separable conjunctive terms for RJ�

and RJ�, respectively; SU� be the selectivity� of an index-usable key predicate (conjunct),
if applicable, of the unary query.

5.2.2. Regression Models for Unary Query Classes Based on the inclusion principle,
we divide a regression model to be developed for a unary query class into two parts:

regression model � basic model � secondary part � (16)

The basic model is the essential part of the regression model, while the secondary part is
used to further improve the model.

The set VUB of potential explanatory variables to be included in the basic model contains
the variables representing the factors of types 1 � 3. By definition, TNU � NU SU�
and RNU � NU SU are the cardinalities of the intermediate table and result table for the
unary query, respectively. Therefore, VUB � fNU � TNU � RNU g.

If all potential explanatory variables in VUB are chosen, the basic model is

Y � B� � B� NU � B� TNU � B� RNU � (17)

As to be discussed later, some potential variable(s) may be insignificant for a given query
class and, therefore, is not included in the basic model. For the common query class G� �,
B� � since there is no index-usable key predicate (conjunct) for a query in the class.

The basic model captures the major performance behavior of queries in a query class. It
will also be used to detect and delete noises of raw sample data (see Section 5.3). In fact,
the basic model (17) is based on existing cost models [7, 9, 18, 21, 22, 23] for a DBMS.
The parameters B�� B�� B� and B� in (17) could be interpreted as the initialization cost,
the cost of retrieving a tuple from the operand table, the cost of using the index referenced
by the key predicate to fetch a tuple, and the cost of processing a result tuple, respectively.
In a traditional cost model, a parameter may be split up into several parts (e.g., B� may
consist of I/O cost and CPU cost) and can be determined by analyzing the implementation
details of the employed access method. However, in an MDBS, the implementation details
of access methods are usually not known to the global query optimizer. The parameters
are, therefore, estimated by multiple regression based on sample queries instead of an
analytical method.

To further improve the basic model, some secondary explanatory variables may be
included into the model. The set VUS of potential explanatory variables for the secondary
part of a model contains the variables representing factors of types 4� 6. The real physical
sizes of the operand table and result table of a unary query may not be known exactly in
an MDBS. However, they
 can be estimated by ZU � NU LU and RZU � RNU RLU ,
respectively. To simplify description, we call ZU and RZU the operand table length and
result table length, respectively. Therefore, VUS � f LU � RLU � ZU � RZU g. Any other
variables, if available, could also be included in VUS.

If all potential variables in VUS are added to (17), the full regression model is

Y � B� � B� NU � B� TNU � B� RNU � B� LU

� B� RLU � B� ZU � B� RZU � (18)

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 403

For a specific query class, not all variables, especially the secondary explanatory
variables, are necessary for its regression model. How to select significant explanatory
variables in the regression model for a query class will be discussed in Section 5.2.4.

Note that, for some query class, a variable might appear in its regression model in another
form. For example, if the access method for a query class sorts the operand table of a query
based on a column(s) before performing further processing, some terms like NU log NU

and/or log NU could be included in its regression model. Let a new variable represent
such a term. This new variable may replace an existing variable in VUB 	 VUS or be an
additional secondary variable in VUS. A regression model can be adjusted according to any
available information about the relevant access method.

5.2.3. Regression Models for Join Query Classes Similar to a unary query class, the
regression model for a join query class consists of a basic model plus a possible secondary
part.

The set VJB of potential explanatory variables for the basic model contains the variables
representing factors of types 1 � 3. By definition,RNJ � NJ� NJ� SJ is the cardinality
of the result table for a join query; TNJ� � NJ� SJ� is the size of the intermediate
table obtained by performing the conjunction of all separable conjunctive terms on
RJ�; TNJ� � NJ� SJ� is the size of the intermediate table obtained by performing
the conjunction of all separable conjunctive terms on RJ�; TNJ�� � TNJ� TNJ�

is the size of the Cartesian product of the intermediate tables. Therefore, VJB �
fNJ�� NJ�� TNJ�� TNJ�� TNJ��� RNJ g.

If all potential explanatory variables in VJB are selected, the basic model is

Y � B� � B� NJ� � B� NJ� � B� TNJ� � B� TNJ�

� B� TNJ�� � B� RNJ � (19)

Similar to a unary query class, this basic model is based on existing cost models for a
DBMS. The parameters B�� B�� B�� B�� B�� B� and B� could be interpreted as the
initialization cost, the cost of pre-processing a tuple in the first operand table, the cost of
pre-processing a tuple in the second operand table, the cost of retrieving a tuple from the
first intermediate table, the cost of retrieving a tuple from the second intermediate table,
the cost of processing a tuple in the Cartesian product of the two intermediate tables, and
the cost of processing a result tuple, respectively.

The basic model may be further improved by including some additional beneficial
variables. The set VJS of potential explanatory variables for the secondary part of a model
contains the variables representing factors of types 4 � 6. Similar to unary queries, the
physical size of a table is represented by the table length. In other words, the physical sizes
of the first operand table, the second operand table and the result table are represented
by the variables: ZJ� � NJ� LJ�, ZJ� � NJ� LJ�, RZJ � RNJ RLJ , respectively.
Therefore, VJS � f LJ�� LJ�� RLJ � ZJ�� ZJ�� RZJ g. Any other useful variables, if
available, could also be included in VJS.

If all potential explanatory variables in VJS are added to (19), the full regression model
is

Y � B� � B� NJ� � B� NJ� � B� TNJ� � B� TNJ�

404 Q� ZHU AND P���A� LARSON

� B� TNJ�� � B� RNJ � B� LJ� � B
 LJ�

� B� RLJ � B�� ZJ� � B�� ZJ� � B�� RZJ � (20)

Note that further improvements on cost estimates produced by a cost model could be
achieved by properly choosing which operand table in a join query to be the first operand
table and which one to be the second operand table. For example, a good criterion for
choosing the table order for the query class G�� could be choosing the operand table
that can be accessed via a clustered-indexed joining column as the first table. When both
operand tables of a query can be accessed via the same physical access path, e.g., sequential
scan, or index scan, one could simply choose the left join table as the first operand table or
choose the smaller table as the first operand table. Note that different component database
systems may employ different criteria. One can try different criteria and choose the one
that yields better estimates.

Similar to a unary query class, not all variables in VJB and VJS are necessary for a join
query class. A procedure to choose significant variables in a model will be described in the
following subsection. In addition, some additional variables may be included, and some
variables could be included in another form. In general, a regression model can be adjusted
according to the real situation. The more information is available, the better a regression
model could be derived.

5.2.4. Selection of Variables for Regression Models To determine the variables to be
included in a regression model, one approach is to evaluate all possible subset models and
choose the best one(s) among them according to some criterion. However, evaluating all
possible models may not be practically feasible when the number of variables is large.

To reduce the amount of computation, two types of selection procedures have been
proposed [3]: the forward selection procedure and the backward elimination procedure.
The forward selection procedure starts with a model containing no variables, i.e., only
a constant term, and introduces explanatory variables into the regression model one at a
time. The backward elimination procedure starts with the full model and successively
drops one explanatory variable at a time. Both procedures need a criterion for selecting
the next explanatory variable to be included in or removed from the model and a condition
for stopping the procedure. With k variables, these procedures will involve evaluation
of at most �k � �� models as contrasted with the evaluation of �k models necessary for
examining all possible models.

To select a suitable regression model for a query class, we use a mixed forward and
backward procedure described below (see Figure 4). We start with the basic model
including all variables in the set (VUB or VJB) of basic explanatory variables for the query
class. We apply the backward elimination procedure first to drop some insignificant terms
(explanatory variables) from the model. We then apply the forward selection procedure to
find additional significant explanatory variables from the set (VUS or VJS) of secondary
explanatory variables for the query class.

The next explanatory variable X to be removed from the basic model during the first
backward stage is the one that (1) has the smallest simple correlation coefficient� with the
response variable Y and (2) makes the reduced model (i.e., the model after X is removed)
have a smaller standard error of estimation�� than the original model or the two standard

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 405

Y = B0 + B1 * X1 + + Bn * Xn + + Bm * Xm

Basic Model

Backward Elimination Forward Selection

Start Point
1 2

Secondary Part

Figure 4. Selection of Variables for Regression Model

errors of estimation very close to each other, for instance, within 1% relative error. If
the next explanatory variable satisfying (1) does not satisfy (2), or no more explanatory
variable is in the model, the backward elimination procedure ends. Condition (1) chooses
the variable which usually contributes the least among other variables in predicting Y .
Condition (2) guarantees that removing the chosen variable results in an improved model
or affects the model only very little. Removing the variables that affect the model very
little can reduce the complexity and maintenance overhead of the model.

The next explanatory variable X to be added into the current model during the second
forward stage is the one that (a) is in the set of secondary explanatory variables; (b) has the
largest simple correlation coefficient with the response variable Y that has been adjusted
for the effect of the current model (i.e., the largest simple correlation coefficient with the
residuals of the current model); and (c) makes the augmented model (i.e., the model that
includesX) have a smaller standard error of estimation than the current model and the two
standard errors of estimation not very close to each other, for instance, greater than 1%
relative error. If the next explanatory variable satisfying (a) and (b) does not satisfy (c), or
no more explanatory variable exists, the forward selection procedure ends. The reasons for
using conditions (a) � (c) are similar to the situation for removing a variable. In particular,
a variable is not added into the model unless it improves the standard error of estimation
significantly in order to reduce the complexity of the model.

Since we start with the basic model, which has a high possibility to be the appropriate
model for the given query class, the backward elimination and forward selection will most
likely stop soon after they are initiated. Therefore, our procedure is likely more efficient
than a pure forward or backward procedure. However, in the worst case, the above
procedure will still check �k � �� models for k potential explanatory variables, which is
the same as a pure forward or backward procedure.

Once the explanatory variables in a regression model have been selected, the regression
coefficients B’s can be estimated by the method of least squares (LS). The resulting fitted
regression equation can be used as the cost estimation formula for the relevant query class.

5.3. Measures for Developing Useful Models

To develop a useful regression model, measures need to be taken during query sampling
and model development. Furthermore, a developed regression model should be validated
before it is used. Improvements may be needed if the model proves unacceptable.

406 Q� ZHU AND P���A� LARSON

Sample Size. To develop a good regression model, we need to use a sample with a
sufficient size. What sample size is sufficient depends on the number of explanatory
variables involved in the model. For a regression model with k explanatory variables, there
are �k � �� parameters that need to be estimated: the k � � regression coefficients and
the variance of error terms. A commonly used rule for sampling is to sample at least 10
observations for every parameter to be estimated [17]. However, a regression model is not
pre-determined in our application. It is expected that most variables in VB will be selected
and only a few variables in VS will be used. Therefore, we expect that no more than
jVB j� djVSj��e variables will be included in a cost model in most cases. For simplicity,
we draw a sample of queries with a minimum size M � � �jVB j� djVSj��e� �� from
a query class. As we have proved, the sampling procedures discussed in Section 4 can
guarantee a sample to have the required minimum sample size M .

Outliers. Outliers are extreme observations. In a residual plot, outliers are the points
that lie far beyond the scatter of the majority of points. Frequently, an outlier results from
a mistake or other extraneous causes. A fitted equation may be pulled disproportionately
towards an outlying observation under the method of least squares. Since our objective is
to derive a cost estimation formula that is good for the majority of queries in a query class,
we use the set of observations with outliers removed for derivation of the cost formula.

Multicollinearity. When the explanatory variables are highly correlated among them-
selves, multicollinearity among them is said to exist. The presence of multicollinearity does
not, in general, inhibit our ability to obtain a good fit nor does it tend to affect predictions of
new observations, provided these predictions are made within the region of observations.
However, the estimated regression coefficients tend to have large sampling variability. To
make reasonable predictions beyond the region of observations and obtain more precise
information about the true regression coefficients, it is better to avoid multicollinearity
among explanatory variables.

A method to detect the presence of multicollinearity that is widely used is by means
of variance inflation factors (VIF) [15]. These factors measure how much the variances
of the estimated regression coefficients are inflated as compared to when the explanatory
variables are not linearly related. Explanatory variables with large variance inflation factors
are removed from a model. This method is also used in our system.

Validation of Model Assumptions. A regression model has the following three assump-
tions [15]: (1) the error terms are uncorrelated; (2) the error terms have the same variance;
and (3) the error terms are normally distributed. In general, regression analysis is not
seriously affected by slight to moderate departures from the assumptions. The assumptions
can be ranked in terms of the seriousness of the failure of the assumption to hold from the
most serious to the least serious as follows: assumptions (1), (2) and (3).

For our application, the observed costs of repeated executions of a sample query have
no inherent relationship with the observed costs of repeated executions of another sample
query under the assumption that the contention factors in the system are approximately

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 407

stable. Hence the first assumption should be satisfied. This is a good property because the
violation of assumption (1) is the most serious to a regression model.

However, the variance of the observed costs of repeated executions of a sample query
may increase with the level (magnitude) of query cost. This is because the execution of
a sample query with longer time (larger cost) may suffer more disturbances in the system
than the execution of a sample query with shorter time. Thus assumption (2) may be
violated in our regression models. A statistical hypothesis-test based on the Spearman’s
rank correlation coefficient [17] is used to detect such a violation. If such a violation
happens, an iterative weighted least squares (WLS) procedure [15] is adopted to remedy
the problem.

The observed costs of repeated executions of a sample query may not follow the normal
distribution; i.e., assumption (3) may not hold. The observed costs are usually skewed to
the right because the observed costs stay at a stable level for most time and become larger
from time to time when disturbances occur in the system. Fortunately, many studies have
shown that regression analysis is robust to the normality assumption [15, 17]; that is, the
technique will give usable results even if this assumption is not satisfied.

Testing Significance of Regression Model. To evaluate the goodness of the developed
regression model, two descriptive measures are used: the standard error of estimation s
and the coefficient of multiple determination�� R�. A good regression model is evidenced
by a small standard error of estimation and a high coefficient of multiple determination.

The significance of the developed model is further tested by using the F -test [15, 17] in
our system. In addition, some test queries are performed on the underlying DBMS. Their
observed costs and the estimated costs given by using the developed model are compared.
A model is accepted only it can give acceptable cost estimates for the majority of test
queries.

5.4. Complete Statistical Procedure

Figure 5 shows a complete statistical procedure for deriving cost estimation formulas for
query classes on a component DBMS. Although the procedure can be logically viewed
to have three tasks: query classification, query sampling and regression analysis, the
tasks may need to be iterated many times before satisfactory cost estimation formulas are
obtained.

6. Experimental Results

To check the practical feasibility of the method, experiments were conducted. Experimental
results are reported in this section. As we will see, the experimental results demonstrate
that the query sampling method is quite promising in estimating local cost parameters in
an MDBS environment.

408 Q� ZHU AND P���A� LARSON

determine the sample size

draw a sample of queries

sample queries performed
on underlying DBMS

all variables in V
fit the basic model with

B to the
observed data for

outlier
exist ?

remove outliers

yes

no

remove variables with

remove variables with

set VB of basic variables
for the query class

S
for the query class
of secondary variablesV

select variables for the
regression model by

?

yes no
satisfied

have an
improved
model ?

yes

no

have an
improved

classification
?

no

yes

yes

no
?

low s and
high R2

nopass
F-test ?

yes

no

?

equal
variances

?

equal
variances

yes

yes

no

using some test queries
check the model by

invoke iterative weighted least squares
procedure to produce an improved model

model to the observations
fit the chosen regressionStart

for each query class

classify queries

cost model

output the

A

A
query sampling
method fails

for the query class

A

of the query class

from the query class

measure the costs of

the query class

large VIF from

large VIF from set

backward and forward

Figure 5. The Complete Statistical Procedure for Developing Cost Models

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 409

6.1. Experimental Environment

Our MDBS prototype CORDS-MDBS was used as a multidatabase environment for the
experiments. Each component database system in CORDS-MDBS contains a database,
a DBMS, and an MDBS agent that provides the global MDBS server with a uniform
relational ODBC (Open Database Connectivity) interface. All component queries coming
from the global MDBS server are passed to the relevant MDBS agents in the component
DBSs

Three commercial DBMSs, i.e., ORACLE 7.0, EMPRESS 4.6 and DB2/6000 1.1.0,
were used as component DBMSs in the experiments. All the component DBMSs were run
on IBM RS/6000 model 220 machines (see Figure 6).

DB 1 DB 2 DB 3

IBM IBMIBM

MDBS
Agent

MDBS
Agent

MDBS
Agent

ODBC ODBC ODBC

Component Queries

CORDS-MDBS
Server

interface interface interface

ORACLE 7.0 EMPRESS 4.6 DB2/6000 1.1.0

RS/6000-220 RS/6000-220 RS/6000-220

Figure 6. Experimental Environment

The experiments were conducted in a system environment where the contention factors
were approximately stable. For example, they were performed during midnights and
weekends when there was no or little interference from other users in the systems.
However, occasional interference from other users still existed since the systems are shared
resources.

6.2. Experimental Databases

A simple component database with diverse characteristics was created for each component
DBS in the experiments. Let DB�, DB� and DB� denote the component databases
managed by ORACLE, EMPRESS and DB2/6000, respectively. Each component database

410 Q� ZHU AND P���A� LARSON

consists of 12 tables with all integer columns, as shown in Table 5. Some of the columns in
a table are indexed or clustered-indexed. Since a user cannot declare a clustered-indexed
column for a table managed by EMPRESS 4.6 or DB2/6000 1.1.0, the clustered-indexed
columns in Table 5 were specified as regular indexed columns in the relevant component
databases. The cardinalities of the tables in DB�, DB� and DB� are shown in Table 6.
Data in the tables of the component databases are randomly generated from various ranges.

Table 5. Tables in Experimental Component Databases

Clustered-
No. Table Indexed Col. Indexed Col.
1 R	�a	� a�� a�� a�� a�
2 R��a	� a�� a�� a�� a�� a�� a� a�
3 R��a	� a�� a�� a�� a�� a�� a�
4 R��a	� a�� a�� a�� a�� a�� a�� a�� a�
5 R��a	� a�� a�� a�� a�� a�� a�� a�� a� a	
6 R��a	� a�� a�� a�� a�� a�� a�� a�� a� a	
7 R��a	� a�� a�� a�� a�� a�� a�� a�� a�� a	� a�� a� a�
8 R��a	� a�� a�� a�� a�� a�� a�� a�� a�� a�� a�� a� a�
9 R��a	� a�� a�� a�� a�� a�� a�� a�� a�� a	� a�� a�� a�
10 R	
�a	� a�� a�� a�� a�� a�� a�� a�� a�� a	
� a		� a�� a�� a	
 a	
11 R		�a	� a�� a�� a�� a�� a�� a�� a�� a�� a	
� a		� a�� a� a	
12 R	��a	� a�� a�� a�� a�� a�� a�� a�� a�� a�� a�� a		� a	�

a	
� a		� a	�� a	��

Table 6. Table Cardinalities in Experimental Component Databases

Database Table Cardinalities
jR	j jR�j jR�j jR�j jR�j jR�j

DB	 25000 20000 1700 300 3000 1000
DB� 2500 2000 170 30 300 100
DB� 25000 20000 1700 300 3000 1000

jR�j jR�j jR�j jR	
j jR		j jR	�j
DB	 5000 15000 4000 10000 700 8000
DB� 500 1500 400 1000 70 800
DB� 5000 15000 4000 10000 700 8000

One may ask why a real-world database was not adopted for our experiments. There
are several reasons for choosing the above synthetic experimental databases instead of a
real-world database:

� First, using random data is a typical approach for simulation experiments because
experimental data can be designed to demonstrate various characteristics. The
characteristics of a working commercial database cannot be controlled. They are
restricted to a particular application. The above experimental databases, however,
were designed to have diverse characteristics such as various table degrees, table
cardinalities, indexed columns, index clustering degrees, and selectivities for different
columns. We felt that it would be more valuable to test if our method can handle such
a database with diverse characteristics. It is expected that the method would behave
better if it is applied to a database with more homogeneous characteristics.

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 411

� Second, it is always questionable why a particular real-world database is chosen instead
of others. However, it is impossible to test them all. A synthetic database incorporating
characteristics from several databases appears an appropriate solution to this problem.

� Third, it is difficult to obtain a real-world database instance with a reasonable size in
a university environment. It is not very useful to estimate query costs for a database
with a few tuples in each table because there is no much difference among the costs.
However, making up hundreds and thousands of meaningful tuples for a real-world
table is time-consuming and not valuable. Using randomly-generated data greatly
simplifies creating databases with known characteristics.

Therefore, the above experimental databases were adopted in our experiments.

6.3. Test Queries

Test queries used to check the goodness of a cost estimation formula derived for a query
class are randomly generated from the query class in a similar way as sample queries.
However, the forms of test queries are more general than those of sample queries in the
query class.

The test queries for a unary query class (G� �, G� �, � � � or G� �) are of the following
forms:

�
��i�

��
Ri�an � C�i�an�

�Ri�� �

�
��i�

��
Ri�an � C�i�an� � Ri�am �� C�i�am�

�Ri�� �

�
��i�

��
Ri�an � C�i�an� � � Ri�ap �� C

�i�ap� � Ri�aq �� C
�i�ap��

�Ri�� �

where 	�� 	�� 	� � f �� ��� �� �� �� � g; 	 � f � g for G� � and G� �;
	 � f �� �� �� � g for G� � and G� �; 	 � f �� ��� �� �� �� � g for G� �.
The qualifications in the test queries satisfy the requirements of the corresponding query
class; for example, Ri�an is clustered-indexed for G� �.

The test queries for a join query class (G� �, G� �, G� �, or G� �) are of the following
forms:

�
��i j�

�Ri
�

qualification
Rj�

where:

qualification ��� � �simple left j disjunct left� � 	 key join

� � �simple right j disjunct right� 	 � � additional join 	

key join ��� Ri�an � Rj �am

simple left ��� Ri�ap 	� C
�i�ap�

simple right ��� Rj �aq 	� C
�j�aq �

disjunct left ��� Ri�au 	� C
�i�au� � Ri�av 	� C

�i�av�

disjunct right ��� Rj �as 	� C
�j�as� � Rj �at 	� C

�j�at�

additional join ��� Ri�ax � Rj �ay

412 Q� ZHU AND P���A� LARSON

here 	� � 	� � f �� ��� �� �� ��� g, and each qualification satisfies the
requirements of the given query class; for example, at least one of Ri�an and Rj �am is
clustered-indexed for G� �.

6.4. Experimental Results

In the experiments, sample queries are drawn from each query class, as described in
Section 4. Sample queries are performed on the three component database systems. Their
observed costs are used to derive cost estimation formulas for the relevant query classes
by multiple regression as described in Section 5.

Tables 7 � 12 show the derived cost formulas and the relevant statistical measures. It
can be seen that:

Table 7. Derived Cost Formulas for Query Classes on ORACLE 7.0

query
class Cost Estimation Formula
G	 	 0.675963e-1 � 0.388098e-2 � RNU � 0.831587e-2 � RLU
G	 � 0.866475e-1 � 0.177483e-2 � TNU � 0.926299e-2 � RNU � 0.443237e-6 � ZU
G	 � 0.146923 � 0.335288e-3 � TNU + 0.350591e-2 � RNU

G	 � 0.354301 � 0.105255e-2 � TNU + 0.32336e-2 � RNU � 0.852187e-4 � RZU
G	 � 0.16555 � 0.149208e-3 � NU + 0.307219e-2 � RNU + 0.105712e-3 � RZU
G� 	 0.149939 � 0.153634e-2 � TNJ� + 0.400375e-7 � TNJ�� + 0.401116e-2 � RNJ

G� � 0.192209 � 0.161011e-2 � TNJ� + 0.573257e-7 � TNJ�� + 0.426256e-2 � RNJ

G� � 0.176158 � 0.951479e-3 � TNJ��
G� � -0.236703e-1 � 0.143572e-3 �NJ� � 0.61871e-3 � TNJ� + 0.680628e-3 � TNJ�

+ 0.399927e-6 � TNJ�� + 0.316129e-2 � RNJ

Table 8. Statistical Measures for Cost Formulas on ORACLE 7.0

query coef. of standard average F-statistic Spearman’s rank WLS
multiple err. of cost (critical value correlation (critical

class determ. estimation (sec.) at
 � ����) val. at
 � ����) ?
G	 	 0.8361 0.438e�1 0.169e+0 0.204e+3 (� 4.88) 0.185 (� 0.257) no
G	 � 0.6568 0.106e+0 0.204e+0 0.568e+2 (� 3.97) 0.054 (� 0.243) yes
G	 � 0.9764 0.179e+1 0.816e+1 0.158e+4 (� 4.89) 0.143 (� 0.264) yes
G	 � 0.9675 0.274e+1 0.114e+2 0.116e+4 (� 4.29) 0.210 (� 0.213) yes
G	 � 0.9981 0.874e+0 0.136e+2 0.154e+5 (� 3.97) 0.021 (� 0.244) yes
G� 	 0.9920 0.343e+1 0.186e+2 0.489e+4 (� 4.27) 0.126 (� 0.212) yes
G� � 0.9899 0.150e+1 0.607e+1 0.373e+4 (� 4.28) 0.061 (� 0.215) yes
G� � 0.9246 0.516e+3 0.753e+3 0.148e+4 (� 7.06) 0.074 (� 0.211) yes
G� � 0.9767 0.153e+1 0.713e+1 0.981e+3 (� 3.52) 0.133 (� 0.211) yes

� Each cost formula involves a number of basic explanatory variables plus one possible
secondary explanatory variable. Most of them contain a variable for the cardinality of
the result table, i.e., RNU , or RNJ ; and most of them contain one or more variables
for the sizes of intermediate results, such as TNU , TNJ�, and TNJ��. However, many
of them do not contain variable(s) for the cardinality(ies) of operand table(s). This
observation indicates that the basic explanatory variables are more important than

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 413

Table 9. Derived Cost Formulas for Query Classes on EMPRESS 4.6

query
class Cost Estimation Formula
G	 � 0.104265 � 0.452447e-2 � TNU � 0.463534e-2 � RLU
G	 � 0.129558 � 0.487936e-3 � NU � 0.292076e-2 � TNU + 0.524435e-3 � RNU

+ 0.381775e-4 � ZU
G	 � 0.121125 � 0.272387e-2 � NU + 0.698155e-4 � RNU + 0.799805e-4 � RZU
G� � 0.391227 � 0.533736e-3 � NJ� + 0.127505e-1 � TNJ� + 0.408462e-2 � RNJ

+ 0.167088e-3 � ZJ�
G� � 0.367497 + 0.28452e-2 � TNJ�� + 0.881159e-3 � RZJ
G� � 0.199148e+1 + 0.282653e-2 � TNJ�� + 0.112948e-3 � ZJ� + 0.151314e-3 � RZJ

Table 10. Statistical Measures for Cost Formulas on EMPRESS 4.6

query coef. of standard average F-statistic Spearman’s rank WLS
multiple err. of cost (critical value correlation (critical

class determ. estimation (sec.) at
 � ����) val. at
 � ����) ?
G	 � 0.7756 0.904e�2 0.137e+0 0.183e+3 (� 4.78) 0.184 (� 0.224) no
G	 � 0.9121 0.367e+0 0.110e+1 0.382e+3 (� 2.16) 0.054 (� 0.190) yes
G	 � 0.9991 0.579e�1 0.219e+1 0.347e+5 (� 3.98) 0.043 (� 0.246) yes
G� � 0.9883 0.146e+1 0.621e+1 0.243e+4 (� 3.83) -0.010 (� -0.214) yes
G� � 0.9985 0.405e+2 0.330e+3 0.373e+5 (� 4.72) 0.017 (� 0.216) yes
G� � 0.9997 0.329e+2 0.645e+3 0.111e+6 (� 7.08) 0.027 (� 0.217) yes

Table 11. Derived Cost Formulas for Query Classes on DB2/6000

query
class Cost Estimation Formula
G	 � 0.351467e-1 � 0.165762e-6 � NU � 0.1791e-2 � TNU � 0.367672e-2� RNU

� 0.15752e-6� ZU
G	 � 0.234767e-1 � 0.276511e-3 � NU + 0.25797e-2 � RNU + 0.243711e-3 � RZU
G	 � 0.356131e-1 � 0.283372e-3 � NU + 0.263305e-2 � RNU + 0.24169e-3 � RZU
G� � 0.306633 � 0.148516e-2 � TNJ� + 0.626496e-6 � TNJ�� + 0.405455e-2 � RNJ

G� � -0.190759e-1 � 0.417679e-4 � NJ� � 0.164259e-3 �NJ� + 0.105605e-2 � TNJ�

+ 0.107104e-2 � TNJ� + 0.210705e-2 � RNJ + 0.300418e-3 � RZJ
G� � 0.446699 � 0.314534e-3 � NJ� + 0.555693e-3 � TNJ� + 0.478572e-3 � TNJ�

+ 0.789005e-6 � TNJ�� + 0.358929e-2 � RNJ

Table 12. Statistical Measures for Derived Cost Formulas on DB2/6000

query coef. of standard average F-statistic Spearman’s rank WLS
multiple err. of cost (critical value correlation (critical

class determ. estimation (sec.) at
 � ����) val. at
 � ����) ?
G	 � 0.8148 0.404e�1 0.104e+0 0.116e+3 (� 3.64) -0.005 (� -0.222) yes
G	 � 0.9949 0.861e+0 0.904e+1 0.947e+4 (� 2.66) 0.080 (� 0.190) yes
G	 � 0.9995 0.441e+0 0.149e+2 0.639e+5 (� 3.97) 0.218 (� 0.244) yes
G� � 0.9325 0.431e+1 0.931e+1 0.539e+3 (� 4.29) 0.033 (� 0.213) yes
G� � 0.9458 0.975e+0 0.338e+1 0.334e+3 (� 3.18) -0.005 (� -0.212) yes
G� � 0.9594 0.244e+1 0.882e+1 0.552e+3 (� 3.52) 0.132 (� 0.211) yes

414 Q� ZHU AND P���A� LARSON

the secondary ones, and the sizes of intermediate and final results are usually more
significant among all the basic explanatory variables.

� As predicted before, a tuple length variable, such as RLU , may be significant in the
cost formula for a query class containing queries whose result tables are all small, for
example, G� � on DB�, and G� � on DB�.

� The cost formulas for the same query class on different component database systems
can be quite different, such as the cost formulas forG� � on the three component DBSs.

� Most cost formulas capture over 90% variability in query cost, from observing the
coefficients of total determination. The best one (G� � onDB�) captures about 99.97%
variability, and the worst one (G� � on DB�) captures about 65.68% variability. The
worse cases occur for G� � and G� � whose queries can be executed very fast, i.e.,
small-cost queries, due to their efficient access methods and small result tables.

� The standard errors of estimation for the cost formulas are acceptable, compared with
the magnitudes of the relevant average observed costs of the sample queries. On
the average, the standard error of estimation is about 23.8% of the corresponding
average observed cost. The best standard error of estimation (forG� � onDB�) is only
about 2.6% of the corresponding average observed cost. The worst standard error of
estimation (for G� � on DB�) is about 68.5% of the corresponding average observed
cost. The latter case can be improved by refining the query classification, as we will
see later.

� The statistical F-tests at the significance level � � �� show that all derived cost
formulas are useful for estimating the costs of queries in the relevant query classes.

� The statistical hypothesis tests for the Spearman’s rank correlation coefficients at
the significance level � � �� show that there is no strong evidence indicating the
violation of equal variances assumption for all derived cost formulas after using the
method of weighted least squares when needed.

� Derivations of most cost formulas require the method of weighted least squares (WLS),
which implies that the error terms of the original regression model (using the regular
least squares) violate the assumption of equal variances in most cases.

� The cost formula for a query class with clustered indexes (i.e., G� �, G� �, or G� �)
appears better than the cost formula for the corresponding query class with non-
clustered indexes (e.g., G� �, G� �, or G� �). The reason for this is that non-clustered
indexes usually have diverse clustering ratios.

Although the statistical measures show that all derived cost formulas are useful for
estimating query costs, this fact needs to be further substantiated by checking if the cost
formulas can give acceptable estimated costs for test queries.

Test queries for different query classes,as described earlier in this section,were performed
on the three component database systems. Their costs were observed. The derived cost
formulas were used to give estimated costs for the test queries. The comparisons of
observed and estimated costs of the test queries were made. Figures 7 � 12 show such

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 415

comparisons for some typical query classes. Experiments demonstrated that the estimated
costs for the majority of test queries have relative errors within ��. This observation
further confirmed that the derived cost formulas are useful for estimating query costs.

As pointed out in previous sections, each cost formula can be further improved by
refining the query classification, adding more significant explanatory variables, and/or
using a better formulation.

For example, to improve the standard error of estimation for the cost formula for G� �

on DB�, G� � can be further divided into a number of smaller query classes. One such
smaller class G�

� �
, for instance, contains the queries satisfying the following conditions:

� they are in G� �;

� only one (assume the left) of the two operand tables in a query has an index-usable
separable conjunctive term;

� the separable conjunctive term is non-clustered-index-usable via a key; i.e., Ri�an �
C�i�an� where Ri�an is non-clustered-indexed.

Sample and test queries for G�
� �

were generated in a similar way for G� �. The same
statistical regression analysis procedure was invoked to derive a cost formula for G�

� �

based on observed costs of sample queries. The derived cost formula and relevant statistical
measures forG�

� �
are given in Table 13. From the table, we can see that, the standard error

Table 13. Cost Formula and Statistical Measures for G�
� �

on ORACLE 7.0

Cost Estimation Formula
experi- 0.196983 � 0.889058e-4 � NJ� � 0.960488e-2 � TNJ� + 0.12004e-2 � TNJ�

mental + 0.874517e-3 � NJ�� � 0.474442e-2 � RNJ

data coef. of standard average F-statistic Spearman’s rank WLS
for multiple err. of cost (critical value coefficient (critical
G�
� �

determ. estimation (sec.) at
 � ����) value at
 � ����) ?
0.9992 0.325 0.771e+1 0.275e+5 (� 3.48) 0.064 (� 0.215) yes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100 120

+
+

+

++
+
++
+
+

+

+
+

+

+
+

+++
+
+

+

++

+

++

++

+

+

++

+
+

+

+
+

+
+

+

+

+

+

+
++

+
+

+
+
+

+++

+
+
+
+

+

+

+

+

+

+

+

+

+
+

+
+

+

+
+
+
+
+

+
+++

+

+

+
+
+

++

+

+
+

+

+

+

+

+

++

+
+

Result Table Cardinality

C
os

t
 (

E
la

ps
e

T
im

e
in

 S
ec

.)

solid line --- estimated cost

dotted line --- observed cost

0

50

100

150

200

250

0 1 2 3 4 5 6

x104

++++++++++++
+
++
++++
+
++++++++++++++
+++

+

++

+

++
+
++++
+
+++++
+
+++++
+++
++++++
+
+++++++

+
+
++

+
+++ ++

+ +

+

+
+

+ +

+

+

+

+

+ +

Result Table Cardinality

C
os

t
 (

E
la

ps
e

T
im

e
in

 S
ec

.)

solid line --- estimated cost

dotted line --- observed cost

Figure 7. Observed and Estimated Costs for Test
Queries in G		 on ORACLE 7.0

Figure 8. Observed and Estimated Costs for Test
Queries in G�	 on ORACLE 7.0

416 Q� ZHU AND P���A� LARSON

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500

+

+

+

+

+

+
+

+

+

++

+

+

+

+
+
+
+
++
+
++
+
+++

+

++

+

+

+

+++++++

+

+

+

+

+

+

++

+

+

+

+

+
+

+

++
+

++

+

+

++

+
+

+

+

+

++

++

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+ +

+

+

+

+

++

+
+

+

+

Result Table Cardinality

C
os

t
 (

E
la

ps
e

T
im

e
in

 S
ec

.)

solid line --- estimated cost

dotted line --- observed cost

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000 7000

+
+++++

+++
+
+

+

++
+
+

++
+

++

+
++
+
++

+

++

+

+

+

++++

++

+

+

+
+

++

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+
+

+

+

+

++

+

+

+

++

+

+

+
+

++

+
+
+
+

+

+

+

+
+

+ +

+

++

+

+
+

+

+

+

Result Table Cardinality

C
os

t
 (

E
la

ps
e

T
im

e
in

 S
ec

.)

solid line --- estimated cost

dotted line --- observed cost

Figure 9. Observed and Estimated Costs for Test
Queries in G	� on EMPRESS 4.6

Figure 10. Observed and Estimated Costs for Test
Queries in G�� on EMPRESS 4.6

0

10

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x104

+
++
+
+++++++++++++
+
++
+
++
++
+
+++++
++++

+++
++
++
++

+
++
+
++
++

+++
+

++

+
++

+

+

+

+
+

+
++

+

+

+

+

+

+

+

+
+

++

+

+
+
+

+

+

+
+ +

+

+
+

+

+

+

+

+
+

+

+

Result Table Cardinality

C
os

t
 (

E
la

ps
e

T
im

e
in

 S
ec

.)

solid line --- estimated cost

dotted line --- observed cost

0

10

20

30

40

50

60

70

80

90

0 2000 4000 6000 8000 10000 12000 14000

++

+
+++
++

++++
+++
+
+
+

+

+

+
+
+

+

+
++
+++
++
+++

+

+

+

+++

+

+++
++++++++
+
+++

++

++
+
+++++
++++
++
+
++

+

+
+
+
+++
+++
+
+ +

+
+

+

+

+

+ + +

+
+

+

Result Table Cardinality

C
os

t
 (

E
la

ps
e

T
im

e
in

 S
ec

.)

solid line --- estimated cost

dotted line --- observed cost

Figure 11. Observed and Estimated Costs for Test
Queries in G	� on DB2/6000

Figure 12. Observed and Estimated Costs for Test
Queries in G�� on DB2/6000

of estimation has been improved to 4.2% of the average observed cost, and the coefficient
of total determination has also been improved significantly.

One observation was noticed during our experiments. That is, small-cost queries often
have worse estimated costs than large-cost queries. This observation coincides with Du
et al.’s observation for their calibration method [7]. The reason for this phenomenon is
that (1) a cost formula is usually dominated by large costs used to derive it, while the
small costs may not follow the same formula because different buffering and processing
strategies may be used for the small-cost queries; (2) a small cost can be greatly affected
by some contention factors, such as available buffer space and the number of concurrent
processes; (3) initialization costs, distribution of data over a disk space and some other
factors, which may not be important for large-cost queries, could have major impact on the
costs of small-cost queries.

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 417

Since the causes of this problem are usually uncontrollable and related to implementation
details of the underlying component database system, it is hard to completely solve this
problem at the global level in an MDBS. However, this problem could be mitigated by
(a) refining the query classification according to the sizes of result tables; and/or (b)
performing a sample query multiple times and using the average of observed costs to
derive a cost formula; and/or (c) including in the cost formula more explanatory variables
if available, such as buffer sizes, and distributions of data in a disk space.

Fortunately, estimating the costs of small-cost queries is not as important as estimating
the costs of large-cost queries in query optimization because it is more important to identify
large-cost queries so that ‘‘bad’’ execution plans could be avoided.

Note that experimental results may change from one experiment to another, depending
on the system environment. Such changes may be relatively small for large-cost queries,
but may be significant for small-cost queries. Therefore, unless additional explanatory
variables reflecting the changing environment are included, the cost formulas should be
used in an environment similar to where they were derived.

7. Conclusion

Local autonomy, which is the key feature of a multidatabase system, poses many new
challenges for global query optimization in such a system. A crucial challenge is that some
local information needed for global query optimization, such as local cost parameters, may
not be available at the global level. To perform global query optimization, methods to
derive/estimate the cost parameters of an autonomous component database system at the
global level are required.

In this paper, a new query sampling method to estimate local cost parameters in an MDBS
has been proposed. The idea is to: (1) group component queries into more homogeneous
classes so that the costs of queries in each class can be satisfactorily estimated by the
same formula; (2) draw a sample of queries from each query class and perform them on
the relevant component DBS; (3) use the observed costs of sample queries to drive a cost
estimation formula for each query class by multiple regression. To estimate the cost of a
query, we first identify the class to which the query belongs, then apply the corresponding
cost formula to calculate an estimate. The issues related to this method are discussed in
this paper.

To classify queries, three types of information available at the global level of an MDBS,
i.e., characteristics of queries, characteristics of operand tables, and characteristics of
underlying component DBMSs, are utilized. A suggested query classification principle is
to put queries that likely employ the same access method into the same class. The reason
for doing this is that the queries employing the same access method usually follow the
same performance pattern; that is, their costs can be estimated well by the same formula.
To achieve this goal, a number of query classification rules that are based on the common
policies used in many DBMSs for choosing access methods are introduced. A query
classification obtained by applying these rules is described. A query classification can be
further refined if more information about the underlying component DBS is available.

To draw sample queries from a query class, a two-phase sampling approach is suggested.
The idea is to use some known knowledge to reduce a query class to a smaller set of

418 Q� ZHU AND P���A� LARSON

representative queries first, then draw a set of random queries from the representative set
as a sample for the given query class. The sampling method used in the second phase is
a mixture of simple random sampling, stratified sampling and cluster sampling. Several
principles for sampling queries from a query class are suggested. Sampling procedures for
different query classes are presented. It is shown that all the presented sampling procedures
can guarantee to produce a sample with any required minimum sample size.

A set of explanatory variables that can be included in a cost formula for a query class
are identified. A cost model (formula) is developed for each query class. A mixed forward
and backward procedure is presented to automatically select significant variables in a
cost formula. Multiple regression is used to estimate the coefficients of a cost formula.
Measures to handle outliers, multicollinearity, and unequal variances are suggested. In
particular, the method of weighted least squares is utilized to remedy the possible violation
of equal variances assumption for a multiple regression model. The significance of a
regression cost model is tested by using the standard error of estimation, the coefficient of
total determination, F -test, and test queries.

The processes for query classification, query sampling, and cost formula derivation may
need to be iterated several times before satisfactory cost formulas are achieved. A complete
statistical procedure integrating all the processes is described.

To check the feasibility of the query sampling method, experiments on three commercial
DBMSs --- ORACLE 7.0, EMPRESS 4.6, and DB2/6000 1.1.0 were conducted. The
experimental results demonstrated that the query sampling method is quite promising in
estimating local cost parameters in an MDBS. Statistical measures indicated that the cost
formulas derived by using the query sampling method are significant. These derived
cost formulas indeed produced good cost estimates for the majority of test queries in the
experiments. In particular, the cost estimates for large-cost queries are even better than
those for small-cost queries, which is desired by query optimization.

The main advantages of the query sampling method are: (1) it only uses information
available at the global level in an MDBS --- no special privilege is required from a
component database system; (2) it uses a real component database, instead of a special
synthetic calibrating database, to derive cost parameters, so the derived parameters reflect
the real environment in practice; (3) the cost formula for a query can be easily identified
by recognizing the query class to which the query belongs; (4) the significant variables
in a cost formula are automatically selected, and insignificant variables are not included;
(5) the derived local cost parameters can be stored in the multidatabase catalog instead
of built into the global query optimizer, so a new component DBS can easily be added
into the MDBS; (6) a cost formula can be dynamically improved to reflect a changing
environment by periodically re-performing sample queries; (7) the method is robust; that
is, any reasonable query classification and sampling can produce usable cost formulas.

The work reported in this paper is only the beginning of more research that needs to
be done in order to completely solve the problem of estimating local cost parameters in
an MDBS. Many issues need to be further investigated in the future, such as how to use
the query sampling method to handle queries involving aggregation functions and views,
how to incorporate system contention factors into a cost model, how to make use of
application knowledge to derive cost formulas that fit better to practically-used queries,
how to refine a query classification by analyzing observed costs of queries and recognizing

COST ESTIMATION FOR QUERY OPTIMIZATION IN MULTIDATABASES 419

their performance patterns, how to efficiently make use of observed costs of user queries
to improve the cost formulas, how to extend the method to directly handle non-relational
local data models such as object-oriented model.

In summary, the problem of estimating local cost parameters in an MDBS is challenging;
the query sampling method proposed in this paper introduces a promising approach to
solve the problem; and many interesting issues remain to be resolved in the future.

Acknowledgments

We would like to thank Grant E. Weddell, Frank W. Tompa, Amit Sheth, Kenneth Salem,
Patrick Martin, Jacob Slonim, M. Tamer Ozsu, Frank Olken, Weimin Du, Witold Litwin,
Neil Cobrun, and Yigal Gerchak for their insightful suggestions and comments. We are
grateful to Lauri Brown and Wendy Powley for their help in setting up the experimental
environments. We would also like to thank the anonymous referees for their careful
reading, valuable suggestions, and encouraging comments. This research was supported by
the IBM Toronto Laboratory and the Natural Sciences and Engineering Research Council
(NSERC) of Canada.

Notes

1. Any query has at least one conjunct Ri�an � C�i�an� �� � f���������� ��� nilg�. The ’true’ predicate
Ri�an nil C

�i�an� is considered only if there is no other conjunct of such a form in the query. As said, only
�� �� �� �� are considered in the representative queries.

2. Note that the auxiliary conjunct in a representative query may also be a key conjunct. To avoid confusion, we
always refer to the first conjunct when we say the key conjunct of a representative query.

3. Notations eC���a�� and C
���a��ei are the same. Both denote a random constant chosen from the domain of

R	�a	.

4. Note
j��

U
j

j��
U

j���j���
U

j
is the fraction of representative key conjunct types induced by the columns in ��U

among all representative key conjunct types induced by the columns in �U .

5. For simplicity, we assume that �JAj�Ri�Rj � has sufficient pairs.

6. We assume that the tuples in a table have a fixed length. Otherwise, the average tuple length could be utilized.

7. If there are more than one index-usable key predicates (conjuncts) for the unary query, the average of their
selectivities could be used.

8. The physical size of an operand table can be more accurately estimated by �NU � d	� �LU � d�, where the
constants d	 and d� reflect some overhead such as page overhead and free space [5]. Since the constants d	
and d� are applied to all sample data, they can be omitted. Estimating the physical size of a result table is
similar.

9. The simple correlation coefficient between two variables indicates the degree of the linear relationship
between the two variables [17].

10. The standard error of estimation is an indication of the accuracy of estimation [17].

11. The coefficient of multiple determination measures the proportion of variability in the response variable
explained by the explanatory variables [17].

420 Q� ZHU AND P���A� LARSON

References

1. Y. Breitbart and A. Silberschatz. Multidatabase update issues. In Proceedings of the ACM SIGMOD
Conference, pages 135--142, 1988.

2. M. W. Bright, A. R. Hurson, and S. H. Pakzad. A taxonomy and current issues in multidatabase systems.
IEEE Computer, 25(3):50--59, Mar. 1992.

3. S. Chatterjee and B. Price. Regression Analysis by Example, 2nd Ed. John Wiley & Sons, Inc., 1991.
4. W. G. Cochran. Sampling Techniques. John Wiley & Sons, Inc., 1977.
5. IBM Corp. Database 2 OS/2 guide. User manual, IBM Canada Ltd. Lab., North York, Canada, 1993.
6. U. Dayal and H. Hwang. View definition and generalization for database integration in a multidatabase

system. IEEE Trans. Soft. Eng., SE-10(6):628--644, Nov. 1984.
7. W. Du, R. Krishnamurthy, and M. C. Shan. Query optimization in heterogeneous DBMS. In Proceedings

of VLDB, pages 277--91, 1992.
8. W. C. Hou et al. Error-constrained COUNT query evaluation in relational databases. In Proceedings of

SIGMOD, pages 278--87, 1991.
9. M. Jarke and J. Koch. Query optimization in database systems. Computing Surveys, 16(2):111--152, June

1984.
10. R. J. Lipton and J. F. Naughton. Practical selectivity estimation through adaptive sampling. In Proceedings

of SIGMOD, pages 1--11, 1990.
11. W. Litwin, L. Mark, and N. Roussopoulos. Interoperability of multiple autonomous databases. ACM

Computing Surveys, 22(3):267--293, Sept. 1990.
12. H. Lu, B.-C. Ooi, and C.-H. Goh. On global multidatabase query optimization. SIGMOD Record,

21(4):6--11, Dec. 1992.
13. H. Lu and M.-C. Shan. On global query optimization in multidatabase systems. In 2nd Int’l workshop on

Research Issues on Data Eng., page 217, Tempe, Arizona, USA, 1992.
14. M. Muralikrishna and D. J. DeWitt. Equi-Depth histograms for estimating selectivity factors for multi-

Dimensional queries. In Proceedings of SIGMOD, pages 28--36, 1988.
15. J. Neter, W. Wasserman, and M. H. Kutner. Applied Linear Statistical Models, 3rd Ed. Richard D. Irwin,

Inc., 1990.
16. F. Olken and D. Rotem. Simple random sampling from relational databases. In Proceedings of 12th VLDB,

pages 160--9, 1986.
17. R. C. Pfaffenberger and J. H. Patterson. Statistical Methods for Business and Economics. Richard D. Irwin,

Inc., 1987.
18. P. G. Selinger et al. Access path selection in relational database management systems. In Proceedings of

ACM SIGMOD, pages 23--34, 1979.
19. G. P. Shapiro and C. Connel. Accurate estimation of the number of tuples satisfying a condition. In

Proceedings of SIGMOD, pages 256--76, 1984.
20. A. P. Sheth and J. A. Larson. Federated database systems for managing distributed, heterogeneous, and

autonomous databases. ACM Computing Surveys, 22(3):183--236, Sept. 1990.
21. N. Wang, P. Zhou, Qiang Zhu, et al. NITDB : A multi-user relational DBMS for microcomputers. Chinese

Computer Journal, 10(8):477--84, Aug. 1987.
22. N. Wang and Qiang Zhu. Query processing in a relational micro-DBMS with multiple optimization

strategies. Computer Research and Development, 23(9):24--30, Sept. 1986.
23. N. Wang and Qiang Zhu. Functionality and implementation techniques of the relational DBMS: NITDB.

Software Industry, 5(9):28--37, Sept. 1988.
24. Qiang Zhu. Query optimization in multidatabase systems. In Proceedings of the 1992 IBM CAS Conference,

vol.II, pages 111--27, Toronto, Canada, Nov. 1992.
25. Qiang Zhu. An integrated method of estimating selectivities in a multidatabase system. In Proceedings of

the 1993 IBM CAS Conference, pages 832--47, Toronto, Canada, Oct. 1993.
26. Qiang Zhu and P.-A. Larson. A fuzzy query optimization approach for multidatabase systems. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5(6):701--22, 1997.
27. Qiang Zhu and P.-A. Larson. A query sampling method for estimating local cost parameters in a

multidatabase system. In Proceedings of the 10th IEEE International Conference on Data Engineering,
pages 144--53, Houston, Texas, Feb. 1994.

28. Qiang Zhu and P.-A. Larson. Establishing a fuzzy cost model for query optimization in a multidatabase
system. In Proceedings of the 27th IEEE/ACM Hawaii International Conference on System Sciences, pages
263--72, Maui, Hawaii, Jan. 1994.

