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Abstract 
 

Mobile technology and advances in databases have 
allowed users to access and manipulate data across 
multiple heterogeneous and autonomous data sources via 
wireless connection, namely mobile multidatabase system. 
Transaction management in this environment is non-
trivial due to heterogeneity and autonomy of the 
participating data sources, frequent disconnections, and 
technological constraints of the access devices. Agent-
based Transaction Management scheme for Mobile 
Multidatabase (AT3M) systems uses autonomous agents 
to enable a fully distributed transaction management, 
accommodates users’ mobility, allows parallel execution 
of the global subtransactions, and responds to some of the 
limitations of the technology. The framework is 
augmented to support user connectivity and mobility in 
internetworking environment and to provide QoS-based 
services. The performance of the proposed AT3M is 
simulated and evaluated. The simulation study shows that 
the proposed scheme outperforms the V-locking and the 
Pre-Serialization schemes, as advanced in the literature. 
 
1. Introduction 
 

Globalization and global economy require more and 
more interaction and collaboration among geographically 
distributed entities through the data sources that are 
potentially autonomous and heterogeneous. Transaction 
management greatly influences the performance and 
integrity of this system. It involves interleaving operations 
(read, write, commit, and abort) of different transactions 
to allow concurrent executions.  To ensure the integrity of 
the operations, consistency across database boundaries 
must be preserved. Consequently, queries and data 
manipulation on this collection of databases must be done 
holistically within a single transaction. Changes to one 
database can be committed if and only if changes in 
another database are committed successfully. However, as 

the databases may be developed independently, they are 
likely to be heterogeneous and autonomous. Transaction 
management schemes for traditional distributed systems 
become inappropriate because: (i) Heterogeneity implies 
different data representations and concurrency control 
schemes, and (ii) Local autonomy masks out local 
transaction execution schedules at the global level. The 
scenario is more complicated in mobile environment due 
to: (i) Intermittent and unreliable connectivity, (ii) Users’ 
migration across Mobile Support Stations (MSS),  (iii) 
Limited resources of the mobile devices, and (iv) Long-
lived nature of transactions, which occupies resources for 
longer period of time. Existing solutions have several 
shortcomings such as high overhead of cascading aborts, 
high volumes of communication messages, and long 
processing time [9]. Some solutions are based on 
restrictive assumptions, e.g., global transactions are 
compensatable [4, 7], there is no local transaction [7], and 
disconnections are planned or predictable [4]. 

Agent-based Transaction Management scheme for 
Mobile Multidatabase systems (AT3M) addresses the 
aforementioned challenges and the deficiencies of the 
existing research efforts.  (i.) It preserves autonomy and 
heterogeneity of the local databases, (ii.) It is a non-
locking, pessimistic protocol that supports both 
compensatable and non-compensatable transactions. 
Consequently, it avoids the need to wait for global locks 
and cascading aborts, and thus offers a reduced 
processing time, (iii.) Autonomous agents allows parallel 
processing of global subtransactions, reduced network 
traffic, and less processing time, (iv.) The use of agents, 
further supports disconnected computing. The user may 
be disconnected or turn off the mobile device to conserve 
energy during the transaction processing. The mobile 
agent will keep the result of the transaction until the user 
is online or reconnected, (v.) Our protocol supports user’s 
mobility. It allows the user to move from one MSS to 
another, and (vi.) It offers QoS-based prioritization based 
on the user’s profile. 



2. Background & Related Work 
 
A multidatabase (MDBS) is a type of distributed 

database acting as a front end to multiple pre-existing 
heterogeneous and autonomous local databases (LDBs). It 
provides users with data representation transparency, 
system transparency, and location transparency. From 
Fig. 1, the mobile users submit global transaction (GT) to 
the MMDBS via a Mobile Support Station (MSS). We 
assume that all local databases reside in a fixed network 
while global and local transactions are submitted from 
either fixed or mobile clients. GTs access multiple local 
databases, whereas local transactions (LTs) are submitted 
directly to a single database via the local interface. At the 
global level, each GT is decomposed into several global 
subtransactions (GSTs) to be executed as LTs. A global 
transaction manager interleaves multiple GTs, resulting in 
the interleaving of the GSTs at the local level. Due to the 
autonomy of the local databases, the execution of the LTs 
and the execution order of the GSTs at a local site are 
hidden from the global manager. The global transaction 
manager must also support various types of concurrency 
control schemes used by the local databases, which may 
be invisible to the global level. Moreover, LTs at each 
local site can cause indirect conflicts (conflicts over LTs) 
among LTs [9], which is also invisible to the global 
transaction manager. With indirect conflicts, a serializable 
schedule at local level does not guarantee global 
serializability. To obtain global serializability [9]:  (i) 
Every local history (LH) of local execution order must be 
conflict serializable, and (ii) For two global transactions 
GTi and GTj, if an operation of GTi precedes an operation 
of GTj in one LH, all operations of GTi must precede any 

operation of GTj in all common LHs. A multidatabase 
federation model, called the Summary Schemas Model 
(SSM) [2], is used as our MMDBS infrastructure. A 
sample of the SSM is shown in Fig. 2. SSM is a semantic 
based hierarchical structure. Its leaf nodes represent local 
databases (local nodes) and the higher-level nodes are 
Summary Schemas Nodes (SSNs). Local nodes join the 
multidatabase federation by publishing their local schema. 
To reduce the amount of information at the higher levels, 
the SSNs increasingly abstract views of the data, known 
as summary schema, of their child nodes based on 
synonyms, hypernyms, and hyponyms relationships. In 
this example, the term “Wage” and “Salary” in nodes A 
and B are summarized to the term “Earnings” at node 3.A. 
Section 3 describes our use of the SSM. 

The integration of 802.11 WLAN and 3G cellular 
network allows mobile users to seamlessly move from 
one class of networks to another and continue to perform 
their online transactions. In this work, we selected tightly 
coupled WLAN/3G integration [3] with Cdma2000 3G 
technology to illustrate the impact of user’s mobility on 
the operation of AT3M. While the mobile agent performs 
the global transaction on behalf of the client, the user can 
move across MSS’s, routing areas, or network classes. 

Several researchers have proposed various transaction 
management protocols for MMDBS [1, 5, 7, 9]. The V-
Locking protocol [9] uses a global locking scheme with 
2PL protocol along with the wait-for-graph to enforce 
serializability. It uses a pessimistic approach and utilizes 
the structure of the SSM. The submission of global 
subtransactions to LDBs is delayed until a lock is granted. 
Thus, the V-locking may suffer from deadlocks. The 
scheme employs a global wait-for-graph to detect or 
prevent global deadlocks.  The site information and the 
implied wait-for-graph are used to handle indirect 
conflicts. Finally, although the V-locking utilizes caching 
to ease the impacts of disconnection, it did not support 
disconnected computing. The Pre-Serialization (PS) 
scheme constructs the global serialization order before 
completing the executions of the GTs [4]. It categorizes 
GTs into vital and non-vital ones. When the vital portion 
is completed, all the vital subtransactions are allowed to 
commit, the transaction is toggled, and the resources are 
released. As PS checks for conflict after a transaction is 
committed, it could lead to cascading aborts. The protocol 
assumes that all transactions are compensatable and that 
all disconnections are predictable.  
 
3. Agent-based Transaction Management for 
Mobile Multidatabase (AT3M) 
 
3.1 System Design and Architecture 

In our design, each global transaction (GT) is 
decomposed into global subtransactions (GSTs) using the 
transaction resolution process defined by the SSM [8]. 
Each local database ensures local serializability and 

Fig.2. Schema Hierarchy summarizing selected terms 

Fig. 1. Transaction Management in MDBS



 
Fig. 3. AT3M operating over SSM.  

resolves local deadlocks. The interaction between a SSN 
and other external entities is performed through a 
stationary agent in the node called NodeManager. Each 
SSN maintains a Global Order Table, which keeps the 
order information of the GSTs, which it encounters during 
the transaction resolution process and reflects the global 
schedule seen by the SSN. Fig. 3 provides an overview of 
the architecture of the transaction management over SSM.  

When a user submits a global transaction (GT) to the 
system at any node, a GTAgent is created to act on behalf 
of that GT. Based on semantic information captured by 
the SSM, its Global Transaction Coordinator (GTC) is 
identified and the GTAgent is launched to the designated 
GTC, which is recognized as the lowest SSN that 
semantically contains information needed by the GT. At 
the GTC, the GT is decomposed to global subtransactions 
(GSTs) represented by GSTAgents, which are dispatched 
by the GTAgent to the lower SSNs. At each SSN, each 
GSTAgent is directed to the lower SSN based on the 
semantic of its GST. Finally, the GSTAgent is directed to 
the local database at which its GST will be executed. At 
anytime, if the GSTAgent realizes that its designated local 
database is not found, it will notify the GTAgent, which 
will inform all GSTAgents of the same GT to abort.  

Conflicts between GSTs are resolved during their 
propagation down to the local level as follows: 
1. When a GT is resolved at a GTC, all GSTs represented 

by GSTAgents have the same order number from the 
GTC upon their creation. An entry for it is inserted to 
the Global Order Table. The GSTAgent will be given 
the global order, an ordered list of the ID of all GSTs 
preceding it in the Global Order Table. The GSTAgent 
will carry this global order to the next SSN it will visit. 

2. When the GSTAgent arrives at a SSN, its global order 
is merged into the Global Order Table of that SSN; 
thus, implicitly transferred to another GSTAgent that 
later arrives at the same SSN via the SSN’s Global 
Order Table. With this knowledge, GSTAgenti arriving 
at the SSN at level k before GSTAgentj with smaller 
order number results in the global order GSTi ! GSTj. 
If GSTAgentj visits the SSN level k+1 (which 
GSTAgenti must also visit) earlier than GSTAgenti, it 
will be queued and waited for GSTAgenti before being 

assigned a new order number and inserted to the Global 
Order Table to preserve the global order GSTi ! GSTj. 
As the GSTAgent moves closer to the LDB, the Global 
Order it carries becomes more specific to the LDB. 

3. At each SSN, the GSTs of the same GT may arrive at 
different time; they will have the same order number of 
the first GST arriving at the SSN. Thus, all GSTs of the 
same GT have the same position in the global order 
seen by NodeManagers at all involved LDBs. 

4. AT3M does not require time synchronization among 
nodes as the order of each GST is determined by its 
position in the global order carried by each GSTAgent. 
 The global serialization order is determined before the 

GSTs are executed; therefore, the GSTs that visit the 
LDBs are global conflict-free if they reserve the global 
serialization order agreed upon during the transaction 
resolution. The NodeManager at each LDB ensures this, 
using a suitable method based on the local concurrency 
control scheme. For an LDB with Timestamp Ordering 
concurrency control, the NodeManager directly utilizes 
the existing global order. It maintains the LDB’s global 
schedule. When a GSTAgent arrives, the global order that 
it carries is merged to the existing global schedule. The 
GSTs is submitted to the LDB in the global order. For the 
LDBs that produce rigorous schedules or at least 
recoverable schedules such as strict two-phase locking 
protocol, when the NodeManager receives a prepare-to-
commit from the GST, it determines if the operation 
would violate the global order. If the GST attempting to 
prepare-to-commit is not the next GST that should 
prepare-to-commit, say GSTwrong, the NodeManager will 
hold the GSTwrong for a threshold period of time. If all of 
the GSTs, which should enter prepare-to-commit state 
before the GSTwrong, have finished before the threshold 
period ends, the GSTwrong will prepare-to-commit after 
them; otherwise, the NodeManager would assume 
indirectly conflicts and would be aborted and restarted the 
GSTwrong. For LDBs with other concurrency control 
schemes, the forced conflict method is a practical solution 
[6]. AT3M addresses indirect conflicts as the global order 
is always respected even though the global transactions do 
not conflict at the global level.  
3.2 Disconnections and Migration handling 
        Migration occurs when the user moves from one 
Mobile Support Station (MSS) to another during the 

Fig. 4. AT3M in WLAN/3G Integrated Environment



execution of the GT. When the transaction is completed, 
the GTAgent needs to deliver the result to the user at 
his/her current location. Fig. 4 illustrates our 3G/WLAN-
internetworking environment. The multidatabase system 
in which AT3M operates is in IP network and connects to 
the Internet. When mobile users are in WLAN, they 
connect to the Internet via IOTA (Integration Of Two 
Access Technologies) gateway using WiFi. This IOTA 
gateway is used to connect WLAN users to the 3G 
network and perform internetworking functionalities [3]. 
On the other hand, the users who are out of range of 
802.11 network can connect to the Internet via Cellular 
link using 3G technology. Consider Fig. 4, the path from 
the AT3M system to both the WLAN and 3G networks 
forms a hierarchical structure rooted at the GTC at which 
the GTAgent completes. We are interested in the point in 
the network at which the GTAgent should wait and start 
searching for the user in order to return the result. 
3.3 Prioritization Scheme 
        To embrace the need for QoS-based services, global 
transactions with different priority levels are treated 
differently. Before a global transaction GTi is resolved at 
its GTC, the NodeManager will check its Global Order 
Table. If there exist any GSTAgents with higher priority 
in the waiting queue, the GTi is delayed until higher 
priority queued GSTs are resolved. This allows the GTs 
with higher priority to participate in the Global Order 
earlier. Moreover, the NodeManager at the leaf SSN 
connecting to LDB with a rigorous concurrency control 
scheme could also perform priorization as it examines and 
enforces the Global Order after the GSTs have been 
executed at the LDB and entering prepared-to-commit 
state. The NodeManager ensures that GSTs with higher 
priority never wait for GSTs with lower priority. 
Otherwise, it aborts and restarts the GSTs with lower 
priority. Prioritization may lead to starvation. GTs with 
low priority keep on waiting or restarting. This problem 
may be addressed by gradually increasing the priority of 
the global transaction at every time it is restarted. 

 
4. Performance Evaluation 
 

A simulator was developed to study the feasibility of 
the proposed AT3M scheme and to compare it against V-
Locking and Pre-Serialization (PS) protocols, which were 
proposed for the similar infrastructure to AT3M. The V-
Locking was shown to outperform Potential Conflict 
Graph, forced conflict, and site-graph algorithms [9]. The 
PS scheme was evaluated analytically and compared 
against the Kangaroo Model. For fairness, we simulated 
the PS scheme based on the assumptions that all GTs are 
potentially conflicting and all the GTs are compensatable. 

The simulator is designed to measure different 
performance metrics based on a set of varying input 
parameters. For the sake of space, this paper reports on 
the throughput and number of communication messages.  

a) System throughput: From Fig. 5, we evaluated the 
overall throughput of both global transactions (GTs) and 
local transactions (LTs) (not shown) that have completed 
with respect to the number of concurrent GTs. LTs are 
submitted directly to the LDB and access only that LDB. 
Intuitively, increase in the number of GTs leads to an 
increase in throughput; however, it introduces higher 
probability of conflict, which could consequently degrade 
the throughput. Since LTs access only a single database, 
they always have higher throughput as opposed to the 
GTs. From Fig. 5, AT3M gives the best throughput for 
both GTs and LTs. For AT3M, the throughput increases 
as the number of the GTs increases. The throughput of PS 
and V-locking rises slightly but starts to drop when the 
number of concurrent GTs exceeds 20. 

b) Number of Communication Messages: The 
number of communication messages depicts the required 
bandwidth. By moving computation close to the resource 
and eliminating excessive acknowledgement, AT3M 
incurs low the number of communication messages per 
global transaction even when number of transactions 
increases as shown in Fig. 6. 

c) Prioritization: To preserve local autonomy, our 
prioritization scheme performs solely and effectively at 
the global level as is depicted in Fig. 7. On the average, 
the mobile clients with higher priority gain lower 
response time than those with lower priority. Thus, users 
with higher priority would receive a better service 
regardless of prioritization scheme provided locally. 

d) User’s Mobility: The mobile user may initiate the 
transaction in either the WLAN or the 3G network. From 
Fig. 4, the GTAgent originated from WLAN could wait at 
(i) access points,  (ii) IOTA gateways, or (iii) the GTCs in 
the AT3M system. On the other hand, if it is originated 
from a 3G network, it could wait at (i) the base station, 
(ii) Packet Data Serving Node (PDSN), or (iii) the GTC. 

Due to space limitation, we only illustrate the impact 
of users’ mobility when the GTAgent is designated to 
wait at different points in the WLAN. At low mobility, 
most users stay within the same access point (AP) area. 
When mobility increases, more users have moved across 
APs, or to 3G network. Fig. 8 shows the communication 
overhead with respect to mobility. For the GTAgent 
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waiting at the AP, the lowest overhead occurred when 
most users stay in the same AP area, which allowed the 
GTAgent to deliver the result immediately. As the user 
mobility increases, such GTAgent may incur higher 
overhead from waiting at the wrong AP; and thus need to 
move inward the network to search for the user from the 
inner point in the network. With higher mobility, more 
users move out of the current WLAN domain; thus, 
GTAgents awaiting at APs or IOTAs incur higher 
communication penalty. On average GTAgents awaiting 
at GTCs always achieve the lowest communication 
overhead due to a substantial number of users moving to 
another WLAN domain or to 3G network. As a result, 
GTAgent should track and locate the user at the GTC 
before sending the result back to the user.  

5. Conclusions 
  

This paper expands the scope of the AT3M, a multi-
agent system for transaction management in mobile 
heterogeneous environment. Global transactions and 
global subtransactions are represented by autonomous 
mobile agents. With adequate knowledge, the agents are 
able to make local decisions and collaborate to resolve 
global conflicts and build a globally agreed upon schedule 
before the execution at the local level. AT3M allows fully 
distributed transaction management and parallel 
processing of global subtransactions. It also addresses 
users’ mobility and provides prioritization. AT3M does 
not enforce any constraints on the structure of the global 
transactions, nor the nature of the disconnections. Finally, 
it handles indirect conflicts due to the existence of the 
local transactions without violating local autonomy.   
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