16

OVERVIEW OF TRANSACTION
MANAGEMENT

What four properties of transactions does a DBMS guarantee?
Why does a DBMS interleave transactions?

What is the correctness criterion for interleaved execution?
What kinds of anomalies can interieaving transactions cauge?
How does a DBMS use locks to ensure correct interleavings?

What is the impact of locking on performance?

SRR BN

What SQL commands allow programmers to select transaction char-
acteristics and reduce locking overhead?

§

How does a DBMS guarantee transaction atomicity and recovery from
gystem crashes?

» Key concepts: ACID properties, atomicity, consistency, isolation,
durability; schedules, serializability, recoverability, avoiding cascading
aborts; anomalies, dirty reads, unrepeatable reads, lost updates; lock-
ing protocols, exclusive and shared locks, Strict Two-Phase Locking;
locking performance, thrashing, hot spots; SQL transaction charac-
teristics, savepoints, rollbacks, phantoms, access mode, isolation level;
transaction manager, recovery managet, log, system crash, media fail-
ure; stealing frames, forcing pages; recovery phases, analysis, redo and
undo.

I always say, keep a diary and someday 1l keep you.
—Mae West

519

520 ' CHAPTER.

In this chapter, we cover the concept of a transaction, which is the foun
tion for concurrent execution and recovery from system failure in a DBMS.
transaction is defined as any one execution of a user program in a DBMS a
differs from an execution of a program outside the DBMS (e.g., a C progr
executing on Unix) in important ways. (Executing the same program seve
times generates several transactions.)

For performance reasons, a DBMS has to interleave the actions of several tran
actions. (We motivate interleaving of transactions in detail in Section 16.3.
However, to give users a simple way to understand the effect of running their
programs, the interleaving is done carefully to ensure that the result of a con
current execution of transactions is nonetheless equivalent (in its effect on the
database) to some serial, or one-at-a-time, execution of the same set of transac
tions. How the DBMS handles concurrent- executions is an important aspect o
transaction management and the subject of concurrency control. A closely re
lated issne is how the DBMS handles partial transactions, or transactions tha
are interrupted before they run to normal completion. The DBMS ensures that,
the changes made by such partial transactions are not seen by other transac—".;_
tions. How this is achieved is the subject of crash recovery. In this chapter,:
we provide a broad introduction to concurrency control and crash recovery in -
a DBMS. The details are developed further in the next two chapters.

In Section 16.1, we discuss four fundamental properties of database transactions
and how the DBMS ensures these properties. In Section 16.2, we present an ab- -
stract way of describing an interleaved execution of several transactions, called :
a schedule. Tn Section 16.3, we discuss various problems that can arise due to
interleaved execution. We introduce lock-based concurrency control, the most
widely used approach, in Section 16.4. We discuss performance issues agssoci-
ated with lock-based concurrency control in Section 16.5. We consider locking
and transaction properties in the context of SQL in Section 16.6. Finally, in
Section 16.7, we present an overview of how a database system recovers from
crashes and what steps are taken during normal execution to support crash
recovery.

16.1 THE ACID PROPERTIES

We introduced the concept of database transactions in Section 1.7. To reca-
pitulate briefly, a transaction is an execution of a user program, seen by the
DBMS as a series of read and write operations.

A DBMS must ensure four important properties of transactions to maintain
data in the face of concurrent access and system failures:

Overview of Transaction Management 591

- Users should be able to regard the execution of each transaction as atomic:
- Tither all actions are carried out or none are. Users should not have to
. worry about the effect of incomplete transactions (say, when a system crash

oCCurs).

FEach transaction, run by itself with no concurrent execution of other trans-
actions, must preserve the consistency of the database. The DBMS as-
- sumes that consistency holds for each transaction. Ensuring this property
of a transaction is the responsibility of the user.

Users should be able to understand a transaction without considering the
effect of other concurrently executing transactions, even if the DBMS in-
terleaves the actions of several transactions for performance reasons. This
property is sometimes referred to as isolation: Transactions are isolated,
or protected, from the effects of concurrently scheduling other transactions.

Once the DBMS informs the user that a transaction has been successfully
completed, its effects should persist even if the system crashes before all
its changes are reflected on disk. This property is called durability.

fonym ACID is sometimes used to refer to these four properties of trans-
s; atomicity, consistency, isolation and durability. We now consider how
f these properties is ensured in a DBMS.

1 Consistency and Isolation

EJ,'_r_e respongible for ensuring transaction consistency. That is, the user
t_ib_mits a transaction must ensure that, when run to completion by itself
t:a ‘consistent’ database instance, the transaction will leave the database
onsistent’ state. For example, the user may (naturally} have the consis-
iterion that fund transfers between bank accounts should not change
tal . amount of money in the accounts. To transfer money from one ac-
another, a transaction must debit one account, temporarily leaving the
ase inconsistent in a global sense, even though the new account balance
fy any integrity constraints with respect to the range of acceptable
alances. The user’s notion of a consistent database is preserved when
-account is credited with the transferred amount. If a faulty trans-
ram always credits the second account with one dollar less than the
ebited from the first account, the DBMS cannot be expected to de-
'iif,éistencies due to such errors in the user program’s logic.

bla'tion property is ensured by guaranteeing that, even though actions
‘transactions might be interleaved, the net effect is identical to ex-
1 transactions one after the other in some serial order. (We discuss

522 CHAPTER:

how the DBMS implements this guarantee in Section 16.4.} For exampl
two transactions 71 and T2 are executed concurrently, the net effect ig g
anteed to be equivalent to executing (all of) T1 followed by exectiting T
executing 1'2 followed by executing T'1. (The DBMS provides no guarar
about which of these orders is effectively chosen.) If each transaction map
consistent database instance to another consistent database instance, exe
ing several transactions one after the other {on a consistent initial datab
instance} results in a consistent final database instance, '

isolation, and transaction consistency. Next, we discuss how atomicity
durability are guaranteed in a DBMS.

16.1.2 Atomicity and Durability

Transactions can be incomplete for three kinds of reasons. First, a transactio
can be aborted, or terminated unsuccessfully, by the DBMS because som
anomaly arises during execution. If a transaction is aborted by the DBMS fo
some internal reason, it is automatically restarted and executed anew. Second
the system may crash (e.g., because the power supply is interrupted) while one
Or more transactions are in progress. Third, a transaction may encounter an
unexpected situation (for example, read an unexpected data value or be unabl
to access some disk) and decide to abort (i.e., terminate itself).

Of course, since users think of transactions as being atomic, a transaction that
is interrupted in the middle may leave the database in an inconsistent state. -
Therefore, s, DBMS must find a way to remove the effects of partial transactions
from the database. That is, it must ensure transaction atomicity: Either all ofa °
transaction’s actions are carried out or none are. A DBMS ensures transaction
atomicity by undoing the actions of incomplete transactions. This means that
© users can ignore incomplete transactions in thinking about how the database is
modified by transactions over time. To be able to do this, the DBMS maintains
a record, called the log, of all writes to the database. The log is also used to
ensure durability: If the system crashes before the changes made by a completed
transaction are written to disk, the log is used to remember and restore these
changes when the system restarts.

The DBMS component that ensures atomicity and durability, called the recov-
ery manager, is discussed further in Section 16.7.

Overview of Transaction Management 923

16.2 TRANSACTIONS AND SCHEDULES

A transaction is seen by the DBMS as a series, or list, of actions. The actions
that can be executed by a transaction include reads and writes of database
objects. 'To keep our notation simple, we assume that an object O is always
read into a program variable that is also named O. We can therefore denote
the action of a transaction T" reading an object O as Rr(Q); similarly, we can
denote writing as Wz (). When the transaction T is clear from the context
we omit the subscript.

In addition to reading and writing, each transaction must specify as its final

action either commit (i.e., complete successfully) or abort (ie., terminate

and undo all the actions carried out thus far). Aborty denotes the action of T’
~ aborting, and Commily denotes T' committing.

~ We make two important assumptions:

1. Transactions interact with each other only via database read and write
operations; for example, they are not allowed to exchange messages.

2 A database is a fized collection of independent objects. When objects are
“ added to or deleted from a database or there are relationships between
database objects that we want to exploit for performance, some additional
issues arise.

f the first assumption is violated, the DBMS has no way to detect or prevent
inconsistencies cause by such external interactions between transactions, and it
-_upto the writer of the application to ensure that the program is well-behaved.
e relax the second assumption in Section 16.6.2.

chedule is a list of actions (reading, writing, aborting, or committing)
om a set of transactions, and the order in which two actions of a transaction
ppear in a schedule must be the same as the order in which they appear in1".
iitively, a schedule represents an actual or potential execution sequence. For
ample, the schedule in Figure 16.1 shows an execution order for actions of two
nsactions 7'1 and T'2. We move forward in time as we go down from one row
he next. We emphasize that a schedule describies the actions of transactions
een by the DBMS. In addition to these actions, a transaction may carry out
_actions, such as reading or writing from operating system files, evaluating
hmetic expressions, and so on; however, we assume that these actions do
ect other transactions; that is, the effect of a transaction on another
action can be understood solely in terms of the common database objects
hey read and write.

594 CHAPT‘E:‘;

T T2
R(4)
W(A)
R(B)
W(B)
R(C)
w(C)

Figure 16.1 A Schedule Involving T'wo Transactions

Note that the schedule in Figure 16.1 does not contain an abort or commit a¢
tion for either transaction. A schedule that contains either an abort or a comm
for each transaction whose actions are listed in it is called a complete sche
ule. A complete schedule must contain all the actions of every transactio
that appears in it. If the actions of different transactions are not interleaved

that is, transactions are executed from start to finish, one by one—we call the
schedule a serial schedule. “

16.3 CONCURRENT EXECUTION OF TRANSACTIONS

Now that we have introduced the concept of a schedule, we have a convenient
way to describe interleaved executions of transactions. The DBMS interleaves
the actions of different transactions to improve performance, but not all inter- -
leavings should be allowed. In this section, we consider what interleavings, or :
schedules, a DBMS should aliow.

16.3.1 Motivation for Concurrent Execution

The schedule shown in Figure 16.1 represents an inferleaved execution of the
two transactions. Ensuring transaction isolation while permitting such concur-
rent execution is difficult but necessary for performance reasons. First, while
one transaction is waiting for a page to be read in from disk, the CPU can
process another transaction. This is because I/O activity can be done in par-
allel with CPU activity in a computer. Overlapping I/O and CPU activity
reduces the amount of time disks and processors are idle and increases system:
throughput (the average number of transactions completed in a given time).
Second, interleaved execution of a short transaction with a long transaction
usually allows the short transaction to complete quickly. In serial execution,
a short transaction could get stuck behind a long transaction, leading to un-
predictable delays in response time, or average time taken to complete a
transaction.

Overview of Transaction Management 525

16.3.2 Serializability

A serializable schedule over a set S of committed transactions is a schedule
whose effect on any consistent database instance is guaranteed to be identical
to that of some complete serial schedule aver . That is, the database instance
that results from executing the given schedule is identical to the database in-
stance that results from executing the transactions in some serial order.

As an example, the schedule shown in Figure 16.2 is serializable. Even though
the actions of T'1 and 12 are interleaved, the result of this schedule is equivalent
to running 7'1 (in its entirety) and then running 72. Intuitively, T1’s read and
write of B is not influenced by T'2’s actions on A, and the net effect is the same
- if these actions are ‘swapped’ to obtain the serial schedule 1;72,

T T2
R(A)
w(4)
R(A)
W(A)
R(B)
W(B)
R(B)
W(B)
Commit
Commit '

Figure 16.2 A Serializable Schedule

ecuting transactions serially in different orders may produce different results,
t all are presumed to be acceptable; the DBMS makes no guarantees about
ﬁi_ch of them will be the outcome of an interleaved execution. To see this,
te that the two example transactions from Figure 16.2 can be interleaved as
own in Pigure 16.3. This schedule, also serializable, is equivalent to the serial
iedule 7'2; T'1. If 71 and T2 are submitted concurrently to a DBMS, either
these schedules (among others) could be chosen.

Ppreceding definition of a serializable schedule does not cover the case of
dules containing aborted transactions. We extend the definition of serial-
e schedules to cover aborted transactions in Section 16.3.4.

atransaction prints a value to the screen, this ‘effect’ is not directly captured in the database.
implicity, we assume that such values are also written into the database. ’

526 : . CHAPTER.

T1 T2
R(A)
W(A)
R(A)
R(B)
W(B)
W (4)
R(B)
W(B)
Commit
Commit

Figure 16.3 Another Serializable Schedule

Finally, we note that a DBMS might sometimes execute transactions in a way
that is not equivalent to any serial execution; that is, using a schedule that is
not serializable. This can happen for two reasons. First, the DBMS might use
a concurrency control method that ensures the executed schedule, though not
itself serializable, is equivalent to some serializable schedule (e.g., see Section
17.6.2). Second, SQL gives application programmers the ability to instruct the

DBMS to choose non-serializable schedules (see Section 16.6). ;

16.3.3 Anomalies Due to Interleaved Execution

We now illustrate three main ways in which a schedule involving two consistency
preserving, committed transactions could run against a consistent database and
leave it in an inconsistent state. Two actions on the same data object conflict if
at least one of them is a write. 'The three anomalous situations can be described
in terms of when the actions of two transactions T'1 and T2 conflict with each
other: In a write-read (WR) conflict, T2 reads a data object previously
written by T'1; we define read-write (RW) and write-write (WW) conflicts
similarly.

Reading Uncommitted Data (WR Conflicts)

The first source of anomalies is that a transaction 72 could read a database
object A that has been modified by another transaction T'1, which has not yet
committed. Such a read is called a dirty read. A simple example illustrates
how such a schedule could lead to an inconsistent database state. Consider
two transactions Tl and T2, each of which, run alone, preserves database
consistency: 71 transfers $100 from A to B, and T2 increments both A and
B by 6% (e.g., annual interest is deposited into these two accounts). Suppose

Overview of Transaction Management 527

that the actions are interleaved so that (1) the account transfer program 71

- deducts $100 from account A, then (2) the interest deposit program T2 reads
‘the current values of accounts A and B and adds 6% interest to each, and then
(3) the account transfer program credits $100 to account B. The corresponding
schedule, which is the view the DBMS has of this series of events, is illustrated
in Figure 16.4. The result of this schedule is different from any result that we
would get by running one of the two transactions first and then the other. The
problem can be traced to the fact that the value of A written by T'1 is read by
T2 before T1 has completed all its changes.

T1 T2

R(A)

W(A)
R(4)
W(A)
R(B)
W(B)
Commit

R(B)

W(B)

Commit

Figure 16.4 Reading Uncommitted Data

The general problem illustrated here is that Tl may write some value into A
that makes the database inconsistent. As long as T'1 overwrites this value with
a ‘correct’ value of A before committing, no harm is done if T'1 and T2 run in
some serial order, because 72 would then not see the (temporary) inconsistency.
On the other hand, interleaved execution can expose this inconsistency and lead
.an inconsistent final database state.

ote that although a transaction must leave a database in a consistent state
ter it completes, it is not required to keep the database congistent while it is
ill in progress. Such a requirement would be too restrictive: To transfer money
one account to another, a transaction must debit one account, temporarily
ing the database inconsistent, and then credit the second account, restoring
sistency. '

528 CHAPTER |

Unrepeatable Reads (RW Conflicts)

The second way in which anomalous behavior could result is that a transactic
T2 could change the value of an object A that has been read by a transactic
71, while T'1 is still in progress.

If 7'1 tries to read the value of A again, it will get a different result, even though
it has not modified A in the meantime. This situation could not arise in a serial
execution of two transactions; it is called an unrepeatable read.

To see why this can cause problems, consider the following example. Suppose
that A is the number of available copies for a book. A transaction that places
an order first reads A, checks that it is greater than 0, and then decrements it.
Transaction T'1 reads A and sees the value 1. Transaction T2 also reads A and
sees the value 1, decrements A to 0 and commits. Transaction T'1 then tries to
decrement A and gets an ervor (if there is an integrity constraint that prevents
A from becoming negative).

This situation can never arise in a serial execution of 7'l and T'2; the second
transaction would read A and see 0 and therefore not proceed with the order
(and so would not attempt to decrement A).

Overwriting Uncommitted Data (WW Conflicts)

The third source of anomalous behavior is that a transaction T'2 could overwrite
the value of an object A, which has already been modified by a transaction 71,
while 771 is still in progress. Even if T'2 does not read the value of A written
by 1’1, a potential problem exists as the following example illustrates.

Suppose that Harry and Larry are two employees, and their salaries must be
kept equal. Transaction T'1 sets their salaries to $2000 and transaction T'2 sets
their salaries to $1000. If we execute these in the serial order T'1 followed by
T2, both receive the salary $1000; the serial order 12 followed by T'1 gives each
the salary $2000. Either of these is acceptable from a consistency standpoint
(although Harry and Larry may prefer a higher salary!). Note that neither
transaction reads a salary value before writing it—such a write is called a
blind write, for obvious reasons.

Now, consider the following interleaving of the actions of T1 and T'2: T2 sets
Harry’s salary to $1000, T'1 sets Larry’s salary to $2000, T2 sets Larry’s salary
to $1000 and commits, and finally 7'1 sets Harry's salary to $2000 and cornmits.
The result is not identical to the result of either of the two possible serial

Overview of Transaction Management 529

executions, and the interleaved schedule is therefore not serializable. It violates
the desired consistency criterion that the two salaries must be equal.

The problem is that we have a lost update. The first transaction to commit,
- 79, overwrote Larry’s salary as set by T'l. In the serial order T2 followed by
- 71, Larry’s salary should reflect T'1’s update rather than 7'2’s, but T'1’s update
- is Jost’,

16.3.4 Schedules Involving Aborted Transactions

We now extend our definition of serializability to include aborted transactions.?
Intuitively, all actions of aborted transactions are to be undone, and we can
therefore imagine that they were never carried out to begin with. Using this
intuition, we extend the definition of a serializable schedule as follows: A se-
rializable schedule over a get S of transactions is a schedule whose effect on
ny consistent database instance is guaranteed to be identical to that of some
complete serial schedule over the set of committed transactions in 5.

This definition of serializability relies on the actions of aborted transactions
eing undone completely, which may be impossible in some situations. For
mple, suppose that (1) an account transfer program T'1 deducts $100 from
ount A, then (2) an interest deposit program T2 reads the current values of
ounts A and B and adds 6% interest to each, then commits, and then (3}
 aborted. The corresponding schedule is shown in Figure 16.5.

Ti T2
R(A)
W(4)
R(A)
W(4)
R(B)
w(B)
Commit
Abort

Figure 16.5 An Unrecoverable Schedule

must also consider incomplete transactions for a rigorous discussion of system failures, because
iohs that are active when the system fails are neither aborted nor committed. However, system
sually beging by aborting all active transactions, and for our informal discussion, considering
involving committed and aborted transactions is sufficient.

530 CHAPTER

Now, T2 has read a value for A that should never have been there. (Reca]l
that aborted transactions’ effects are not supposed to be visible to other trans
actions.) If T2 had not yet commiited, we could deal with the situation b
cascading the abort of 71 and also aborting 1'2; this process recursively abort
any transaction that read data written by 12, and so on. But T2 has alread
committed, and so we cannot undo its actions. We say that such a schedul
is unrecoverable. In a recoverable schedule, transactions commit only afte
(and if!) all transactions whose changes they read commit. If transactions read
only the changes of committed transactions, not only is the schedule recover
able, but also aborting a transaction can be accomplished without cascadin
the abort to other transactions. Such a schedule is said to avoid cascading
aborts.

There is another potential problem in undoing the actions of a transaction.:
Suppose that a transaction T'2 overwrites the value of an object A that has been
modified by a transaction 71, while T'1 is still in progress, and 71 subsequently
aborts. All of T1’s changes to database objects are undone by restoring the
value of any object that it modified to the value of the object before T1’s
changes. (We look at the details of how a transaction abort is handled in
Chapter 18.) When T'1 is aborted and its changes are undone in this manner,
T2’s changes are lost as well, even if T2 decides to commit. So, for example, if
A originally had the value 5, then was changed by 'l to 6, and by T2 to 7, if
T1 now aborts, the value of A becomes 5 again. Even if 1'2 commits, its change
to A is inadvertently lost. A concurrency control technique called Strict 2PL,
introduced in Section 16.4, can prevent this problem (as discussed in Section
17.1).

16.4 LOCK-BASED CONCURRENCY CONTROL

A DBMS must be able to ensure that only serializable, recoverable schedules
are allowed and that no actions of committed transactions are lost while undo-
ing aborted transactions. A DBMS typically uses a locking protocol to achieve
this. A lock is a small bookkeeping object associated with a database object.
A locking protocol is a set of rules to be followed by each transaction (and en-
forced by the DBMS) to ensure that, even though actions of several transactions
might be interleaved, the net effect is identical to executing all transactions in
some serial order. Different locking protocols use different types of locks, such
as shared locks or exclusive locks, as we see next, when we discuss the Strict
2PL protocol.

Overview of Transaction Management 531

16.4.1 Strict Two-Phase Locking (Strict 2PL)

The most widely used locking protocol, called Strict Two-Phase Locking, or
Strict 2PL, has two rules. The first rule is

1. If a transaction T wants to read (respectively, modify) an object, it
first requests a shared (respectively, exclusive) lock on the object.

Of course, a transaction that has an exclusive lock can also read the object;
an additional shared lock is not required. A transaction that requests a lock is
suspended until the DBMS is able to grant it the requested lock. The DBMS
keeps track of the locks it has granted and ensures that if a transaction holds
an exclusive lock on an object, no other transaction holds a shared or exclusive
lock on the same object. The second rule in Strict 2PL is

2. All locks held by a transaction are released when the transaction is
completed.

Requests to acquire and release locks can be automatically inserted into trans-

actions by the DBEMS; users need not worry about these details. (We discuss
- how application programmers can select properties of transactions and control
- locking overhead in Section 16.6.3.)

In effect, the locking protocol allows only ‘safe’ interfeavings of transactions.
If two transactions access completely independent parts of the database, they
concurrently obtain the locks they need and proceed merrily on their ways. On
the other hand, if two transactions access the same object, and one wants to
modify it, their actions are effectively ordered serially—all actions of one of
these transactions (the one that gets the lock on the common object first) are
completed before (this lock is released and) the other transaction can proceed.

e denote the action of a transaction 7' requesting a shared (respectively, exclu-
sive) lock on object O as Sp(O) (respectively, X7(0)) and omit the subscript
denoting the transaction when it is clear from the context. As an example,
consider the schedule shown in Figure 16.4. This mter}eavmg could result in a
ate that cannot result from any serial execution of the &8 transactions. For
stance, T'1 could change A from 10 to 20, then T2 (which reads the value 20
A) could change B from 100 to 200, and then 7'1 would read the value 200
B. If run serially, either T'1 or T2 would execute first, and read the values
Ador A and 100 for B: Clearly, the interleaved execution is not equivalent to
r serial execution.

e Strict 2PT, protocol is used, such interleaving is disallowed. Let us see
.~ Assuming that the transactions proceed at the same relative speed as

532 ‘ CHAPTER 1

before, T'1 would obtain an exclusive lock on A first and then read and Wri’ﬁ
A (Figure 16.6). Then, 12 would request a lock on A. However, this reques

Figure 16.6 Schedule Ilustrating Strict 2PL

cannot be granted until 7’1 releases its exclusive lock on A, and the DBMS:
therefore suspends T2. T'1 now proceeds to obtain an exclusive lock cn B,
reads and writes B, then finally commits, at which time its locks are released.
T2’s lock request is now granted, and it proceeds. In this example the locking
protocol results in a serial execution of the two transactions, shown in Figure
16.7.

T1 T2

X(A)

R(A)

w(4)

X(B)

R(B)

W(B)

Commit
X(A)
R({A)
W(A)
X(B)
R(B)
w(B)
Commit

Figure 18.7 Schedule Hlustrating Strict 2PL with Serial Execution

In general, however, the actions of different transactions could be interleaved.
As an example, consider the interleaving of two transactions shown in Figure
16.8, which is permitted by the Strict 2PL protocol.

Tt can be shown that the Strict 2PL algorithm allows only serializable sched-
ules. None of the anomalies discussed in Section 16.3.3 can arise if the DBMS
implements Strict 2PL.

Overview of Transaction Management 533

T1 T2
S(A)
R(A)
S(A)
R(A)
X(B)
R(B)
W(B)
Commit
X
R(C)
wW(C)
Commit

Figure 16.8 Schedule Following Strict 2PL with Interleaved Actions

1__6.4.2 Deadlocks

onsider the following example. Transaction T sets an exclusive lock on object
A, T2 sets an exclusive lock on B, Tl requests an exclusive lock on B and is
ueued, and T2 requests an exclusive lock on A and is queuned. Now, Tl is
waiting for T2 to release its lock and T2 is waiting for 7'l to release its lock.

¢ch a cycle of transactions waiting for locks to be released is called a deadlock.

learly, these two transactions will make no further progress. Worse, they
sactions. The DBMS must either

dld locks that may be required by other tran
“ovent or detect (and resolve) such deadlock situations; the common approach

o detect and resolve deadlocks.

imple way to identify deadlocks is to use a timeout mechanism. If a trans-
ion has been walting too long for a lock, we can assume (pessimisticaﬂy)
it is in a deadlock cycle and abort it. We discuss deadlocks in more detail

Section 17.2.

PERFORMANCE OF LOCKING

-based schemes are designed to resolve conflicts between transactions and
{;WO basic mechanisms: blocking and gborting. Both mechanisms involve
rformance penalty: Blocked transactions may hold locks that force other

ctions to wait, and aborting and restarting a transaction obviously wastes

rk done thus far by that transaction. A deadlock represents an extreme
forever blocked unless one

ce of blocking in which a set of transactions is
‘deadlocked transactions is aborted by the DBMS.

534 CHAPTER -

In practice, fewer than 1% of transactions are involved in a deadlock, and there
are relatively few aborts. Therefore, the overhead of locking comes primarily
from delays due to blocking.® Consider how blocking delays affect throughput,
The first fow transactions are unlikely to conflict, and throughput rises in pro-
portion to the number of active transactions. As more and more transactions
execute concurrently on the same number of database objects, the likelihood o
their blocking each other goes up. Thus, delays due to blocking increase with
the number of active transactions, and throughput increases more slowly than
the number of active transactions. In fact, there comes a point when addin,
another active transaction actually reduces throughput; the new transaction i
blocked and effectively competes with (and blocks) existing transactions. We
say that the system thrashes at this point, which is illustrated in Figure 16.9

h

Throughput

{ Thrashing

Active transactions

Figure 16.9 Lock Thrashing

If a database system begins to thrash, the database administrator should reduce
the number of transactions allowed to run concurrently. Empirically, thrashing
is seen to occur when 30% of active transactions are blocked, and a DBA should
monitor the fraction of blocked transactions to see if the system is at risk of
thrashing.

Throughput can be increased in three ways (other than buying a faster system):

m By locking the smallest sized objects possible (reducing the likelihood that
two transactions need the same lock).

s - By reducing the time that transaction hold locks (so that other transactions
are blocked for a shorter time).

3Many common deadlocks can be avoided using a technique calted lock downgrades, implemented
in most commercial systems {Section 17.3).

Overview of Transaction Management 535

® By reducing hot spots. A hot spot is a database object that is frequently
accessed and modified, and causes a lot of blocking delays. Hot spots can
significantly affect performance.

The granularity of locking is largely determined by the database system’s im-
plementation of locking, and application programmers and the DBA have little
control over it. We discuss how to improve performance by minimizing the
duration locks are held and using techniques to deal with hot spots in Section
20.10.

