
Agent-based Infrastructure for Data and Transaction Management in Mobile
Heterogeneous Environment∗

∗ This work was supported in part by the National Science Foundation under the contract IIS-0324835.

Machigar Ongtang,
Dept. of Computer Science and
Engineering, The Pennsylvania

State University
ongtang@cse.psu.edu

Ali R. Hurson
Computer Science Dept.

Missouri University of Science
and Technology
hurson@mst.edu

Yu Jiao
Computational Sciences and
Engineering Division, Oak

Ridge Natl. Laboratory
jiaoy@ornl.gov

Abstract

Mobile technology and advances in databases have
allowed users to access and manipulate data across
multiple heterogeneous and autonomous data sources via
wireless connection, namely mobile multidatabase system.
Transaction management in this environment is non-
trivial due to heterogeneity and autonomy of the
participating data sources, frequent disconnections, and
technological constraints of the access devices. Agent-
based Transaction Management scheme for Mobile
Multidatabase (AT3M) systems uses autonomous agents
to enable a fully distributed transaction management,
accommodates users’ mobility, allows parallel execution
of the global subtransactions, and responds to some of the
limitations of the technology. The framework is
augmented to support user connectivity and mobility in
internetworking environment and to provide QoS-based
services. The performance of the proposed AT3M is
simulated and evaluated. The simulation study shows that
the proposed scheme outperforms the V-locking and the
Pre-Serialization schemes, as advanced in the literature.

1. Introduction

Globalization and global economy require more and
more interaction and collaboration among geographically
distributed entities through the data sources that are
potentially autonomous and heterogeneous. Transaction
management greatly influences the performance and
integrity of this system. It involves interleaving operations
(read, write, commit, and abort) of different transactions
to allow concurrent executions. To ensure the integrity of
the operations, consistency across database boundaries
must be preserved. Consequently, queries and data
manipulation on this collection of databases must be done
holistically within a single transaction. Changes to one
database can be committed if and only if changes in
another database are committed successfully. However, as

the databases may be developed independently, they are
likely to be heterogeneous and autonomous. Transaction
management schemes for traditional distributed systems
become inappropriate because: (i) Heterogeneity implies
different data representations and concurrency control
schemes, and (ii) Local autonomy masks out local
transaction execution schedules at the global level. The
scenario is more complicated in mobile environment due
to: (i) Intermittent and unreliable connectivity, (ii) Users’
migration across Mobile Support Stations (MSS), (iii)
Limited resources of the mobile devices, and (iv) Long-
lived nature of transactions, which occupies resources for
longer period of time. Existing solutions have several
shortcomings such as high overhead of cascading aborts,
high volumes of communication messages, and long
processing time [9]. Some solutions are based on
restrictive assumptions, e.g., global transactions are
compensatable [4, 7], there is no local transaction [7], and
disconnections are planned or predictable [4].

Agent-based Transaction Management scheme for
Mobile Multidatabase systems (AT3M) addresses the
aforementioned challenges and the deficiencies of the
existing research efforts. (i.) It preserves autonomy and
heterogeneity of the local databases, (ii.) It is a non-
locking, pessimistic protocol that supports both
compensatable and non-compensatable transactions.
Consequently, it avoids the need to wait for global locks
and cascading aborts, and thus offers a reduced
processing time, (iii.) Autonomous agents allows parallel
processing of global subtransactions, reduced network
traffic, and less processing time, (iv.) The use of agents,
further supports disconnected computing. The user may
be disconnected or turn off the mobile device to conserve
energy during the transaction processing. The mobile
agent will keep the result of the transaction until the user
is online or reconnected, (v.) Our protocol supports user’s
mobility. It allows the user to move from one MSS to
another, and (vi.) It offers QoS-based prioritization based
on the user’s profile.

2. Background & Related Work

A multidatabase (MDBS) is a type of distributed

database acting as a front end to multiple pre-existing
heterogeneous and autonomous local databases (LDBs). It
provides users with data representation transparency,
system transparency, and location transparency. From
Fig. 1, the mobile users submit global transaction (GT) to
the MMDBS via a Mobile Support Station (MSS). We
assume that all local databases reside in a fixed network
while global and local transactions are submitted from
either fixed or mobile clients. GTs access multiple local
databases, whereas local transactions (LTs) are submitted
directly to a single database via the local interface. At the
global level, each GT is decomposed into several global
subtransactions (GSTs) to be executed as LTs. A global
transaction manager interleaves multiple GTs, resulting in
the interleaving of the GSTs at the local level. Due to the
autonomy of the local databases, the execution of the LTs
and the execution order of the GSTs at a local site are
hidden from the global manager. The global transaction
manager must also support various types of concurrency
control schemes used by the local databases, which may
be invisible to the global level. Moreover, LTs at each
local site can cause indirect conflicts (conflicts over LTs)
among LTs [9], which is also invisible to the global
transaction manager. With indirect conflicts, a serializable
schedule at local level does not guarantee global
serializability. To obtain global serializability [9]: (i)
Every local history (LH) of local execution order must be
conflict serializable, and (ii) For two global transactions
GTi and GTj, if an operation of GTi precedes an operation
of GTj in one LH, all operations of GTi must precede any

operation of GTj in all common LHs. A multidatabase
federation model, called the Summary Schemas Model
(SSM) [2], is used as our MMDBS infrastructure. A
sample of the SSM is shown in Fig. 2. SSM is a semantic
based hierarchical structure. Its leaf nodes represent local
databases (local nodes) and the higher-level nodes are
Summary Schemas Nodes (SSNs). Local nodes join the
multidatabase federation by publishing their local schema.
To reduce the amount of information at the higher levels,
the SSNs increasingly abstract views of the data, known
as summary schema, of their child nodes based on
synonyms, hypernyms, and hyponyms relationships. In
this example, the term “Wage” and “Salary” in nodes A
and B are summarized to the term “Earnings” at node 3.A.
Section 3 describes our use of the SSM.

The integration of 802.11 WLAN and 3G cellular
network allows mobile users to seamlessly move from
one class of networks to another and continue to perform
their online transactions. In this work, we selected tightly
coupled WLAN/3G integration [3] with Cdma2000 3G
technology to illustrate the impact of user’s mobility on
the operation of AT3M. While the mobile agent performs
the global transaction on behalf of the client, the user can
move across MSS’s, routing areas, or network classes.

Several researchers have proposed various transaction
management protocols for MMDBS [1, 5, 7, 9]. The V-
Locking protocol [9] uses a global locking scheme with
2PL protocol along with the wait-for-graph to enforce
serializability. It uses a pessimistic approach and utilizes
the structure of the SSM. The submission of global
subtransactions to LDBs is delayed until a lock is granted.
Thus, the V-locking may suffer from deadlocks. The
scheme employs a global wait-for-graph to detect or
prevent global deadlocks. The site information and the
implied wait-for-graph are used to handle indirect
conflicts. Finally, although the V-locking utilizes caching
to ease the impacts of disconnection, it did not support
disconnected computing. The Pre-Serialization (PS)
scheme constructs the global serialization order before
completing the executions of the GTs [4]. It categorizes
GTs into vital and non-vital ones. When the vital portion
is completed, all the vital subtransactions are allowed to
commit, the transaction is toggled, and the resources are
released. As PS checks for conflict after a transaction is
committed, it could lead to cascading aborts. The protocol
assumes that all transactions are compensatable and that
all disconnections are predictable.

3. Agent-based Transaction Management for
Mobile Multidatabase (AT3M)

3.1 System Design and Architecture

In our design, each global transaction (GT) is
decomposed into global subtransactions (GSTs) using the
transaction resolution process defined by the SSM [8].
Each local database ensures local serializability and

Fig.2. Schema Hierarchy summarizing selected terms

Fig. 1. Transaction Management in MDBS

Fig. 3. AT3M operating over SSM.

resolves local deadlocks. The interaction between a SSN
and other external entities is performed through a
stationary agent in the node called NodeManager. Each
SSN maintains a Global Order Table, which keeps the
order information of the GSTs, which it encounters during
the transaction resolution process and reflects the global
schedule seen by the SSN. Fig. 3 provides an overview of
the architecture of the transaction management over SSM.

When a user submits a global transaction (GT) to the
system at any node, a GTAgent is created to act on behalf
of that GT. Based on semantic information captured by
the SSM, its Global Transaction Coordinator (GTC) is
identified and the GTAgent is launched to the designated
GTC, which is recognized as the lowest SSN that
semantically contains information needed by the GT. At
the GTC, the GT is decomposed to global subtransactions
(GSTs) represented by GSTAgents, which are dispatched
by the GTAgent to the lower SSNs. At each SSN, each
GSTAgent is directed to the lower SSN based on the
semantic of its GST. Finally, the GSTAgent is directed to
the local database at which its GST will be executed. At
anytime, if the GSTAgent realizes that its designated local
database is not found, it will notify the GTAgent, which
will inform all GSTAgents of the same GT to abort.

Conflicts between GSTs are resolved during their
propagation down to the local level as follows:
1. When a GT is resolved at a GTC, all GSTs represented

by GSTAgents have the same order number from the
GTC upon their creation. An entry for it is inserted to
the Global Order Table. The GSTAgent will be given
the global order, an ordered list of the ID of all GSTs
preceding it in the Global Order Table. The GSTAgent
will carry this global order to the next SSN it will visit.

2. When the GSTAgent arrives at a SSN, its global order
is merged into the Global Order Table of that SSN;
thus, implicitly transferred to another GSTAgent that
later arrives at the same SSN via the SSN’s Global
Order Table. With this knowledge, GSTAgenti arriving
at the SSN at level k before GSTAgentj with smaller
order number results in the global order GSTi ! GSTj.
If GSTAgentj visits the SSN level k+1 (which
GSTAgenti must also visit) earlier than GSTAgenti, it
will be queued and waited for GSTAgenti before being

assigned a new order number and inserted to the Global
Order Table to preserve the global order GSTi ! GSTj.
As the GSTAgent moves closer to the LDB, the Global
Order it carries becomes more specific to the LDB.

3. At each SSN, the GSTs of the same GT may arrive at
different time; they will have the same order number of
the first GST arriving at the SSN. Thus, all GSTs of the
same GT have the same position in the global order
seen by NodeManagers at all involved LDBs.

4. AT3M does not require time synchronization among
nodes as the order of each GST is determined by its
position in the global order carried by each GSTAgent.
 The global serialization order is determined before the

GSTs are executed; therefore, the GSTs that visit the
LDBs are global conflict-free if they reserve the global
serialization order agreed upon during the transaction
resolution. The NodeManager at each LDB ensures this,
using a suitable method based on the local concurrency
control scheme. For an LDB with Timestamp Ordering
concurrency control, the NodeManager directly utilizes
the existing global order. It maintains the LDB’s global
schedule. When a GSTAgent arrives, the global order that
it carries is merged to the existing global schedule. The
GSTs is submitted to the LDB in the global order. For the
LDBs that produce rigorous schedules or at least
recoverable schedules such as strict two-phase locking
protocol, when the NodeManager receives a prepare-to-
commit from the GST, it determines if the operation
would violate the global order. If the GST attempting to
prepare-to-commit is not the next GST that should
prepare-to-commit, say GSTwrong, the NodeManager will
hold the GSTwrong for a threshold period of time. If all of
the GSTs, which should enter prepare-to-commit state
before the GSTwrong, have finished before the threshold
period ends, the GSTwrong will prepare-to-commit after
them; otherwise, the NodeManager would assume
indirectly conflicts and would be aborted and restarted the
GSTwrong. For LDBs with other concurrency control
schemes, the forced conflict method is a practical solution
[6]. AT3M addresses indirect conflicts as the global order
is always respected even though the global transactions do
not conflict at the global level.
3.2 Disconnections and Migration handling
 Migration occurs when the user moves from one
Mobile Support Station (MSS) to another during the

Fig. 4. AT3M in WLAN/3G Integrated Environment

execution of the GT. When the transaction is completed,
the GTAgent needs to deliver the result to the user at
his/her current location. Fig. 4 illustrates our 3G/WLAN-
internetworking environment. The multidatabase system
in which AT3M operates is in IP network and connects to
the Internet. When mobile users are in WLAN, they
connect to the Internet via IOTA (Integration Of Two
Access Technologies) gateway using WiFi. This IOTA
gateway is used to connect WLAN users to the 3G
network and perform internetworking functionalities [3].
On the other hand, the users who are out of range of
802.11 network can connect to the Internet via Cellular
link using 3G technology. Consider Fig. 4, the path from
the AT3M system to both the WLAN and 3G networks
forms a hierarchical structure rooted at the GTC at which
the GTAgent completes. We are interested in the point in
the network at which the GTAgent should wait and start
searching for the user in order to return the result.
3.3 Prioritization Scheme
 To embrace the need for QoS-based services, global
transactions with different priority levels are treated
differently. Before a global transaction GTi is resolved at
its GTC, the NodeManager will check its Global Order
Table. If there exist any GSTAgents with higher priority
in the waiting queue, the GTi is delayed until higher
priority queued GSTs are resolved. This allows the GTs
with higher priority to participate in the Global Order
earlier. Moreover, the NodeManager at the leaf SSN
connecting to LDB with a rigorous concurrency control
scheme could also perform priorization as it examines and
enforces the Global Order after the GSTs have been
executed at the LDB and entering prepared-to-commit
state. The NodeManager ensures that GSTs with higher
priority never wait for GSTs with lower priority.
Otherwise, it aborts and restarts the GSTs with lower
priority. Prioritization may lead to starvation. GTs with
low priority keep on waiting or restarting. This problem
may be addressed by gradually increasing the priority of
the global transaction at every time it is restarted.

4. Performance Evaluation

A simulator was developed to study the feasibility of
the proposed AT3M scheme and to compare it against V-
Locking and Pre-Serialization (PS) protocols, which were
proposed for the similar infrastructure to AT3M. The V-
Locking was shown to outperform Potential Conflict
Graph, forced conflict, and site-graph algorithms [9]. The
PS scheme was evaluated analytically and compared
against the Kangaroo Model. For fairness, we simulated
the PS scheme based on the assumptions that all GTs are
potentially conflicting and all the GTs are compensatable.

The simulator is designed to measure different
performance metrics based on a set of varying input
parameters. For the sake of space, this paper reports on
the throughput and number of communication messages.

a) System throughput: From Fig. 5, we evaluated the
overall throughput of both global transactions (GTs) and
local transactions (LTs) (not shown) that have completed
with respect to the number of concurrent GTs. LTs are
submitted directly to the LDB and access only that LDB.
Intuitively, increase in the number of GTs leads to an
increase in throughput; however, it introduces higher
probability of conflict, which could consequently degrade
the throughput. Since LTs access only a single database,
they always have higher throughput as opposed to the
GTs. From Fig. 5, AT3M gives the best throughput for
both GTs and LTs. For AT3M, the throughput increases
as the number of the GTs increases. The throughput of PS
and V-locking rises slightly but starts to drop when the
number of concurrent GTs exceeds 20.

b) Number of Communication Messages: The
number of communication messages depicts the required
bandwidth. By moving computation close to the resource
and eliminating excessive acknowledgement, AT3M
incurs low the number of communication messages per
global transaction even when number of transactions
increases as shown in Fig. 6.

c) Prioritization: To preserve local autonomy, our
prioritization scheme performs solely and effectively at
the global level as is depicted in Fig. 7. On the average,
the mobile clients with higher priority gain lower
response time than those with lower priority. Thus, users
with higher priority would receive a better service
regardless of prioritization scheme provided locally.

d) User’s Mobility: The mobile user may initiate the
transaction in either the WLAN or the 3G network. From
Fig. 4, the GTAgent originated from WLAN could wait at
(i) access points, (ii) IOTA gateways, or (iii) the GTCs in
the AT3M system. On the other hand, if it is originated
from a 3G network, it could wait at (i) the base station,
(ii) Packet Data Serving Node (PDSN), or (iii) the GTC.

Due to space limitation, we only illustrate the impact
of users’ mobility when the GTAgent is designated to
wait at different points in the WLAN. At low mobility,
most users stay within the same access point (AP) area.
When mobility increases, more users have moved across
APs, or to 3G network. Fig. 8 shows the communication
overhead with respect to mobility. For the GTAgent

0

0.2

0.4

0.6

0.8

1

1.2

5 10 20 30
Number of Global Transactions

G
lo

b
a
l
T
h
ro

u
g
h
p
u
t

AT3M PS V-Locking
Fig. 5. Global Transaction Throughput

20

25

30

35

40

45

3:10 5:10 10:10 20:10 30:10
High priority clients: Low priority clients

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

.)

High priority client Low priority client

Fig. 7. Average response time for different priorities

0

1

2

3

4

5

6

0.00001 0.05 0.1 0.15 0.2
User's mobility (handoffs/s)

A
ve

ra
ge

 o
ve

rh
ea

d
(s

)

AP IOTA GW GTC

Fig. 8. Overhead for each mobility level when GTAgent
waits at AP, IOTA Gateway, and GTC.

waiting at the AP, the lowest overhead occurred when
most users stay in the same AP area, which allowed the
GTAgent to deliver the result immediately. As the user
mobility increases, such GTAgent may incur higher
overhead from waiting at the wrong AP; and thus need to
move inward the network to search for the user from the
inner point in the network. With higher mobility, more
users move out of the current WLAN domain; thus,
GTAgents awaiting at APs or IOTAs incur higher
communication penalty. On average GTAgents awaiting
at GTCs always achieve the lowest communication
overhead due to a substantial number of users moving to
another WLAN domain or to 3G network. As a result,
GTAgent should track and locate the user at the GTC
before sending the result back to the user.

5. Conclusions

This paper expands the scope of the AT3M, a multi-
agent system for transaction management in mobile
heterogeneous environment. Global transactions and
global subtransactions are represented by autonomous
mobile agents. With adequate knowledge, the agents are
able to make local decisions and collaborate to resolve
global conflicts and build a globally agreed upon schedule
before the execution at the local level. AT3M allows fully
distributed transaction management and parallel
processing of global subtransactions. It also addresses
users’ mobility and provides prioritization. AT3M does
not enforce any constraints on the structure of the global
transactions, nor the nature of the disconnections. Finally,
it handles indirect conflicts due to the existence of the
local transactions without violating local autonomy.

References

[1] Brayner A., Alencar F. S., A semantic-serializability based fully-

distributed concurrency control mechanism for mobile multi-
database systems, Proceedings 16th International Workshop on
Database and Expert Systems Applications, 2005.

[2] Bright M. W., Hurson A. R., Pakzad S. H., Automated Resolution
of Semantic Heterogeneity in Multidatabases, ACM Transactions
on Database Systems, 19(2), 1994, pp: 212-253.

[3] Buddhikot M., Chandranmenon G., Han S., Lee Y. W., Miller S.,
Salgaelli L., Integration of 802.11 and Third-Generation Wireless
Data Networks, INFOCOM’03.

[4] Dirckze R. A., Gruenwald L., A pre-serialization transaction
management technique for mobile multidatabases, Mobile
Networks and Applications,5 (4), 2000, pp: 311–321

[5] Dunham M.H., Helal A., Balakrishnan S., A mobile transaction
model that captures both the data and movement behavior.
ACM/Baltzer Journal on Special Topics Sin Mobile Networks and
Applications (MONET), 1997

[6] Georgakopoulos D., Rusinkiewicz M., Sheth A., On Serializability
of Multidatabase Transactions Through Forced Local Conflicts, In
Proceedings 7th IEEE International Conference on Data
Engineering, 1991, pp: 314 – 323.

[7] Haller K., Schudt H., Turker C., Decentralized Coordination of
Transactional Processes in Peer-to-Peer Environments, CIKM’05

[8] Jiao Y., Hurson A. R., Application of mobile agents in mobile data
access systems – a prototype. Journal of Database Management,
15(4), 2004, pp: 1-24.

[9] Lim J. B., Hurson A. R., Transaction processing in mobile,
heterogeneous database systems, IEEE Transactions on
Knowledge and Data Engineering, 2002, pp: 1330-1346.

[10] Ongtang M., Hurson A. R., Jiao Y., Potok T. E., Agent-based
Transaction Management for Mobile Multidatabase, in
Proceedings of the 3rd IEEE International Conference on Wireless
and Mobile Computing, Network and Communication, 2007.

ACKNOWLEDGEMENT
Notice: This manuscript has been authored by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the US Department of Energy. The
United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes. Research
sponsored by the Laboratory Directed Research and Development
Program of Oak Ridge National Laboratory (ORNL) managed by UT-
Battelle, LLC, for the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

0

50

100

150

200

250

300

5 10 20 30
Number of Global Transactions

M
e
ss

a
g
e
s

p
e
r

G
T

AT3M PS V-Locking

Fig. 6. Number of Communication Messages

